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Abstract: The conservation of the genetic resources of old trees is crucial to their ecological role
but is extremely difficult, especially for oak species (Quercus spp.) displaying recalcitrance in seed
and vegetative propagation methods. Our study aimed to assess the regenerative potential of
Quercus robur trees of different ages (up to 800 years) during micropropagation. We also aimed to
determine how in vitro conditions can influence in vitro regeneration responses. Lignified branches
collected from 67 selected trees were cultivated ex vitro in culture pots at 25 ◦C to obtain epicormic
shoots (explant sources). The explants were cultivated on an agar medium supplemented with
0.8 mg L−1 6-benzylaminopurine (BAP) for at least 21 months. In a second experiment, two different
shoot multiplication conditions (temporary immersion—RITA® bioreactor and agar medium) and two
culture medium formulations (Woody Plant Medium and modified Quoirin and Lepoivre medium)
were tested. The results showed that the mean length of the epicormic shoots obtained in a pot culture
was a function of donor age and was similar among the group of younger trees (ca. 20–200 years), and
varied between older trees (ca. 300–800 years). The efficiency of in vitro shoot multiplication strictly
depended on the genotype. A sustainable in vitro culture (defined as survival after 6 months) was
only possible for half of the tested old donor trees, even when they survived the first month of in vitro
growth. A continuous monthly increase in the number of in vitro cultured shoots was reported in
younger oaks and in some old oaks. We found a significant effect of the culture system and the macro-
and micronutrient composition on in vitro shoot growth. This is the first report demonstrating that
the in vitro culture can be successfully applied to the propagation of even 800-year-old pedunculate
oak trees.

Keywords: agar medium; bioreactor system; micropropagation; pedunculate oak; oaks; old trees; RITA®

1. Introduction

The protection of monumental trees, which play an important role in natural ecosys-
tems, is a form of biodiversity protection that enables maintaining the richness and diversity
of living organisms from all ecosystems and ecological complexes, together with the diver-
sity of the physical conditions of the habitats in which they occur [1]. The most commonly
used method of ex situ conservation of genetic resources is the storage of seeds in gene
banks, which allows the long-term storage of genetic resources of plant species, mainly
in the form of seeds that tolerate desiccation (orthodox category) [2]. Conversely, the
storage of desiccation-sensitive seeds (recalcitrant category), such as oak acorns, remains
challenging [3]. When it is not possible to store seeds, the in vitro method allows for the
preservation of endangered or valuable plant material via plant tissue cultures of valuable
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individuals, in addition to their regeneration and reintroduction to the natural environ-
ment [4–6]. For agricultural species, artificial seeds are produced by encapsulating somatic
embryos, shoot tips, or any other micropropagule which has the ability to convert into a
plant in vitro or ex vitro [7].

Old trees are a valuable component of forest ecosystems, savannahs, and even urban-
ized areas [8]. Old forest communities create a suitable microclimate for many species and
are a source of food for many animals. They also play an important role by sequestering
large amounts of carbon dioxide, which has a direct impact on mitigating the effects of
climate change [9]. Old trees display many features valuable for silviculture, and have a
cultural and historical value for society; however, in many regions of the world, a rapid
decline in the largest and oldest trees has been observed [8]. Extremely old trees living over
1000 years are rare [10]. Among deciduous trees, there are some monumental pedunculate
oaks (Quercus robur L.) in Europe that are thought to be approximately 1000 years old, such
as the Granit Oak in Bulgaria, the Kongeegen in Denmark, the Stelmužė Oak in Lithuania,
and the Major Oak in England. In Poland, pedunculate oaks are the oldest tree group, and
their ages range from 500–800 years [11].

Q. robur is a naturally occurring broadleaved tree in Europe and southeast Asia, where
it forms temperate deciduous mixed forests. Q. robur grows well in acid soils, although it
can grow in soils with higher pH than Q. petarea. Fruiting is observed after approximately
40–50 years of growth [12]. The natural regeneration of Q. robur is considered to be
unsuccessful [13,14]. The phenomenon of dying oak stands has been observed in Poland
and Europe since the nineteenth century. Drought, frost damage and defoliation, the long-
term impact of key stress factors (climate, habitat), insect gradation, lowered groundwater
level, changes in soil chemistry, low temperatures, and environmental pollution are the
main causes of the mass death of oak stands [15].

The generative propagation of oaks by seeds is commonly undertaken in afforesta-
tion. Traditional techniques of vegetative propagation are of limited use in the case of
Q. robur because of the low oak shoot rooting rates [16]. The loss of rooting capacity is
reported predominantly in adult material, indicating that the ontogenetic state of oak
shoots is crucial in in vitro cultures [17]. Micropropagation is one of the in vitro meth-
ods of the vegetative multiplication of plant material [18]. Successful micropropagation
of Q. robur shoot sections with the apical meristem of shoots [19,20] or plumules [21] is
possible when placed on a certain medium and cultured under specific temperature and
lighting conditions [22]. However, the selection of the best explant source determines
the success of micropropagation [23]. An important factor in plant tissue culture is the
medium. Both Woody Plant Medium (WPM) and Quoirin and Lepoivre (QL) [24] media
can be successfully used in oak micropropagation [25,26]. Increased multiplication effi-
ciency can also be achieved by the cultivation in bioreactors using a temporary immersion
bioreactor (TIB) or temporary immersion systems (TIS) [27]. The TIB system was found to
be very efficient for the in vitro mass production of genetically homogeneous horticulture
and medicinal species [28]. Q. robur shoots were successfully micropropagated in liquid
culture in a PlantformTM bioreactor [29]. Recently, morphophysiological disorders that may
occur during in vitro regeneration of juvenile Q. robur explants on medium with cytokinins
were investigated in order to establish an optimized micropropagation protocol [30]. The
acclimation to ex vitro conditions is an important stage of micropropagation. Ectomycor-
rhiza inoculation can improve the water and physiological condition of plants during the
adaptation phase [31].

The success of the micropropagation of woody plants is closely related to their age [32].
The initiation of tissue cultures from old trees is hampered by the high percentage of
microbial contamination and higher sensitivity to disinfectants [33]. Therefore, in our study,
we aimed to test the hypothesis that the ability of oak trees to undergo in vitro micro-
propagation decreases with age. The possibility of in vitro cultivation of plant material
from individuals aged 70–300 years has been previously reported [20]. However, to the
best of our knowledge, there are no studies demonstrating the possibility of cloning oaks
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older than 500 years. We hypothesized that the micropropagation of an approximately
800-year-old Quercus robur L. is possible. Our study thus aimed to assess the regenerative
potential of Q. robur trees of different ages (ca. 20–800 years) during micropropagation.
Furthermore, we aimed to determine how in vitro conditions (agar medium formulation
and TIS) influence in vitro regeneration responses.

2. Results
2.1. Ex Vitro Cultivation of Branches in Pots

Significant differences were observed in the average length of the epicormic shoots
obtained from trees of different ages (Figure 1). The length of epicormic shoots obtained from
trees aged ca. 20–200 did not differ significantly (4.51–4.7 cm) (Figure 1A), whereas the length
of shoots was more diversified in older trees (Figure 1B). The analysis of variance components
(REML method) revealed that, as a component, the monumental tree genotype carries 85.3%
of the variation in the average number of shoots produced by the tree (Table S1).
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Figure 1. The average length of epicormic shoots (per a lignified shoot) obtained after four weeks of
pot culture of Quercus robur plant material. Lignified branches were collected from two groups of
mature trees. (A) Forty-six trees pooled in four categories, aged ca. 20–200 years, (B) Twenty-one
monumental trees aged ca. 300–800 years (±50). Data are the means of three biological repli-
cates ± standard error. BK2—Bąkowski 2 Oak (ca. 300 years old); ED—Edward Oak (ca. 350);
WS—Władysława Szafera Oak (ca. 400); WY—Wybickiego Oak (ca. 400); BS—Bolesław Oak (ca. 400);
OW—Owińska Oak (ca. 500); DZ—Dziadziuś Oak (ca. 500); HO—Hoggo Oak (ca. 500); UM—Uparty
Mazur Oak (ca. 500); LE—Lech Oak (ca. 550); BK3—Bąkowski 3 Oak (ca. 550); MI—Mieszko I Oak
(ca. 650); PO—Poganin Oak (ca. 650); CR—Chrześcijanin (ca. 650); WA—Warcisław Oak (ca. 650);
BL—Bolko Oak (ca. 650); BA—Bartek Oak (ca. 700); BZ—Bażyńskiego Oak (ca. 700); JK—Jan
Kazimierz Oak (ca. 700); CH—Chrobry Oak (ca. 800), RU—Rus Oak (ca. 800).

No significant correlations were found between the donor tree age and the average
number of epicormic shoots obtained from ca. 20–200-year-old trees (Figure 2A). The effect
of donor tree age was confirmed by an average negative correlation between mean total
shoot length and donor tree age (r = −0.4856, p ≤ 0.01) (Figure 2B). There was also no
significant correlation between the mean number of shoots and donor tree circumference
(Figure 2C), whereas a high negative correlation (r = −0.524, p ≤ 0.001) was found between
mean total shoot length and donor tree circumference (Figure 2D).
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Figure 2. Pearson correlation coefficient (r) between donor tree age and average total length (A) and
the number (pcs-pieces) of epicormic shoots obtained as a result of pot culture (B) and between donor
tree circumference and average number (C) and the average total length (D) of epicormic shoots. The
correlation is significant at the ** p ≤ 0.01 or *** p ≤ 0.001 level.

2.2. Effect of Donor Tree Age on Explant Survival after the First Month of In Vitro Culture

Survival of explants originating from ca. 20–200-year-old oaks after the first month
of in vitro culture was 12–40% (Figure 3A). Explants derived from 21 monumental oaks
aged ca. 300–800 years were characterized by more diverse survival rates in comparison to
younger oaks (Figure 3B). The highest survival rate for explants from older oaks was 90%,
and the lowest was approximately 23% (Figure 3B).

2.3. Effect of a Donor Tree and the Number of Subcultures (up to 21 Months) on In Vitro
Shoot Proliferation

The shoot number and the total length of new shoots (starting from two initial shoots
for each repetition) for different genotypes were recorded monthly during four successive
subcultures up to 21 months. The genotype, the number of subcultures, and their inter-
action had a significant effect on the proliferation of micropropagated oaks (Table S2). In
the case of oaks aged ca. 20–200 years, positive correlations were reported between the
subculture number and the number of shoots (r = 0.9065, p ≤ 0.001; Figure 4A) and with
the shoot length (r = 0.9041, p ≤ 0.001, Figure 4B). This demonstrates a continuous monthly
increase in the number of shoots cultured in vitro during the studied four-month period.
For the oldest oaks, both correlations were weaker in comparison to the youngest oaks;
in addition, a sustainable culture (shoots growing in vitro > 6 months) was only possible
for half of the tested donor trees (ca. 300–800 years old). A positive correlation was found
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between the number of shoots multiplied during a 4-month in vitro culture from monu-
mental oaks and the duration of this culture (r = 0.5699, p ≤ 0.001) (Figure 4C). A positive
correlation was also found between the total shoot length (r = 0.5823, p ≤ 0.001) and culture
duration (Figure 4D). Representative images of shoots derived from monumental oaks after
four weeks of proliferation are provided in Figure 5.
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Figure 3. Explant survival during the first month of in vitro culture corresponding to two groups
of Q. robur mature trees. (A) Forty-six trees pooled in four categories, aged ca. 20–200 years,
(B) Twenty-one monumental trees aged ca. 300–800 years (±50). Data are the means of three biological
replicates ± standard error. BK2—Bąkowski 2 Oak (ca. 300 years old); ED—Edward Oak (ca. 350);
WS—Władysława Szafera Oak (ca. 400); WY—Wybickiego Oak (ca. 400); BS—Bolesław Oak (ca. 400);
OW—Owińska Oak (ca. 500); DZ—Dziadziuś Oak (ca. 500); HO—Hoggo Oak (ca. 500); UM—Uparty
Mazur Oak (ca. 500); LE—Lech Oak (ca. 550); BK3—Bąkowski 3 Oak (ca. 550); MI—Mieszko I Oak
(ca. 650); PO—Poganin Oak (ca. 650); CR—Chrześcijanin (ca. 650); WA—Warcisław Oak (ca. 650);
BL—Bolko Oak (ca. 650); BA—Bartek Oak (ca. 700); BZ—Bażyńskiego Oak (ca. 700); JK—Jan
Kazimierz Oak (ca. 700); CH—Chrobry Oak (ca. 800), RU—Rus Oak (ca. 800).

2.4. Efficiency of Shoot Multiplication in the RITA® Bioreactor

This experiment tested the multiplication of shoots in in vitro culture on two agar
media (WPM, QL), where the shoots were arranged horizontally or vertically, and on liquid
media (WPM, QL) in the RITA bioreactor. The WPM and QL agar media differed in the
efficiency of shoot multiplication. The number of shoots was higher when shoots were
cultured on WPM (1.36–2.51) than when shoots were cultured on QL medium (0.16–1.08).
The shoots were also longer when cultured in WPM (4.17–15.39 mm) than in QL medium
(0.96–3.86 mm) (Figure 6). The analysis of variance revealed a statistically significant effect
of the medium on shoot growth (Table S3). The average number and length of new shoots
grown on agar medium did not differ according to the horizontal or vertical arrangement of
explants (Figure 6). Importantly, significantly fewer and shorter new shoots were obtained
when their propagation was carried out in the RITA® bioreactor (best variant: 1.36 pcs,
4.17 mm average length) compared to the culture on agar WPM (best variant: 2.17 pcs,
14.71 mm average length). Both shoot necrosis and any other abnormalities in growth were
not observed. Cultivation in the RITA® bioreactor with the QL medium allowed us to
obtain significantly more (0.90 pcs) and longer (3.86 mm) new shoots than in the culture on
agar medium when the shoots were placed vertically in it (0.16 pcs, 0.96 mm) (Figure 6).
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Figure 4. Pearson correlation coefficient (r) between the number (pcs-pieces) (A,C) or total length
of shoots (B,D) and in vitro culture duration from 18 to 21 months in oaks aged ca. 20–200 years
(A,B) and monumental oaks (ca. 300–800 years old) (C,D). Correlation significant at the ** p ≤ 0.01 or
*** p ≤ 0.001 level. The x-axis represents the months from the start of the culture after sterilization.
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Rus Oak (ca. 800 (A2), Bolesław Oak (ca. 400) (A3), and younger oaks, ca. 20–200 years (B1) after
four weeks of proliferation.
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Figure 6. Comparison of the number of new shoots (A,B) and average length of new shoots (C,D)
after one month of in vitro culture of genotype Bąkowski 2 Oak on solid medium (SM) or in the
RITA® bioreactor using WPM (A,C) or QL medium (B,D) and horizontal (SM-horizontal) or vertical
(SM-vertical) explant arrangements. Data are the means of three biological replicates ± standard
error. Different letters indicate significant differences according to Tukey’s post hoc test.

3. Discussion
3.1. Epicormic Shoot Formation in Pot Culture

Clonal propagation of the selected plant species that are recalcitrant to conventional
propagation methods is challenging [34]. Following our previous studies on monumental
oaks [35,36], we can here confirm our hypothesis and present the first evidence of an
effective propagation method for Q. robur trees aged up to 800 years. The pot culture
of lignified shoots of Q. robur enabled us to obtain epicormic shoots from all 21 tested
monumental oaks that served as explants for the initiation of in vitro culture. The possibility
of obtaining epicormic shoots for Q. robur is crucial in the initiation of in vitro cultures. Old
plants have a lower ability to initiate in vitro culture, and for many species, the method is
not very effective [20,37,38]. Recently, miRNAs involved in epigenetics were suggested as
key regulators of vegetative phase change and exogenously induced plant rejuvenation
and regrowth [39]. The rapid growth and high regenerative capacity of epicormic shoots
depended on the time of harvest of the plant material. In our study, the collection of
branches in April (before winter bud burst) resulted in the successful growth of epicormic
shoots developed from dormant buds. The optimal time of harvest of plant material
depends on the species, and can occur from mid-winter to late spring [38]. Two North
American oak species, Q. alba and Q. rubra, displayed the best epicormic bud sprouting
success when lignified shoots were collected from February to April [40]. To the best of
our knowledge, Eucalyptus globulus, growing in a temperate environment, was the only
woody plant reporting no seasonal effects on explant shoot production [41]. Another factor
determining the success of explant growth in our study was to use only larger branches
with epicormic buds, while thinner branches were cut off together with winter buds. This
was also reported for other species, such as Robinia pseudoacacia [42]. In our study, tree
circumference was also responsible for the success of epicormic shoot growth. We showed
an inverse correlation between the average total length of epicormic shoots and both the
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age (ca. 20–800 years) and circumference (0.15–10.4 m) of the donor tree. These results are
in agreement with previous observations [37,40,41].

3.2. Donor Tree Age, Genotype, and In Vitro Shoot Regeneration

According to many reports, the age of the donor tree has a decisive influence on the
shoot regeneration capacity in tissue cultures [43,44]. We can confirm our hypothesis that
in vitro shoot multiplication of older oaks is possible. After the first month of in vitro
culture, some tree material was characterized by a high survival and growth rate, while
others exhibited a low survival rate and a tendency to die. San-José et al. [45] observed
the better response of de novo shoot formation when explants were re-cultured on the
same medium, and later there was a decay in shoot production. The stabilization of in vitro
cultures, measured in our experiment as the number of multiplied shoots from individual
trees, occurred about six months after the initiation of a culture, depending on the tree
genotype. The regeneration capacity could be linked to a hormonal balance (the content and
biosynthesis of plant hormones) and/or epigenetics [44,46]. According to the cited studies,
the endogenous auxin/cytokinin levels may decrease, and the DNA methylation levels may
increase as the donor tree ages. Therefore, we hypothesized that the explants obtained from
monumental trees with lower regenerative capacity could be the result of a higher level of
methylation and the lower biosynthesis of hormones. During in vitro culture, organogenic
responses are affected by the interaction between plant growth regulators added to the
culture medium and the endogenous hormone content. Exogenous cytokinins are essential
to shoot formation during the in vitro culture of oaks, but the use of synthetic cytokinins,
such as 6-benzylaminopurine (BAP), may show a residual long-term effect, interfering
with later subcultures [47,48]. The lack of a clear pattern in the results encouraged us to
prolong the culture time and assess the effect of culture duration (up to 21 months) on the
efficiency of shoot multiplication expressed as the number and total length of the multiplied
shoots. We observed, during the 21-month shoot culturing period, a continuous monthly
increase in the number of in vitro cultured shoots in younger oaks and for some old oaks.
The efficiency of in vitro culture of shoots from both younger oaks (ca. 20–200 years old)
and monumental oaks (ca. 300–800 years old) was correlated with the duration of culture,
and was evident during the initiation of in vitro cultures. In this study we used a large
number (67) of mature trees that showed a high variability in regenerative capacity, ranging
from successful proliferation for more than 20 months to a sharp decay during the first
months, which prevented further propagation. Similarly, Juncker and Favre [49], in a study
of 150-year-old Q. robur trees, found that the genotype has a large impact on the ability to
micropropagate because some individuals died in the initial period of the culture, whereas
others showed a gradual decrease in vitality, and most juveniles showed increasing growth
vigor over time.

3.3. Multiplication of Shoots in the RITA® Bioreactor

Numerous scientific reports indicate the possibility of increasing the efficiency of
plant material propagation using bioreactors operating with a temporary immersion
system [50–52], including the RITA® bioreactor [53,54]. The advantages of this system
are the short-term contact of explants with the liquid medium, the easy availability of
micro- and macronutrients, efficient gas exchange [50], and large-scale multiplication [52].
An increase in shoot multiplication efficiency in the bioreactor was obtained for other trees,
such as eucalyptus [53], apple [55], chestnut [56] and willow [57]. To the best of our knowl-
edge, this is the first attempt at culturing axillary shoots of adult oak trees in bioreactors. In
the present study, the efficiency of oak shoot multiplication in the RITA® bioreactor was
lower than on an agar medium. We observed a lower average number (1.4 pcs) and length
(4.2 mm) of new shoots obtained with the former, whereas the proliferation was higher
with the conventional culture on agar media (an average of 1.9–2.5 pcs and 14.0–15.4 mm
in length). The reports on the use of bioreactors for oak proliferation are scarce. Regarding
axillary shoots, there is a report on the use of the Plantform™ bioreactor for the microprop-
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agation of Q. robur shoots originating from seedlings, which did not cause a significant
increase in the number of new shoots obtained compared to standard cultivation on a
solid agar medium [29]. These authors used a different immersion/aeration regime and
reported hyperhydricity when the explants were submitted to a longer immersion period.
Although the proliferation of their juvenile material was higher than that observed with
old oaks in this study, it should be improved in terms of being an alternative to agar-based
media. In the case of somatic embryos, multiplication rates and somatic embryo quality in
two embryogenic lines of Quercus robur derived from mature trees were investigated by
Mallón et al. [58], who tested several immersion cycles. In this case, higher proliferation
was obtained by TIS, which also had a significant effect on somatic embryo synchronization,
as it enabled a higher production of cotyledonary embryos. The success of cultivation in
a batch flood bioreactor depends on many factors, such as the container size, the ratio of
medium volume per explant, and flooding cycle length and frequency [59]. In the case of
Q. robur axillary shoots, further research using different times and frequencies of flooding
cycles, as well as different volumes of medium and amounts of explants, is needed to
increase the efficiency of multiplication in a bioreactor in the future.

The composition of the medium has a significant impact on the efficiency of in vitro
plant multiplication. Both on the agar medium and on the TIS, a lower number of new
shoots was observed on the modified QL medium as compared to the WPM in this study.
The WPM medium is widely used during the in vitro multiplication phase for woody
species during the in vitro multiplication phase of the genus Quercus [60,61]. Compared to
QL, the WPM formulation has a higher nitrogen content, an essential macronutrient, and a
structural component in plants. Furthermore, it is important to point out that nitrate (NO3)
can stimulate a transient increase in endogenous cytokinin levels [62]. Martins et al. [30]
also found that the addition of available nitrogen in the culture medium potentiated the effect
of BAP on in vitro multiplication. Contrary to this, Wesoły et al. [63] obtained good results on
the multiplication of the seedlings of pedunculate oak using a modified QL medium.

3.4. Shoot Positions on Agar Media

Species of the genus Quercus are recalcitrant, i.e., recalcitrant in terms of seed phys-
iology as well as micropropagation [64]. Additionally, episodic growth, stunting, or the
lethality of multiplicated Quercus shoots is reported when the explants are vertically posi-
tioned in the culture [65]. However, the shoot multiplication efficiency of in vitro cultured
explants originating from Q. robur trees was comparable when the shoots were placed on
the medium in a vertical or horizontal position, similar to the study of San-José et al. [45],
on plant material from 15- and 75-year-old Q. robur trees. Interestingly, significantly more
shoots were obtained when explants from Q. rubra shoots aged 3 months, 4 years, and
30–40 years [66], as well as from 100-year-old Q. robur trees [20] were placed horizontally on
the medium. These divergent results support the need for further research to continuously
improve in vitro culture protocols, because the distribution and transport of endogenous
growth regulators and the availability of nutrients might depend on the initial position
of shoots in the medium. The different responses of horizontally positioned shoots were
related to the donor tree age.

4. Materials and Methods
4.1. Plant Material

Plant material was collected from 67 mature Quercus robur trees growing in Poland.
Forty-six of them were ca. 20–200 years old, and twenty-one were monumental oaks with
ages ranging from ca. 300 to 800 years [35]. Lignified branches of 1.5 m in length were
collected in late April of 2014. Branches with a diameter of approximately 2–4 cm were cut
into 30–40 cm sections (thin branches with winter buds were removed) and transported to
the laboratory within 24 h.
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4.2. Initiation of Epicormic Shoots in Pot Culture (Ex Vitro)

Lignified branches (lignified shoots) of ca. 40 cm in height with a diameter of 1–4 cm
with epicormic buds located under the bark were cultivated in water in 500-mL buckets at
a temperature of 25 ◦C. To ensure good water conduction inside the lignified branches, the
conducting bundles were vented by placing the lower ends of the branches in boiling water
for 2–5 min. The shoots were then surface-decontaminated by immersion in a 10% sodium
hypochlorite solution for 10 min. The branches were placed in a growth room with a light
intensity of 40 µmol m−2 s−1 photosynthetically active radiation (PAR), a 16 h light/8 h
dark photoperiod, and an air humidity of 80–90%. Epicormic shoots were developed
from dormant buds located under the bark (Figure 7A). To evaluate the epicormic shoot
regeneration, the number and total length (in cm) of all epicormic shoots growing from one
lignified shoot were recorded. The number of epicormic shoots and their total length were
a mean of three replicates (five lignified shoots in each) of one tree.
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4.3. Establishment of In Vitro Culture from Explants and Further Shoot Multiplication

The explants (Figure 7B) were disinfected and introduced to in vitro conditions as pro-
posed by Kotlarski et al. [35] and Martins et al. [30]. The explants were cultured in an agar
(7 g L−1) woody plant medium (WPM) [67] supplemented with 0.8 mg L−1 BAP and 30 g L−1

sucrose. The BAP concentration was chosen in accordance with Puddephatt et al. [68]. The
cultivation was carried out under controlled conditions in a phytotron chamber under a
light intensity of 77 µmol m−2s−1, over a 16 h light/8 h dark photoperiod, and at 20 ◦C.
The in vitro plant material (Figure 7C) was transferred to fresh medium with the same
formulation described above every four weeks and cultivated for at least 21 months. After
one month of in vitro culture, the survival rate of shoots from younger oaks (46 trees pooled
in four categories: ca. 20, ca. 70, ca. 100 and ca. 200 years old) and old oaks (21 trees, ca.
300–800 years old) were measured. In the experiment, five repetitions (two shoots in one
jar in each repetition) per tree were used, and the initial length of the shoots was 2–3 cm.

4.4. In Vitro Multiplication of Shoots Originating from Trees of Different Ages

The regeneration capacity during the in vitro multiplication of Q. robur shoots (Figure 7C)
was tested. After 18 months of continuous subcultures, the plant material was divided into
two groups. One group consisted of 46 trees pooled in four categories aged ca. 20–200 years,
and the second group of 21 trees was aged ca. 300–800 years. These genotypes were
cultured for four months in the conditions described above. Every four weeks the shoots
were transferred to fresh media and the shoot number and length were recorded. For each
genotype, five replicates of two shoots each were used, and the initial length of the shoots
was 2–3 cm.

4.5. In Vitro Multiplication in the RITA® Bioreactor System and Agar Medium

For this experiment we selected the Bakowski 2 Oak genotype (aged ca. 300 years)
due to its good regenerative capacity over 10 months of culturing. The experiment was
performed to test several factors: (i) two in vitro conditions: a temporary immersion system
with RITA® bioreactors (Figure 7D), and the conventional agar medium, (ii) two media
formulations, WPM and QL, the composition of which can be found in Table S4, and (iii) the
explant arrangement in the medium with agar: horizontal (Figure 7E) or vertical (Figure 7F).
All media were supplemented with 0.8 mg L−1 of BAP. In the RITA® bioreactor, the explants
were immersed for 4 min every 3 h. Initial explants were 2 cm shoots without leaves. The
number and length of new shoots were recorded after four weeks. The experiment design
was completely randomized, and samples consisted of three replicates per treatment, and
each replicate consisted of 15 explants.

4.6. Statistical Analysis

The obtained data were subjected to an analysis of variance (ANOVA), and the sig-
nificance of differences was tested using Tukey’s test at a significance level of p ≤ 0.05. A
multivariate ANOVA (MANOVA) was used for the data analysis of repeated measures. For
percentage data analysis, values were arc-sin-transformed. In justified cases, a restricted
maximum likelihood (REML) analysis of the effects of variance components was performed.
The correlation coefficient was determined for the selected data using Pearson’s R method.
To interpret the correlation strength, the classification of Guilford [69] was adopted. All
statistical analyses were performed using SAS JMP® Pro 16.

5. Conclusions

In this study, we demonstrated the successful in vitro shoot multiplication of
ca. 800-year-old Q. robur trees for the first time, thereby confirming our hypothesis. How-
ever, some old oak trees appeared to be recalcitrant to micropropagation. The effect of
genotype and tree age was significant on the efficiency of epicormic shoot formation during
the pot culture (explants preparation) and shoot multiplication in vitro. Generally, younger
oaks displayed a higher potential of in vitro growth. The survival (up to one month) of
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explants during the in vitro culture did not guarantee the maintenance of the culture for
longer than periods of six months. The sustainable in vitro culture of the oldest oaks was
only possible for some of the 21 tested monumental trees, those exhibiting a multiplying
rate similar to younger oaks. It was also found that RITA®, the temporary immersion
bioreactor system, did not increase the multiplication rate for old oaks in comparison
to the agar medium. This study demonstrates that we can protect the genotypes of ca.
800-year-old Q. robur trees using an optimized micropropagation protocol.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants12122230/s1; Table S1: Average number of shoots produced
by monumental trees (ANOVA); Table S2: Average number of shoots and their length at the 18th
to the 21st month of cultivation (MANOVA); Table S3: The effect of medium on shoot production;
Table S4: The composition of agar media.
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