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Abstract: Extrachromosomal circular DNAs (eccDNAs) are enigmatic DNA molecules that have
been detected in a range of organisms. In plants, eccDNAs have various genomic origins and may
be derived from transposable elements. The structures of individual eccDNA molecules and their
dynamics in response to stress are poorly understood. In this study, we showed that nanopore
sequencing is a useful tool for the detection and structural analysis of eccDNA molecules. Applying
nanopore sequencing to the eccDNA molecules of epigenetically stressed Arabidopsis plants grown
under various stress treatments (heat, abscisic acid, and flagellin), we showed that TE-derived
eccDNA quantity and structure vary dramatically between individual TEs. Epigenetic stress alone did
not cause eccDNA up-regulation, whereas its combination with heat stress triggered the generation
of full-length and various truncated eccDNAs of the ONSEN element. We showed that the ratio
between full-length and truncated eccDNAs is TE- and condition-dependent. Our work paves the
way for further elucidation of the structural features of eccDNAs and their connections with various
biological processes, such as eccDNA transcription and eccDNA-mediated TE silencing.
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1. Introduction

Extrachromosomal circular DNAs (eccDNAs) are a type of double-stranded DNA
that has been found in the cells of a variety of organisms, including humans, animals, and
plants. The first report regarding DNA circularization was made in 1962, followed by Hotta
and Basel’s experiments, in which eccDNAs were discovered in boar sperm using electron
microscopy [1]. Their results provided the first indication of the occurrence of eukaryotic
DNA in a circular form. Circular DNAs were initially considered to originate from the
mitochondria, as they were co-isolated with organellar DNA [2]. After examining mutant
yeast lacking mitochondria, it was discovered that circular DNAs have nuclear origin [3].
Using electron microscopy, the first plant nuclei-derived small circular DNA forms were
investigated in wheat and tobacco (Kinoshita et al., 1985). Two-dimensional (2D) gel
electrophoresis was used to distinguish eccDNA structural forms in different families of
higher plants (Asteraceae, Brassicaceae, Fabaceae, and Poecea). Finally, the advent of high-
throughput sequencing and bioinformatic methods facilitated insight into the diversity
of circular molecules that comprise a plant circulome [4,5]. Genome-wide analysis of
eccDNA-producing loci has been carried out for several plant species [5–11]. These studies
indicated that different genomic loci can produce eccDNAs in plants, including genic and
intergenic regions. A major source of eccDNAs in plant genomes is transposable elements
(TEs) [4]. It was proposed that TE-derived eccDNAs are generated through homologous
recombination and nonhomologous end joining of linear reverse-transcribed DNA of LTR
retrotransposons [8,12]. Based on this, using eccDNAs as a marker for TE mobility was
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proposed. An early method of plant eccDNA sequencing, known as Mobilome-seq, was
published by Lanciano et al. [6]. In brief, this approach employs exonuclease to remove
linear DNA, followed by Phi29 polymerase random rolling-circle amplification of intact
circle molecules and Illumina short-read sequencing. After read mapping the genome,
further data processing is often focused on the detection of split-reads, including eccDNA
borders. Wang et al. [11] used Mobilome-seq to conduct an extensive investigation of the
eccDNA landscape in several A. thaliana tissues. The results of Lanciano et al. in [6] and
Wang et al. [11] demonstrated the diversity and high organ/tissue specificity of eccDNAs.
Applying the Mobilome-seq approach facilitated the detection of potential transposition
activity for a number of TEs, including EVD and ONSEN in A. thaliana; Tos17, PopRice,
Houba in rice; Nightshade in potato; and Alex1 and Alex3 in carrot [5,6,8,10,13].

Rolling-circle amplification (RCA) products have a concatemer structure with several
tandemly organized monomers that correspond to full eccDNA molecules. Long-read
sequencing of RCA products is particularly appealing for eccDNA de novo identification
due to this property. This led to the development of the long-read eccDNA sequencing
method known as CIDER-seq [14,15]. This technique has been used to profile eccDNAs and
full-length viral DNA in a variety of species, including plants [14,15]. Size-based selection
of extrachromosomal DNA (rather than exonuclease-assisted linear DNA removal) and
sequencing of obtained RCA amplicons using PacBio SMRT are the core components of
the CIDER-seq technique. PacBio sequencing of A. thaliana eccDNAs revealed a significant
percentage of TE-originated eccDNAs, primarily Helitron, DNA/MuDr DNA transposons,
and Gypsy/Copia LTR-retrotransposons. This is an additional compelling proof of TEs’ enor-
mous influence on plant circulome development. Unfortunately, the long-read sequencing
approach has not been extensively used for eccDNA sequencing, leaving structural features
of plant eccDNAs unexplored.

The goal of this study was to learn more about the structure and composition of eccD-
NAs found in Arabidopsis thaliana plants grown under TE-relaxed circumstances (epigenetic
stress) in combination with various treatments (ABA, heat stress, and flagellin). Using
long-read nanopore sequencing, we dissected several TE- and gene-derived eccDNAs and
showed that a single TE can produce eccDNAs that vary in structure and composition.
We proved that under stress, wild-type (Col-0) and ddm1 (decrease in DNA methylation
1) mutant plants’ eccDNA structures could differ dramatically. Finally, our work demon-
strates that nanopore sequencing is a useful tool for the rapid identification of active TEs
and illuminating circulome changes in plants.

2. Results
2.1. Extrachromosomal Circular DNA (eccDNA) Sequencing of ddm1 Plants

Nanopore sequencing has rarely been used to analyze plant eccDNAs. To verify this
method, we first sequenced the eccDNAs of the ddm1 Arabidopsis thaliana mutant, which
has a high level of transposon activity and a well-known circulome composition [6,10].
Exonuclease-mediated linear DNA removal and rolling-circle amplification were used to
enrich eccDNAs in a DNA sample [6]. The RCA products were then digested using a T7
endonuclease to debranch them (Figure 1A). Sequencing of ddm1 eccDNA via MinION
Nanopore produced 257,563 reads. Col-0 (332,457 reads, 20× genome coverage) and ddm1
(194,354 reads, 25× genome coverage) whole-genome Oxford Nanopore Technologies
(ONT) sequencing (WGS) data were utilized as a baseline to identify eccDNA-generating
loci. We employed ONT reads containing two or more tandemly organized monomer
units (sequence of one circle of the eccDNA molecule) and lengths > 500 bp to filter out
reads that did not correspond to eccDNA RCA products. After this screening, 45,277
(17.6%) ONT reads remained for additional examination. Notably, for Col-0 (32,138 reads,
or 9.7%) and ddm1 (21,279 reads, or 10.9%) WGS samples, the proportion of ONT reads
with two or more monomers was considerably lower (the chi-square statistic using the
Yates correction p-value was 0.00001). The TAIR10 genome was used to map the WGS and
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eccDNA concatemer reads, and the number of mapped reads for 500 bp genome windows
was determined.
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Figure 1. A. thaliana ddm1 mutant eccDNA nanopore sequencing. (A) Schematic overview of the
eccDNA nanopore sequencing experiment. (B) Coverage of EVD5 (AT5TE20395) by eccDNA ddm1
reads.

For both WGS samples, peaks of high coverage associated with tandemly organized
repeats were discovered, including centromeric repeats and rDNA loci (Supplementary
Figure S1). These regions had significantly lower peak heights in the eccDNA ddm1
sample, indicating that our protocol sufficiently removed linear DNA from the sample. We
evaluated the log2 ratio between the read counts for the eccDNA ddm1 sample relative to
the WGS ddm1 to identify loci with high coverage by eccDNA reads. Four eccDNA peaks
with log2 ratios greater than three were found (Supplementary Figure S2); two of them,
SRC2 (AT1G09070.1, Supplementary Figure S3) and MKK9 (AT1G73500, Supplementary
Figure S4), were peaks on distal regions of chromosome 1.

Three copies of the LTR retrotransposons EVD1 (AT1TE41575), EVD2 (AT1TE41580),
and EVD5 (AT5TE20395) from the ATCOPIA93 family made up the other two peaks
(Figure 1B). In contrast to EVD1 and EVD2, which have not been observed to produce eccD-
NAs, EVD5 is a well-known characteristic of ddm1 and epiRIL plants [6,16]. Additionally,
EVD1 and EVD2 retrotransposons’ transposition activity was not reported [16]. Indeed,
when we manually verified the alignment of eccDNA readings for EVD1 and EVD2, we
found many SNPs that unmistakably showed that the reads originated from EVD5. The
concatemer reads of EVD5 were incorrectly mapped to EVD1 and EVD2 because they are
tandemly organized and share many similarities with EVD5.

Thus, nanopore sequencing of eccDNA-enriched DNA samples from A. thaliana is an
effective method for detecting eccDNA-produced loci such as TEs and genes. Our findings
show that EVD5 is the most active eccDNAs-producing TE in the ddm1 genetic background,
which correlates with a prior discovery using short-read sequencing [6].



Plants 2023, 12, 2178 4 of 11

2.2. Epigenetic Stress Does Not Shift eccDNA Composition in A. thaliana

As TEs are the primary source of eccDNAs, we wondered if epigenetic stress could
influence eccDNA formation. To test this, we cultured Col-0 plants in MS medium (ZA
media) containing zebularine, a chemical demethylation agent, and α-amanitin, a PolII
inhibitor, for 14 days. These toxins have the ability to reduce DNA methylation, hence
allowing TE activation. Confirming the previous observations, Col-0 plants grown on
toxin-supplemented media demonstrated a reduction in growth and root development
(Supplementary Figure S5). We sequenced eccDNA samples from Col-0 plants growing
on control (K, no toxins) and ZA media. Total ONT readings per duplicate ranged from
138,861 to 236,853. We examined the log2 ratios of concatemer reads mapped to 500 bp
windows between two biological replicates of ZA samples to determine a threshold. We
discovered that 99.6% of the genomic windows had a −log2 ratio of two. Based on this, we
established a log2 threshold of three and a minimum length of 1000 bp for loci expressing
eccDNAs. Additionally, only loci found in both biological replicates were chosen. We
analyzed the number of reads per 100,000 reads in K and ZA variants using these criteria
and determined the log2 ratio of ZA to K (log(ZA/K)). Surprisingly, we found only one
locus (Chr3: 13563500 . . . 13564500) that produces eccDNAs (Supplementary Figure S6).
This region overlaps with the AT3TE55175 transposon. Although the data indicate that
epigenetic stress alone is insufficient to increase eccDNA production, we anticipate that
some loci may still produce a tiny amount of eccDNAs that are below the current detection
limit.

2.3. Detection of eccDNAs under Abiotic, Hormone, and Flagellin Treatment of Epigenetically
Stressed Plants

Previous investigations claimed that plants grown on ZA media and subjected to stress,
such as heat stress, are stimulated to produce eccDNAs [10,17]. We combined epigenetic
(ZA) stress with each of the following stimuli to detect stress-responsive eccDNA loci: heat
stress (HS), flagellin treatment (Flg), and abscisic acid treatment (ABA). EccDNA sequenc-
ing of these three variations yielded 306,796, 399,064, and 681,418 reads, respectively, in
two replicates. Concatemer reads with two or more monomer units were then chosen
and aligned to the TAIR10 genome. We used Fisher’s exact test with multiple corrections
(Benjamini–Hochberg correction for multiple comparisons) to determine statistically signif-
icant peaks with increased read coverage in stressed samples compared with ZA samples.
This test used only primary read alignments as input.

This analysis found no Flg- or ABA-responsive eccDNA peaks shared by two replicates
(Supplementary Figures S6 and S7). This could imply that no eccDNA-produced genomic
loci were activated by these conditions, or that eccDNA production was low and the ONT
reads were insufficient to detect them. Following that, we examined ONT data for HS
samples and discovered seven eccDNA-producing loci that had considerably higher cover-
age by concatemer reads in HS ZA samples than in ZA samples (Figure 2A). These peaks
corresponded to seven copies of the ATCOPIA78 family’s ONSEN LTR-retrotransposon:
AT1TE59755 (ONSEN5), AT1TE71045 (ONSEN4), AT1TE12295 (ONSEN1), AT1TE24850
(ONSEN7), AT3TE89830 (ONSEN6), AT3TE92525 (ONSEN2), and AT5TE15240 (ONSEN3).
ONSEN copies contributed differently to eccDNA contents; ONSEN3, ONSEN5, and
ONSEN1 accounted for 92% of ONT reads, supporting previous results [18].

Thus, the data show that the eccDNA composition stabilized under ZA, ZA + ABA, and
ZA + Flg treatments, whereas only heat stress significantly promoted eccDNA formation,
but only from the ONSEN LTR-retrotransposon family.
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Figure 2. EccDNA loci that were responsive to heat stress. (A) Coverage of genomic loci by eccDNA
reads in the HS sample. Dots represent the log2 ratio of the number of mapped concatemer reads
of eccDNAs for the HS ZA vs. ZA samples (only primary alignments were utilized). In HS ZA
samples compared with ZA samples, red dots indicate genomic areas with significantly increased
read coverage (Fisher’s exact test with Benjamini–Hochberg correction). (B) The ratio of eccDNA
reads for seven ONSEN elements is presented as a pie chart.

2.4. ONT Reads Revealed Structure of eccDNA Molecules

We sought to shed light on the structure of eccDNA molecules generated from EVD
and ONSEN TEs using long-read sequencing data. We created an original pipeline (ecc-
StructONT) that made it possible to reconstruct eccDNA sequences. We performed ONT
sequencing of the eccDNA molecules of ddm1 plants grown in vitro and exposed to mild
heat stress (30 ◦C) to estimate the structure of ONSEN and EVD eccDNAs in the same con-
ditions. When combined with in vitro cultivation, mild heat stress could activate ONSEN
while ensuring ddm1 plant survival. To reduce noise, we only selected monomers that were
repeated at least three times in the RCA concatemer read. We started by examining eccDNA
molecules produced by EVD in ddm1 mutants. For EVD (Supplementary Figure S9) and
ONSEN elements (Figure 3A), the distribution of eccDNA lengths showed two peaks corre-
sponding to full-length (fl_eccDNAs, near 5000 bp) and truncated (tr_eccDNAs, 1000 bp)
eccDNAs. Next, we categorized various eccDNA molecules based on their region of origin
in a TE frame. As seen in Figure 3B, the majority of EVD eccDNAs were fl_eccDNAs.

The visualisation of separate eccDNA structure groups for ONSEN components sug-
gests that fl_eccDNAs and tr_eccDNAs were the two major eccDNA forms (Figure 3C).
ONSEN tr_eccDNAs are primarily derived from one or two LTRs. Accordingly, EVD and
ONSEN elements differed significantly in terms of their eccDNA set composition, with
ONSEN having a significantly greater proportion of LTR-derived tr_eccDNAs than EVD
did.

Next, we examined whether the ONSENs’ fl_eccDNAs to tr_eccDNAs ratio remained
the same in wild-type plants under ZA HS stress as in ddm1 HS plants. Surprisingly, the
structural study showed that all six ONSENs created primarily tr_eccDNAs, with very
little fl_eccDNA production (Figure 4A). Again, LTR and LTR-adjusted internal ONSEN
regions were the main sources of tr_eccDNAs (Figure 4A). Two primer pairs positioned
on internal and LTR-adjusted parts of ONSENs were used in an RT-qPCR investigation
to support these findings. The RT-qPCR results were corroborated using bioinformatic
analysis (Figure 4B).
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Figure 4. Structures of ONSEN3 eccDNAs detected in Col-0 plants grown in ZA medium and sub-
jected to heat stress conditions. (A) Histograms showing the number of ONSEN eccDNA molecules
of different lengths. (B) Heat maps showing the structures and number of distinct eccDNAs from
ONSEN3. The number of eccDNAs in individual groups is illustrated as a bar plot on the right side.
(C) RT-qPCR results with eccDNA-enriched DNA of ZA HS Col-0 and three primer pairs aligned to
the left, right, and central parts of the TE.
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The acquired data indicated that the eccDNA composition of a single TE can signifi-
cantly differ between genetic backgrounds. As a result, it would be intriguing to investigate
the genetic and environmental factors that influence eccDNA biogenesis.

3. Discussion

Genetic and environmental factors involved in eccDNA biogenesis in plants are not
yet understood. However, it is clear that eccDNA composition and expression are dynamic
processes. Previously, the results of a comparative analysis of eccDNAs in different Ara-
bidopsis organs demonstrated that the eccDNA repertoire is influenced by unique routes
and mechanisms involved in eccDNA production in different cell types [11]. Here, we did
not find up-regulated eccDNAs under ZA Flg-stressed and ZA ABA-stressed conditions. It
is possible that these stresses negatively regulated the expression of some TEs, as well as
genes involved in the TE life cycle. The inhibition of TE-derived eccDNA production by
stress was demonstrated in Solanum tuberosum and S. commersonii species [13]. Transposon
Nightshade actively generates eccDNAs in control conditions, whereas cold stress inhibits
eccDNA production [13]. This could explain why we did not detect any eccDNA peaks
after applying stresses. Notably, the Arabidopsis genome has tens of TE families possessing
transpositionally active elements [19,20]. However, the transposition of TEs from just a
few families (e.g., ATCOPIA93 (EVD), ATCOPIA78 (ONSENs), VANDAL, etc.) has been
observed in laboratory conditions. This implies that we still have very limited knowledge
about conditions that can induce TE expression and transposition activity. New tools
and techniques to trace TE transposition in different cell types and stress conditions are
required.

Long-read sequencing followed by concatemer identification in raw ONT reads facili-
tated deciphering sequences of full-length eccDNAs, paving the way for the elucidation
of eccDNA structure. Taking this into account, we investigated the structure of EVD and
six ONSEN elements in the same genetic background (ddm1) and stress conditions (mild
heat stress of in vitro growing plants). Our results indicated the presence of eccDNAs cor-
responding to full-length TE sequences (fl_eccDNAs) and certain TEs parts, including LTRs
and LTR-adjusted regions (tr_eccDNAs). The ratios between fl_eccDNAs and tr_eccDNAs
differed between EVD and ONSEN elements in ddm1 under HS. In addition, fl_eccDNAs
of ONSEN elements were almost not detectable in Col-0 plants under ZA HS stress; only
tr_eccDNAs of different groups were identified. This further implies that the eccDNA
repertoire may vary dramatically between individual TEs, stress conditions, and genetic
backgrounds. The presence of different types of TE-derived tr_eccDNAs in a cell raised
questions about the molecular mechanisms and possible functions of these molecules. A
direct answer is that tr_eccDNAs are byproducts of intra- and intermolecular recombina-
tion events leading to fl_eccDNA conversion into tr_eccDNAs [21–23]. This scenario may
have evolved as a defense mechanism against new TE integration. Most eccDNAs contain
full-length LTR sequences that may function as promoters that trigger transcription from
eccDNAs. It is well known that circular DNAs in the form of plasmids carrying target
genes under promoter (e.g. 35S) are well transcribed, being transfected into the protoplast
cells [24]. Moreover, RNA transcribed from eccDNAs was detected in humans [25] and
plants [26]. Based on this, it could be proposed that RNA molecules transcribed from
TE-derived eccDNAs may become substrates for RdDM-pathway-triggering TE silencing.

4. Materials and Methods
4.1. Plant Material and In Vitro Growth Conditions

Seeds of ddm1 (ddm1-2, F7 generation) were kindly provided by Vincent Colot (Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Paris, France). Arabidopsis seeds were
surface-sterilized with 75% ethanol (2 min) and washed with 5% sodium hypochlorite
(5 min). After this, the seeds were rinsed with sterile distilled water 3 times. A total of 0.1%
agarose was added to each tube and the seeds were resuspended and dripped on Petri
dishes with Murashige and Skoog medium, supplemented with 3% of sucrose (PanReac



Plants 2023, 12, 2178 8 of 11

AppliChem, Darmstad, Germany) and 1% of agar (PanReac AppliChem, Darmstad, Ger-
many). Plates with seeds were sealed with Parafilm (Pechiney Plastic Packaging Company,
Chicago, IL, USA) and kept in the dark at 4 ◦C for 3 days for vernalization and synchronous
germination. Afterward, dishes were transferred into a light chamber with 16 h day/8 h
night photoperiods for further growth.

4.2. Stress Conditions

Surface-sterilized Col-0 seeds were resuspended in 0,1% agarose and transferred to
solid 1/2 MS medium supplemented with sterile filtered 4.6 ug/mL α-amanitin (Sigma-
Aldrich, CAS 23109-05-9) and 9 ug/mL zebularine (Sigma-Aldrich; CAS 3690-10-6). For
flagellin treatment, 2-week-old plants grown on 1/2 MS media supplemented with α-
amanitin and zebularine were transferred to the equal ZA medium but also supplemented
with 0.5 ug/mL flagellin (Flagellin from Salmonella typhimurium, Sigma-Aldrich, SRP8029-
10UG). For ABA treatment, 2-week-old plants grown on 1/2 MS media supplemented with
α-amanitin and zebularine were transferred to the equal ZA medium but also supplemented
with abscisic acid at final concentrations of 100 uM. For heat-stress treatment, 2-week-
old plants grown on 1/2 MS media supplemented with α-amanitin and zebularine were
subjected to elevated temperature (4 ◦C for 24 h followed by 37 ◦C for 24 h, HS). For mild
heat stress treatment 2 weeks-old Col-0 ddm1 plants were subjected to 30 ◦C for 24 h.

4.3. DNA Isolation

Total DNA was extracted by CTAB protocol [27] from plants immediately after stress
(0 h recovery time). Briefly, 50 mg of young in vitro—grown A. thaliana plant tissues were
ground with a pestle in a mortar with liquid nitrogen. A total of 0.5 mL of preheated to
75 ◦C CTAB1 buffer containing 6% of β-mercaptoethanol and 0.5% polyvinylpyrrolidone
were immediately added to the frozen powder. A lysate was transferred to a 1.5 mL tube
and incubated at 75 ◦C for 1 h. After cooling, an equal volume of chloroform was added to
the sample. An upper water phase was transferred to a 1.5 mL tube containing 2 volumes
of CTAB2 buffer. An obtained pellet was resuspended in 0.2 mL 1M NaCl, and DNA
was precipitated with equal isopropanol volume followed by centrifugation. Pellet was
washed with 70% ethanol and resuspended in nuclease-free water. An RNAse treatment
was performed followed by isopropanol reprecipitation and ethanol washing. The obtained
DNA was resuspended in nuclease-free water again for downstream analysis.

4.4. Extrachromosomal Circular DNA (eccDNA) Enrichment

For eccDNA enrichment, the protocol of Lanciano et al. [6] was used with some
modifications. Briefly, linear DNA elimination was performed with PlasmidSafe DNase
(LGC Biosearch Technologies, UK). For this, 750 ng of total DNA was combined with 2 µL
ATP 25 mM, 5 µL 10× PlasmidSafe buffer, and 1 µL PlasmidSafe DNase (10 units) in 50 µL
reaction volume. Incubation mode was 72 h at 37 ◦C with the addition of an extra amount
of reagents (2 µL 25 mM ATP, 0.3 µL PlasmidSafe buffer, 1 µL PlasmidSafe DNase (10 units)
after the first 24 h. Enzyme inactivation was performed at 70 ◦C for 30 min. The remaining
DNA was precipitated by overnight incubation with 1/10V 3M sodium acetate (pH 5.2) and
2.5V absolute ethanol followed by centrifugation at 12,000× g for 30 min. The DNA pellet
was subjected to random RCA reaction using illustra TempliPhi 100 Amplification Kit (GE
Healthcare, catalog #25-6400-10). The reaction was carried out by adding 5 µL of TempliPhi
sample buffer (the buffer was preliminary preheated at 95 ◦C for 3 min and then cooled to
RT) to the DNA pellet. After adding 5 µL of the premix solution (5 µL Templiphi Reaction
buffer, 0.2 Temliphi Enzyme mix) to the sample, the reaction was incubated at 28 ◦C for
72 h. After enzyme inactivation at 65 ◦C for 10 min, the sample volume was adjusted
to 50 µL and purified with AmpureXP at 0.5× ratios according to the manufacturer’s
instructions. A purified RCA product was debranched to remove the hyperbranched
structures generated. The following reaction mix was prepared for debranching: 500 ng of
RCA product, 5 µL of 10× reaction buffer, and 1 µL of T7 endonuclease I (New England
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Biolabs, M0302S) in 50 µL reaction volume. After the incubation at 37 ◦C for 15 min, the
reaction was stopped and purified by adding equal chloroform volume. Debranched RCA
product was precipitated by adding 1/10V 3M sodium acetate (pH 5.2) and 2.5V absolute
ethanol followed by incubation at −80 ◦C for 30 min and centrifugation at 12,000× g for
30 min. The obtained pellet was dissolved in nuclease-free water and used for nanopore
sequencing.

4.5. RT-qPCR Analysis of fl_eccDNA and tr_eccDNAs of ONSEN

To estimate the ONSEN eccDNA enrichment profile after RCA, the following primers
were designed for the three distinct regions of ONSEN sequences: left part—cONS_Lq
(TGAAGATCCTAAAGATGGCGAG; TGCTCCTAGGATAGCCTTCA); internal part—cONS_Iq
(CTCATGCTCATGTACCGGATG; AGCTTGTAGCCTTTGGAGTTG); right part—cONS_Rq
(AAGTCGGCAATAGCTTTGGC; CATACTCCAATTGCACGTCCT). The real-time PCR
reaction mix was prepared in 25 µL with the use of 12.5 µL BioMaster HS-qPCR SYBR
Blue (2×) (Biolabmix, Russia), 1 µL of 10 pmol of each primer, 9.5 µL of nuclease-free
water (Biolabmix, Russia), and 1 µL of RCA product. PCR amplification was run on CFX96
(BioRad, USA) with the following program: 95 ◦C for 2 min, then 95 ◦C for 15 s, 58 ◦C for
15 s, and 40 cycles.

4.6. Nanopore Library Preparation and Sequencing

Library preparation was carried out with 1 µg of eccDNA or genomic DNA using
the Native Barcoding Expansion 1–12 (Oxford Nanopore Technologies (Oxford, UK), cata-
log no. EXP-NBD104) and the Ligation Sequencing Kit SQK-LSK109 (Oxford Nanopore
Technologies). Sequencing was performed by MinION equipped with an R9.4.1 flow cell.

4.7. Bioinformatic Analysis of eccDNA Sequencing and Data Visualization

The TAIR10 genome was downloaded from the NCBI database. For the analysis of
eccDNA, concatemer reads were selected by running TideHunter [28] with the following
additional parameters: ‘-f 2 -c 2’ for eccDNA peak determination and ‘-f 2 -c 3’ for eccDNA
structure analysis. The selected reads or monomers (for structural analysis) were aligned to
the reference genomes TAIR10 using minimap2 software [29] with the following parameters:
-ax map-ont -t 100. The obtained sam file was converted to bam format, sorted, and indexed
using SAMtools [30]. Then only primary alignments with a minimum MQ value of 30 were
left for further analysis using the following command: ‘samtools view -F 3840 -q 30’. The
sorted bam files were used for alignment inspection using locally installed JBrowse2 [31].
To detect eccDNA peaks, the genome was split into 500 bp windows using the bedtools [32]
command ‘bedtools makewindows -w 500’. The number of reads at each window was
determined by ‘bedtools intersect’. To find peaks, the number of reads in each window
was compared between control (ZA) and stress variants. The statistical analysis (signif-
icance level = 0.01) with two-sided Fisher’s exact test was performed using the Python
scipy.stats.fisher_exact function [33] followed by Benjamini–Hochberg correction for multi-
ple comparisons carried out by the function statsmodels.stats.multitest.multipletests (with
the argument “method = ‘fdr_bh’”). The obtained results were visualized using the plotnine
Python module (https://plotnine.readthedocs.io/, last accessed on 22 February 2023). The
code used for this analysis (Jupyter Notebook eccDraw_HS1_vs_mergedZA.ipynb) can be
found in the GitHub repository: https://github.com/Kirovez/eccStructONT (last accessed
on 27 April 2023).

For the structural analysis of eccDNAs, the Python package ‘eccDNA_struct.py’ (https:
//github.com/Kirovez/eccStructONT) was written to obtain the matrix that was used for
the heatmap visualization performed by ComplexHeatmap R package [34]. This script
also generated eccDNA length distribution histograms using seaborn (https://seaborn.
pydata.org/, last accessed on 21 April 2023) and pandas (https://pandas.pydata.org/, last
accessed on 9 February 2023) modules.

https://plotnine.readthedocs.io/
https://github.com/Kirovez/eccStructONT
https://github.com/Kirovez/eccStructONT
https://github.com/Kirovez/eccStructONT
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://pandas.pydata.org/
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5. Conclusions

In this study, we showed that nanopore sequencing is a useful tool in the detection
and structural analysis of eccDNA molecules in plants. Using nanopore sequencing of
eccDNA molecules of epigenetically stressed Arabidopsis plants grown under various
stress treatments (heat, abscisic acid, and flagellin), we showed that TE-derived eccDNA
quantities and structures significantly vary between individual TEs. Epigenetic stress
alone does not cause eccDNA up-regulation; its combination with heat stress triggers a
generation of full-length and various truncated eccDNAs of ONSEN elements. We showed
that the ratio between full-length and truncated eccDNAs is TE- and condition-dependent.
Our work paves the way for further elucidation of eccDNA structural features and their
connections with various biological processes, such as eccDNA transcription and eccDNA-
mediated TE silencing.
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DNA as well as whole-genome sequencing of Col-0 and ddm1 plants; Figure S2: EccDNA read
coverage of genome loci; Figure S3: Coverage of AT1G09070 gene (Chr1:2,927,502 . . . 2,929,107) by
nanopore concatemer reads from eccDNA-enriched DNA of ddm1; Figure S4: Coverage of AT1G73500
gene (Chr1: 27,637,748 . . . 27,641,755) by nanopore concatemer reads from eccDNA-enriched DNA of
ddm1; Figure S5: Inhibition of A.thaliana wild-type growth and development under toxin treatment;
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