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Abstract: Catharanthus roseus L. (G.) Don is the most widely studied plant because of its high
pharmacological value. In vitro culture uses various plant parts such as leaves, nodes, internodes
and roots for inducing callus and subsequent plant regeneration in C. roseus. However, till now, little
work has been conducted on anther tissue using plant tissue culture techniques. Therefore, the aim
of this work is to establish a protocol for in vitro induction of callus by utilizing anthers as explants
in MS (Murashige and Skoog) medium fortified with different concentrations and combinations
of PGRs. The best callusing medium contains high α-naphthalene acetic acid (NAA) and low
kinetin (Kn) concentrations showing a callusing frequency of 86.6%. SEM–EDX analysis was carried
out to compare the elemental distribution on the surfaces of anther and anther-derived calli, and
the two were noted to be nearly identical in their elemental composition. Gas chromatography–
mass spectrometry (GC–MS) analysis of methanol extracts of anther and anther-derived calli was
conducted, which revealed the presence of a wide range of phytocompounds. Some of them are
ajmalicine, vindolinine, coronaridine, squalene, pleiocarpamine, stigmasterol, etc. More importantly,
about 17 compounds are exclusively present in anther-derived callus (not in anther) of Catharanthus.
The ploidy status of anther-derived callus was examined via flow cytometry (FCM), and it was
estimated to be 0.76 pg, showing the haploid nature of callus. The present work therefore represents
an efficient way to produce high-value medicinal compounds from anther callus in a lesser period of
time on a larger scale.

Keywords: anther culture; flow cytometry; GC–MS; phytochemical profiling; ploidy level; secondary
metabolites; SEM–EDX

1. Introduction

Catharanthus roseus (L.) G. Don, a member of the Apocynaceae family, is a popular
flowering plant. It is an indigenous species to Madagascar and is widely distributed
throughout the African, American, Asian and southern European regions. In India, C. roseus
has been spread across all the major parts of Gujarat, Madhya Pradesh, Assam, Bihar, Uttar
Pradesh, Karnataka and Tamil Nadu [1]. The plant is well known for both its ornamental
and medicinal value. It produces nearly 130 alkaloids, of which vincristine and vinblastine
are the two major compounds that are used in the treatment of leukemia and Hodgkin’s
lymphoma [2]. For decades, this plant has been exploited for pharmaceutically active
compounds from its native environments and thus is at risk of declining in the wild. Plant
tissue culture proves to be an effective biotechnological tool for the rapid propagation
of plants under aseptic conditions with a lesser risk of microbial infections [3]. Several
in vitro studies using different explants have been successfully conducted for somatic
embryogenesis [4] and organogenesis in C. roseus [5,6].
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In recent times, double haploid (DH) production via anther is a promising option
for developing improved plant varieties with high yields of medicinally important bioac-
tive compounds [7]. In vitro anther culture has been attempted in various plants such
as Actinidia arguta Planch [8] and Triticum aestivum L. [9]. Various factors such as stage
of anther, culture conditions, plant growth regulators (PGRs) and genotypic and ploidy
status determine the success of DH generation [10]. These factors necessitate ascertaining
the ploidy status of anther-derived callus to generate true-to-type DH lines, which can be
performed with a flow cytometric technique. The flow cytometry method (FCM) measures
the genome size by examining the nuclei at a relatively faster rate and thus validates the
ploidy levels of different plant tissues [11]. Recent investigations of genome size analysis
using FCM have been reported for different plants [12,13]. Phytochemical profiling using
gas chromatography coupled with mass spectrometry (GC–MS) has emerged as an im-
portant procedure for identifying and quantifying therapeutically significant compounds
present in medicinal plants. This technique is relatively faster, accurate and needs a mini-
mum volume of extracts to detect a wide range of bioactive compounds such as alkaloids,
long-chain hydrocarbons, steroids, sugars, amino acids and nitro compounds [14]. Major
bioactive compounds extracted from different plant parts of C. roseus such as stem, root
and leaf include vincristine, vinblastine, reserpine, ajmalicine, vindolinine and catharine,
which possess anti-cancerous, anti-diabetic, anti-fungal and anti-microbial activities [15].
GC–MS-based profiling has been recently reported for several plants including Silybum mar-
ianum L. [16] and Chukrasia velutina [17], but the information on tissue-culture-raised plants’
phytocompound profiling is relatively much less. The present work, therefore, focuses on
investigating the ploidy status of anther-derived callus of C. roseus using flow cytometry.
The elemental composition of both anther and anther calli was studied using a scanning
electron microscopy–energy-dispersive X-ray microanalysis (SEM–EDX) technique. The
identification of the bioactive compounds present in methanolic extracts of anther and
anther-derived calli was conducted for the first time in C. roseus using GC–MS analysis.
This report will help to understand and improve the yield of the important pharmaceutical
compounds synthesized from anther-derived callus.

2. Results
2.1. Callus Induction and Proliferation

In this study, the anthers were used as explants to induce callus on MS medium
augmented with different concentrations and combinations of NAA and kinetin or TDZ
alone (Figure 1A). The callusing response ranged from 13.3% to 86.6% on all the tested
media (Table 1). Among the PGRs utilized, a combination of NAA and kinetin produced
maximum callus (86.6%) at concentrations of 1.0 mg/L and 0.1 mg/L, respectively, followed
by 0.75 mg/L TDZ with a frequency of 73.3%. On the other hand, TDZ alone at 0.5 mg/L
showed the least incidence of callusing efficiency (13.3%). The highest callus fresh weight
was noted to be 1.7 g on MS medium containing 1.0 mg/L NAA and 0.1 mg/L kinetin.
The calli obtained were white to pale yellow in color and friable in nature (Figure 1B–D).
The anther callus was noted to be recalcitrant, as plant regeneration (embryogenesis and
organogenesis) was not achieved on any medium added with various PGR combinations.

Table 1. Effect of different concentrations and combinations of PGRs on callus induction and callus
biomass (fresh weight) from anther explants of C. roseus.

PGRs Concentration (mg/L) Callusing Frequency (%) Mean Fresh Weight (g)

Control 0 0 e 0 c

NAA + Kn 0.1 + 1.0 26.6 ± 12.4 cde 0.8 ± 0.3 abc

0.5 + 0.75 33.3 ± 14.9 cde 0.9 ± 0.3 ab

0.75 + 0.5 53.3 ± 16.9 abc 1.1 ± 0.3 ab

1.0 + 0.1 86.6 ± 8.1 a 1.7 ± 1.7 a
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Table 1. Cont.

PGRs Concentration (mg/L) Callusing Frequency (%) Mean Fresh Weight (g)

TDZ 0.5 13.3 ± 8.1 de 0.5 ± 0.3 bc

0.75 73.3 ± 27.8 ab 1.3 ± 0.2 ab

1 46.6 ± 16.9 bcd 0.9 ± 0.2 ab

Mean values followed by the same superscripts within a column are not significantly different according to DMRT
at p ≤ 0.05 level.
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Figure 1. In vitro callus induction, proliferation and scanning electron microscopic (SEM) images of 
anther and anther-derived callus of C. roseus. (A,B): callus initiation (bars = 0.5 cm); (C,D): callus 
proliferation after 6 and 9 weeks, respectively (bars (C) = 1.0 cm, (D) = 0.5 cm); (E): side view of 
anther (bar = 200 µm); (F): a portion of anther-derived callus (bar = 20 µm). 
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Mean values followed by the same superscripts within a column are not significantly different ac-
cording to DMRT at p ≤ 0.05 level. 
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SEM–EDAX analysis was carried out to determine the elemental composition of an-

ther as well as anther-derived callus. The SEM images and their respective spectra are 
shown in Figures 1E,F and 2, respectively. The various peaks in both spectra reveal carbon, 
oxygen, sodium and phosphorous to be the major elements present on the surfaces of 
anther and anther-derived calli. In both the samples, the carbon and oxygen peaks are 
prominent and of high intensity, whereas those of sodium and phosphorous are of nearly 
equal intensity. The quantitative estimation of elements is presented in Table 2. 

Figure 1. In vitro callus induction, proliferation and scanning electron microscopic (SEM) images of
anther and anther-derived callus of C. roseus. (A,B): callus initiation (bars = 0.5 cm); (C,D): callus
proliferation after 6 and 9 weeks, respectively (bars (C) = 1.0 cm, (D) = 0.5 cm); (E): side view of
anther (bar = 200 µm); (F): a portion of anther-derived callus (bar = 20 µm).

2.2. Surface Morphology and Elemental Analysis

SEM–EDAX analysis was carried out to determine the elemental composition of anther
as well as anther-derived callus. The SEM images and their respective spectra are shown
in Figure 1E,F and Figure 2, respectively. The various peaks in both spectra reveal carbon,
oxygen, sodium and phosphorous to be the major elements present on the surfaces of
anther and anther-derived calli. In both the samples, the carbon and oxygen peaks are
prominent and of high intensity, whereas those of sodium and phosphorous are of nearly
equal intensity. The quantitative estimation of elements is presented in Table 2.

Table 2. Elemental composition of anther and anther-derived callus of C. roseus using SEM–EDX analysis.

S.No. Element Anther Explant Anther-Derived Callus

Weight % Atomic % Weight % Atomic %

1 Carbon 33.59 70.67 47.34 79.42
2 Oxygen 12.65 19.97 11.55 14.55
3 Sodium 1.93 2.12 1.63 1.42
4 Phosphorous 0.87 0.71 1.03 0.67

2.3. GC–MS Analysis

The bioactive compounds present in methanolic extracts of anthers (donor material)
and anther-derived callus of C. roseus (Figure 3) were identified using the GC–MS technique.
The active principles with their retention time (RT), peak area % (concentration), molecular
formula and molecular weight from the NIST library are presented in Tables 3 and 4, and
the GC–MS chromatograms are presented in Figure 4A,B. The chromatograms reveal more
than 50 phytocompounds in both methanolic extracts belonging to various classes such as
terpenoids, phenols, lignans, steroids, alkaloids and fatty acids.
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Table 3. List of phytocompounds identified in the methanolic extract of field-grown anther of C. roseus
using GC–MS analysis.

S.No. RT (min) Peak Area % Name of the Compound Molecular
Formula

Molecular
Weight

1 3.760 1.62 Ethylcyclopentenolone C7H10O2 126

2 4.436 1.12 Pyranone C6H8O4 144

3 5.484 1.17 Coumaran C8H8O 120

4 5.739 0.42 1-monoacetin C5H10O4 134

5 6.287 0.26 6-oxoheptanoic acid C7H12O3 144

6 6.504 0.38 Indole C8H7N 117

7 6.628 0.14 4-vinylguaiacol C9H10O2 150

8 7.616 2.12 1,2-octanediol C8H18O2 146

9 9.101 18.42 Guanosine C10H13N5O5 283

10 9.816 0.45 2,6-dimethoxy-4-vinylphenol C10H12O3 180

11 10.086 0.78 1,2-benzenedicarboxylic acid, diethyl ester C12H14O4 222

12 10.473 0.09 Cedrol C15H26O 222

13 10.796 0.17 Dihydromethyljasmonate C13H22O3 226

14 11.050 3.78 Quinic acid C7H12O6 192

15 11.914 0.08 2-benzylideneoctanal C15H20O 216

16 12.061 2.86 Mome inositol C7H14O6 194

17 13.082 0.13 Diisobutyl phthalate C16H22O4 278

18 13.411 0.11 Heptadecane C17H36 240

19 13.681 0.09 Methyl palmitate C17H34O2 270

20 14.117 0.18 n-hexadecanoic acid C16H32O2 256

21 14.403 0.12 Eicosane C20H42 282

22 15.355 4.71 Hexacosane C26H54 366

23 15.883 0.09 Docosanoic acid C22H44O2 340

24 16.259 0.79 Tetracosane C24H50 338

25 16.910 0.35 9-tricosanol acetate C25H50O2 382

26 17.134 9.78 Hexatriacontane C36H74 506

27 17.293 0.20 4,5-dihydro-2-[(8Z,11Z)-8,11-
heptadecadienyl]oxazole C20H35NO 305

28 17.398 0.19 4,8-cyclododecadien-1-one C12H18O 178

29 17.963 1.13 Dotriacontane C32H66 450

30 18.571 0.30 Octacosanol C28H58O 410

31 18.765 2.82 n-tetracontane C40H82 562

32 18.953 0.80 alpha-monostearin C21H42O4 358

33 19.536 0.22 1-bromotriacontane C30H61Br 500

34 20.322 0.11 Linoleyl acetate C20H36O2 308

35 20.523 0.12 (-)-Coronaridine C21H26N2O2 338

36 21.137 27.01 Squalene C30H50 410

37 22.759 0.19 Arachidic acid, 3-methylbutyl ester C25H50O2 382

38 22.896 0.57 beta-tocopherol C28H48O2 416
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Table 3. Cont.

S.No. RT (min) Peak Area % Name of the Compound Molecular
Formula

Molecular
Weight

39 23.543 0.30 Vitamin E C29H50O2 430

40 24.640 1.20 Campesterol C28H48O 400

41 24.766 0.30 Ergostan-3-ol C28H50O 402

42 25.105 0.08 Trans-24-ethylidenecholesterol C29H48O 412

43 25.178 0.52 3-oxocholestane C27H46O 386

44 25.440 0.22 p-coumaric acid, 2-methylpropyl ether,
2-methylpropyl ester C17H24O3 276

45 25.603 2.87 gamma-sitosterol C29H50O 414

46 25.762 0.57 Stigmastanol C29H52O 416

47 26.055 0.16 Ergosta-4,24(28)-dien-3-one C28H44O 396

48 26.132 0.87 4-campestene-3-one C28H46O 398

49 26.230 0.23 Cholestanone C27H46O 386

50 27.321 2.72 Methyl commate C C31H50O4 486

51 28.021 5.54 alpha amyrin C30H50O 426

Table 4. List of phytocompounds identified in the methanolic extract of anther-derived callus of
C. roseus using GC–MS analysis.

S.No. RT (min) Peak Area % Name of the Compound Molecular
Formula

Molecular
Weight

1 3.598 0.58 1,3,5-triazine-2,4,6-triamine C3H6N6 126

2 4.320 0.10 Isopropylmethylnitrosamine C4H10N2O 102

3 4.498 5.49 1,2,3-propanetriol C3H8O3 92

4 5.040 0.23 3-cis-methoxy-5-trans-methyl-1R-cyclohexanol C8H16O2 144

5 5.270 0.35 Catechol C6H6O2 110

6 5.402 0.50 2,5,5-trimethylhepta-2,6-dien-4-ol C10H18O 154

7 5.508 3.89 5-hydroxymethylfurfural C6H6O3 126

8 5.735 1.06 1-monoacetin C5H10O4 134

9 5.949 0.15 Decanoic acid C10H20O2 172

10 6.304 0.40 4-oxopentyl acetate C7H12O3 144

11 7.133 0.24 Eugenol acetate C12H14O3 206

12 8.022 0.07 Indan-1,3-diol monoacetate C11H12O3 192

13 8.728 6.16 Guanosine C10H13N5O5 283

14 9.764 0.08 Dodecanoic acid C12H24O2 200

15 10.784 0.15 Dihydromethyljasmonate C13H22O3 226

16 10.986 0.10 1-(4-isopropylphenyl)-2-methylpropyl acetate C15H22O2 234

17 11.145 0.27 Benzoic acid, 2-hydroxy-, heptyl ester C14H20O3 236

18 11.555 0.19 Methyl myristate C15H30O2 242

19 11.934 0.61 4-((1E)-3-hydroxy-1-propenyl)-2-
methoxyphenol C10H12O3 180
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Table 4. Cont.

S.No. RT (min) Peak Area % Name of the Compound Molecular
Formula

Molecular
Weight

20 12.030 0.11 Tridecanoic acid C13H26O2 214

21 12.246 0.20 Stearic acid methyl ester C19H38O2 298

22 12.334 0.72 Octadecanoic acid, methyl ester C19H38O2 298

23 12.640 0.14 Pentadecanoic acid, methyl ester C16H32O2 256

24 13.075 0.29 Diisobutyl phthalate C16H22O4 278

25 13.255 0.03 1-hexadecanol C16H34O 242

26 13.298 0.62 Hexadecanoic acid, methyl ester C17H34O2 270

27 13.467 0.19 Methyl palmitoleate C17H32O2 268

28 13.580 0.03 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-
2,8-dione C17H24O3 276

29 13.676 3.96 Methyl palmitate C17H34O2 270

30 14.113 0.21 n-hexadecanoic acid C16H32O2 256

31 14.305 0.49 Decyl hexofuranoside C16H32O6 320

32 14.387 0.50 Eicosanoic acid, methyl ester C21H42O2 326

33 14.533 0.36 Cis-sinapyl alcohol C11H14O4 210

34 14.664 0.15 Heptadecanoic acid, methyl ester C18H36O2 284

35 14.925 0.12 Oxybenzone C14H12O3 228

36 15.316 3.31 Linoleic acid, methyl ester C19H34O2 294

37 15.374 1.97 Ethyl oleate C20H38O2 310

38 15.423 0.72 Oleic acid, methyl ester C19H36O2 296

39 15.607 0.79 Octadecanoic acid, methyl ester C19H38O2 298

40 16.399 0.70 cis-10-nonadecenoic acid, methyl ester C20H38O2 310

41 16.816 0.08 4,8,13-duvatriene-1,3-diol C20H34O2 306

42 17.290 0.08 4,5-dihydro-2-[(8Z,11Z)-8,11-
heptadecadienyl]oxazole C20H35NO 305

43 17.335 0.03 (Z)-2-(pentadec-8-en-1-yl)-4,5-dihydrooxazole C18H33NO 279

44 17.379 0.16 Methyl arachidate C21H42O2 326

45 17.589 0.45 6-methyladenine, TMS derivative C9H15N5Si 221

46 17.888 0.09 Octadecanoic acid, 2,3-dihydroxypropyl ester C21H42O4 358

47 18.239 0.15 Henicosanal C21H42O 310

48 18.746 0.12 Nonadecylpentafluoropropionate C22H39F5O2 430

49 18.948 0.21 alpha-monostearin C21H42O4 358

50 19.006 0.28 Docosanoic acid, methyl ester C23H46O2 354

51 19.522 0.21 Vindolinine C21H24N2O2 336

52 19.775 0.12 Methyl tricosanoate C24H48O2 368

53 20.046 0.09 Octocrylene C24H27NO2 361

54 20.317 0.25 n-propyl linoleate C21H38O2 322

55 20.593 0.10 Pleiocarpamine C20H22N2O2 322

56 21.122 0.89 Squalene C30H50 410
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Table 4. Cont.

S.No. RT (min) Peak Area % Name of the Compound Molecular
Formula

Molecular
Weight

57 22.404 0.36 (+)-Pericyclivine C20H22N2O2 322

58 22.793 0.47 Ajmalicine C21H24N2O3 352

59 23.162 0.20 Cholesta-4,6-dien-3-ol C27H44O 384

60 23.470 0.24 Ajmalicine oxindole C21H24N2O4 368

61 24.641 1.69 Campesterol C28H48O 400

62 24.901 1.23 Stigmasta-5,20(22)-dien-3-ol C29H48O 412

63 25.035 0.84 19-epiajmalicine C21H24N2O3 352

64 25.187 5.32 3-oxocholestane C27H46O 386

65 25.476 2.09 beta-stigmasterol C29H48O 412

66 25.600 2.42 gamma-sitosterol C29H50O 414

67 25.790 1.76 (E)-1-(6,10-dimethylundec-5-en-2-yl)-4-
methylbenzene C20H32 272

68 25.990 0.30 (22E)-ergosta-4,7,22-trien-3-one C28H42O 394

69 26.137 4.88 4-campestene-3-one C28H46O 398

70 26.235 4.62 Cholestanone C27H46O 386

71 26.459 4.47 Stigmasterone C29H46O 410

72 26.547 0.22 6-dehydroprogesterone C21H28O2 312

73 26.640 0.56 Cycloartenol C30H50O 426

74 26.776 0.20 3,5-cholestadien-7-one C27H42O 382

75 26.869 0.61 Ergosta-4,6,22-trien-3-one C28H42O 394

76 27.336 7.08 gamma-sitostenone C29H48O 412

77 27.448 1.97 24-methylenecycloartanol C31H52O 440

78 27.806 0.93 Stigmasta-3,5-dien-7-one C29H46O 410

79 28.442 5.87 4,4-dimethylcholestan-3-one C29H50O 414

80 28.846 3.78 (22E)-4-methylstigmast-22-en-3-one C30H50O 426

81 30.011 5.55 3-acetylcholestan-2-one C29H48O2 428

Among the compounds identified, 1-monoacetin, guanosine, dihydromethyljasmonate,
n-hexadecanoic acid, squalene, campesterol, cholestanone and gamma-sitosterol were the
most prevalent present in both extracts. Only the methanolic extract of anthers contained
bioactives such as cedrol (0.09%), (-)-coronaridine (0.12%), 4-vinylguaiacol (0.14%), vitamin
E (0.30%), stigmastanol (0.57%), quinic acid (3.78%) and alpha amyrin (5.54%) (Table 3),
and their respective mass spectra are shown in Figure S1A. The extract of anther-derived
calli was found to have characteristic metabolites such as pleiocarpamine (0.10%), vin-
dolinine (0.21%), cis-sinapyl alcohol (0.36%), (+)-pericyclivine (0.36%), ajmalicine (0.47%),
cycloartenol (0.56%) and beta-stigmasterol (2.09%) (Tables 4 and 5) having specific mass
spectra (Figure S1B).

2.4. Flow Cytometric Analysis

The ploidy status of callus obtained from anther was determined using a flow cyto-
metric approach wherein good quality nuclei are a necessity. In this study, the leaves of
field-grown C. roseus were utilized as an external standard reference (control). The flow
cytometric histogram peak of callus reveals that its DNA content was nearly half to that of
its diploid counterpart (control) (Figure 5A,B). The nuclear DNA content of anther-derived
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cell/callus was 0.76 pg compared to the diploid leaves’ DNA (1.51 pg) with a DNA Index
(DI) of 0.51 (Table 6). This estimation confirms the haploid DNA status of callus obtained
from anther.
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Figure 4. (A): GC–MS chromatogram (total ionic chromatogram) of methanolic extract of anthers
of C. roseus; (B): GC–MS chromatogram (total ionic chromatogram) of methanolic extract of anther-
derived callus of C. roseus.

Table 5. List of important phytocompounds identified exclusively in the methanolic extract of
anther-derived callus of C. roseus using GC–MS analysis.

S.No. RT (min) Name of the Compound Molecular Formula

1 7.133 Eugenol acetate C12H14O3

2 12.246 Stearic acid methyl ester C19H38O2

3 14.533 Cis-sinapyl alcohol C11H14O4

4 14.925 Oxybenzone C14H12O3

5 15.316 Linoleic acid, methyl ester C19H34O2

6 15.423 Oleic acid, methyl ester C19H36O2

7 19.522 Vindolinine C21H24N2O2

8 20.046 Octocrylene C24H27NO2

9 20.593 Pleiocarpamine C20H22N2O2

10 22.404 (+)-Pericyclivine C20H22N2O2

11 22.793 Ajmalicine C21H24N2O3

12 25.035 19-epiajmalicine C21H24N2O3

13 25.476 beta-stigmasterol C29H48O

14 26.459 Stigmasterone C29H46O

15 26.547 6-dehydroprogesterone C21H28O2

16 26.640 Cycloartenol C30H50O

17 27.336 gamma-sitostenone C29H48O
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Figure 5. Flow cytometric histograms revealing ploidy level of (A) diploid leaves of C. roseus
(standard) and (B) anther-derived callus of C. roseus.

Table 6. Estimation of nuclear DNA content, genome size and DNA index of anther-derived callus
with respect to donor plant of C. roseus using flow cytometry technique.

Plant Sample Type Nuclear DNA Content (pg) Genome Size (Mbp) * DNA Index (DI) **

Standard (leaves) 1.51 1476.7 -
Anther-derived callus 0.76 743.2 0.51

* 1 pg = 978 Mbp [18]. ** DNA Index = sample DNA content/standard DNA content.

3. Discussion

The present work was conducted to evaluate the callusing potentiality of anthers of C.
roseus under in vitro culture conditions. The type and concentration of PGRs used in media
strongly affect callusing ability and are different in different plant species. Initially, the
anthers were subject to different concentrations and combinations of PGRs amended in MS
medium. The results indicate that a high-to-low ratio of auxin: cytokinin concentrations
was proven to be the best in inducing callus with a maximum mean fresh weight, which
is very similar to Kou et al.’s [19] and Rout et al.’s [20] observations. Likewise, TDZ
alone at different concentrations was found to be equally effective in producing callus and
subsequent proliferation. Previous reports suggested that TDZ (a cytokinin-like PGR) alone
may be used in improving callusing ability in different explants [21,22]. A comparison
of the elemental distribution on the surfaces of anther and anther-derived callus was
performed using SEM–EDX analysis, revealing a nearly similar elemental composition
on both samples. EDX analyzes X-rays emitted from samples receiving a high-energy
electron beam. This technique facilitates the qualitative and semi-quantitative detection of
surface elements of samples and has been extensively used on various plant species such
as sesame [23] and lemongrass [24].

Medicinal plants are an ingenious source of bioactive compounds that fight against
several chronic diseases, and these phytocompounds can be identified and quantified using
the GC–MS technique [25]. In the current study, phytochemical profiling with GC–MS of
methanolic extracts (Figure 5) of anther and anther-derived callus of C. roseus has been
conducted. The results obtained show the presence of various phytoconstituents, including
carbohydrates, alkaloids, phenols, saponins, phytosterols, terpenoids, steroids, etc. A total
of 14 bioactives are common in both the extracted samples. However, there are compounds
that are exclusive to each sample that confer various biological properties to this plant.
The presence of secondary metabolites in callus, which are otherwise not detected in
anther tissue, may be due to the fact that certain bioactive compounds accumulate in
specific cells or tissues or in a specific growth stage (mostly the stationary phase) of in vitro
cultures [26]. Therefore, developing callus from different tissues to obtain therapeutically
active compounds is of high significance.
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The major compounds of medicinal value present in the methanolic extract of an-
thers were squalene (triterpene), alpha-amyrin (triterpene), coronaridine (alkaloid) and
cedrol (essential oil), which possess anti-oxidant, gastroprotective and hepatoprotective,
anti-cancerous and anti-inflammatory properties, respectively [27–30]. Similarly, in anther-
derived calli exclusively, 17 compounds are present having diverse medicinal proper-
ties, and these compounds are listed in Table 5. These include stearic acid, linoleic acid,
oleic acid, vindolinine, pleiocarpamine, pericyclivine, ajmalicine, 19-epiajmalicine, beta-
stigmasterol, cycloartenol, etc. Ajmalicine and vindolinine are well-known alkaloids having
anti-cancerous, anti-hypertensive and anti-oxidant properties [15,31]. Recently, an alkaloid
named pleiocarpamine has been isolated from the stem bark of Rauvolfia caffra and is re-
ported to possess anti-seizure activity [32]. Cycloartenol (a triterpenoid) and stigmasterol
(a sterol) have also been detected in present studies and are associated with immunosup-
pressive, anti-hypercholestrolemic and anti-inflammatory activities, respectively [33,34].
Compounds such as cycloartenol, ajmalicine, vindolinine, pleiocarpamine and pericyclivine
have been reported previously in leaf tissues of C. roseus [35,36]. Some reports of phyto-
compounds identified from different tissues using GC–MS were noted earlier [37,38], but
till now, no information on the phytocompounds present in anther or anther-derived callus
was available for C. roseus.

The ploidy status of anther-derived callus was checked using flow cytometry, and
the results show that the ploidy of the calli was haploid in nature, confirming the involve-
ment of microspores in developing callus. Similar observations have also been reported
for other plant species [7,10,39]. FCM is the widely used approach for determining the
ploidy of plants developed through callus, somatic embryos and other in vitro-regenerated
pathways [40]. The origin of diploid plants from anthers may be due to the involvement
of other somatic cells such as anther wall, filament or flower septum in developing callus.
Spontaneous chromosomal doubling can also be a mechanism in the generation of poly-
ploidy in anther-derived regenerants. In certain cases, mixoploids and aneuploids have
also been noted in anther cultures of different plants [8,41], but these polyploids were not
detected in this experiment. This is the first-ever report of GC–MS analysis of medically
significant compounds from anther tissue of C. roseus, which enriches the phytocompound
library of Catharanthus and may be utilized in the pharmaceutical and industrial sectors.

4. Materials and Methods
4.1. Anther Culture and Growth Conditions

The mature flowers of C. roseus were collected from the herbal garden, Jamia Hamdard,
New Delhi, and the anthers were used as explants for experimentations. The surface
sterilization of flowers was performed following the method of Bansal et al. [3] described
earlier. The sterilized anthers were excised from the flowers and aseptically cultured onto
agar-solidified basal Murashige and Skoog (MS) medium supplemented with various
concentrations and combinations of plant growth regulators (PGRs) and sub-cultured every
3–4 weeks. The cultures were incubated at a temperature of 24 ± 2 ◦C with 48 µmol/m2/s2

illumination (white fluorescent light) for a 16 h photoperiod.

4.2. Callus Induction and Proliferation

The disinfected anthers were inoculated on MS augmented with different concen-
trations (alone or in combination) of α-naphthalene acetic acid (NAA), kinetin (Kn) and
thidiazuron (TDZ) ranging from 0.1 to 1.0 mg/L for callus induction. Callus formation
started within 14–16 days of culture and proliferated on the same medium with successive
subculturing. The callus induction frequency and the callus fresh weight were recorded
after 6 weeks of culture.

Callus induction frequency (%) =
Number of explants showing callusing

Total number of explants inoculated
× 100
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4.3. Surface Morphology and Elemental Analysis

The surface morphology and elemental profile of anther and anther-derived callus
were determined using energy-dispersive X-ray microanalysis (EDX) combined with scan-
ning electron microscopy (SEM). For this purpose, the samples were primarily fixed with
Karnovsky’s fixative and washed with 0.1 M phosphate buffer at 4 ◦C. Afterward, a series
of dehydrations with acetone (30%, 50%, 70%, 90% and 100%) were performed at 15 min
intervals, and then critical-point drying was performed at 1100 p.s.i. These samples were
then mounted on aluminum stubs and sputter-coated with gold having a 35 nm thick
film. Finally, the coated samples were viewed at an accelerating voltage of 20 kV under a
scanning electron microscope (Zeiss, Oberkochen, Germany) equipped with EDAX.

4.4. Preparation of Extracts

The methanolic extracts of both samples were prepared according to the protocol of
Hussain et al. [42]. About 1.0 g of anther and anther callus were shade dried and crushed
into fine powder using mortar and pestle (Figure 3A,B). Each sample was then extracted in
5.0 mL methanol in an orbital shaker for 48 h. Afterward, the extracts were filtered through
Whatman filter paper no. 1 and evaporated to dryness. The obtained extracts were stored
in an airtight container with proper labeling at 4 ◦C for further use (Figure 3C).

4.5. GC–MS Analysis

GC–MS analyses of these extracts were conducted on GC–MS QP-2010 equipment
(Shimadzu, Japan) at Advanced Instrumentation Research Facility (AIRF), JNU, New Delhi.
The program settings were as follows: Helium was used as a carrier gas (1 mL/min), and
the initial and final temperatures were programmed at 100 ◦C and 260 ◦C, respectively, with
a hold time of 18 min. Ion source temperature was 220 ◦C with an interface temperature of
270 ◦C and solvent cut time of 2.5 min. Other specifications included: detector gain mode
relative to the tuning result, detector gain +0.00 kV, threshold of 1000, start time 3 min, end
time 39.98 min, event time 0.3 s, scan speed of 2000, start m/z 40.00 and end m/z 600.00.

4.6. Metabolite Data Processing and Analysis

The bioactive compounds were identified using the mass spectral database of the
NIST17 library. The unknown compounds’ spectra were compared with the known phy-
tocompound spectra available in the NIST library, and the name, molecular weight and
structure of the compounds were determined.

4.7. Flow Cytometric Analysis

The ploidy status of anther-derived calli was examined using the flow cytometry
method as described by Galbraith [43]. A total of 3 samples of anther-derived callus were
randomly chosen, along with a reference standard of diploid leaves of C. roseus with a
known 2C DNA content of 1.51 pg [44]. Approximately 50 mg of callus was added to a
Petri plate having 1.0 mL ice-cold Galbraith’s buffer (nuclei isolation buffer) and finely
macerated with the help of a surgical blade. The homogenate was then filtered with a
100 µm nylon mesh to eliminate larger cellular remnants and was finally stained with
50 µg/mL PI RNase (propidium iodide RNase) (Sigma-Aldrich, St. Louis, MO, USA) for
8–10 min. The samples were incubated in the dark at 4 ◦C for about 40 min and eventually
examined on a BD FACS(Calibur) flow cytometer (BD Biosciences, Franklin Lakes, NJ,
USA). The relative nuclear DNA of anther-derived callus of C. roseus was estimated using
the below formula [45]:

Nuclear DNA content of sample (pg) = 2C DNA content of standard (pg)× mean position of G0/G1 peak of sample
mean position of G0/G1 peak of standard

4.8. Statistical Analysis

In the tissue-culture experiment, three explants (anthers) per culture tube were in-
oculated with five replicates of every experimental treatment, and each experiment was
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repeated twice. The data are expressed as mean ± standard error, and the analysis was per-
formed using one-way analysis of variance (ANOVA). The significance of mean difference
was determined using Duncan’s multiple range test (DMRT) at p < 0.05 using SPSS Ver.
26.0 (SPSS Inc., Chicago, IL, USA) [46]. The flow cytometric study was repeated thrice with
randomly chosen standard (donor plant) and callus samples.

5. Conclusions

The in vitro culture technology was successfully employed to obtain callus from anther
tissue of C. roseus, an important medicinal plant. The callus was checked for its ploidy
status using flow cytometry and was found to be haploid in nature. The calli obtained
from anther were then subjected to GC–MS analysis for phytocompound identification.
Among the bioactive compounds identified, ajmalicine, vindolinine, pleiocarpamine, peri-
cyclivine, stigmasterol, campesterol and squalenes were detected and have a wide range
of biological activities. From this study, it can then be concluded that anther-derived calli
are a potent source for developing new therapeutic drugs with larger-scale applicability in
pharmaceutical sectors.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12112186/s1, Figure S1A,B: Mass spectra of identified compounds
from methanolic extract of anthers and anther derived callus of C. roseus.
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