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Abstract: Chickpea is the second-most-cultivated legume globally, with India and Australia being the
two largest producers. In both of these locations, the crop is sown on residual summer soil moisture
and left to grow on progressively depleting water content, finally maturing under terminal drought
conditions. The metabolic profile of plants is commonly, correlatively associated with performance or
stress responses, e.g., the accumulation of osmoprotective metabolites during cold stress. In animals
and humans, metabolites are also prognostically used to predict the likelihood of an event (usually a
disease) before it occurs, e.g., blood cholesterol and heart disease. We sought to discover metabolic
biomarkers in chickpea that could be used to predict grain yield traits under terminal drought, from
the leaf tissue of young, watered, healthy plants. The metabolic profile (GC-MS and enzyme assays) of
field-grown chickpea leaves was analysed over two growing seasons, and then predictive modelling
was applied to associate the most strongly correlated metabolites with the final seed number plant−1.
Pinitol (negatively), sucrose (negatively) and GABA (positively) were significantly correlated with
seed number in both years of study. The feature selection algorithm of the model selected a larger
range of metabolites including carbohydrates, sugar alcohols and GABA. The correlation between the
predicted seed number and actual seed number was R2 adj = 0.62, demonstrating that the metabolic
profile could be used to predict a complex trait with a high degree of accuracy. A previously unknown
association between D-pinitol and hundred-kernel weight was also discovered and may provide a
single metabolic marker with which to predict large seeded chickpea varieties from new crosses. The
use of metabolic biomarkers could be used by breeders to identify superior-performing genotypes
before maturity is reached.

Keywords: carbohydrates; D-pinitol; kernel weight; metabolomics; phenotype; predictive modelling; yield

1. Introduction

New crop varieties with improved tolerance to climatic challenges are urgently re-
quired to enhance food security. The current processes to breed new varieties are often
slow, as molecular markers are not available for many traits, so each new candidate variety
must be grown to maturity before being assessed.

Metabolic biomarkers are routinely used in medicine to diagnose a condition based on
its association with a specific metabolite. Examples include human chorionic gonadotropin
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(hCG) in urine and pregnancy, and serum creatinine in chronic kidney disease [1]. In
addition to these association-based methods, medical techniques also prognostically utilise
metabolic biomarkers, i.e., to predict a future outcome. An example is the prediction of
cardiovascular disease, where the likelihood of a patient suffering a cardiovascular event
(heart attack or stroke) is calculated using a risk prediction algorithm such as QRISK2 [2,3].
These online calculators used by general practitioners take measures of blood chemistry,
along with blood pressure and physical, lifestyle and socio-economic factors, to predict the
likelihood of a cardiac event within a specified time period (usually 10 years).

In plant research, metabolite profiling has frequently been used to associate the abun-
dance of a particular metabolite with stress responses, such as increases in proline or
jasmonic acid during chilling or herbivory, respectively [4,5], but more rarely has a predic-
tive approach taken.

Metabolite profiling approaches have been used in plant studies to associate large-scale
re-programming of the metabolome during treatments such as dark-induced senescence [6],
cold acclimation [7] and drought response [8]. Many metabolites showed strong diurnal
variation or fluctuation in abundance due to natural phenomena such as the variation in
daylength or temperature [9–11], which has led to them being considered too variable to
reliably be used to predict a trait. Indeed, the quantification of metabolites was described
as being a “snapshot of a specific moment in time” [12] because of its dependence on
development and the environment. However, despite the well-documented effect of the
environment, it was demonstrated in a HPLC-QTOF MS study of 2475 mass peaks (noting
that some metabolites result in more than one peak) that 75% were heritable and that ~800
had a heritability (H2) of ≥0.7 [13].

Metabolite profiling in combination with statistical methods was successfully used to
predict biomass in Arabidopsis in a number of studies [14–18]. By combining a negative
correlation with starch and a positive correlation with enzyme activities, approximately a
third of the variation in the biomass of an Arabidopsis inbred family could be accounted
for [16]. The statistical methods applied to generate the biomass predictive models started
with pairwise associations between single metabolites and biomass using rank correlation,
but it was found that the predictive power of this method was low [14,18]. Both the
previous authors then used a multivariate approach to combine groups of metabolites into
a model; in the case of Meyer et al. [14], this was a canonical correlation analysis (CCA),
while Sulpice et al. [18] used a partial least square regression (PLS) to identify combinations
of key predictors that most strongly correlated with the trait. Just two metabolites, starch
and, to a lesser extent, protein, were found to be the key predictive metabolites in the
study by Sulpice et al. (2009) [18]. Whilst all of these studies were performed under tightly
controlled laboratory conditions for the model species, Arabidopsis, they demonstrated
that the metabolic profile of plants was strongly related to phenotype, such that it could be
used to predict it.

In crop species, metabolic markers for drought tolerance were identified in rice samples
taken before a drought event and those taken during drought [19]. The strongest correlation
was from the marker, gluconic acid, under control (non-drought-stressed) conditions with
a correlation of 0.72 with shoot dry weight under drought. In maize, a positive correlation
between control levels of myo-inisitol and grain yield under drought was identified [20].
These two examples are evidence that predictive markers of drought tolerance can be
identified. Prognostic biomarkers for chip quality were also identified in potato, where the
abundance of glucose and fructose was found to positively correlate with discolouration
during frying (low chip quality). When either of these hexoses were used as markers to
predict chip quality in new crosses, the correlation (RS) between predicted and measured
quality was 0.67 [21]. Predictive models for yield were also developed from the biomarker
profile for the bioenergy grass Miscanthus [22]. Importantly, this study was conducted
under field conditions and over two years, demonstrating that a metabolic profile that
correlated with performance was consistent over multiple years. However, this study also
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identified that many markers were not consistent, so it was important to identify only those
that were robust and repeatable [22].

In studies comparing molecular versus metabolic markers, molecular markers tended
to have stronger predictive power, but only slightly. In a comparison between marker types
in maize, metabolic markers correlated 0.6–0.8 with the trait, whereas molecular markers
were slightly higher: 0.72–0.81 [23]. However, as the authors pointed out, this meant that
the 130 metabolites that were studied were almost as effective as the 38,000 molecular
markers (SNPs) [23].

Chickpea is the second-most-cultivated legume in the world [24]. India and Australia
were the largest global producers of chickpea, producing 9 and 2 M tonnes, respectively
in 2017 [25]. In both these countries, chickpea is grown on receding soil moisture and
often experiences terminal drought stress during its late reproductive growth stage. As
a predominantly indeterminate species, chickpea plants continue to produce vegetative
and floral biomass while water availability remains adequate [26]. The extended flowering
period, combined with progressively receding water availability, results in greater repro-
ductive inhibition as the season progresses, as drought negatively impacts pollen viability
and the ability of plants to accumulate biomass [27,28]. It was estimated that up to 50%
of annual global yields of chickpea are lost due to drought [29]. Yield, particularly under
the influence of drought, is a complex trait that exhibits strong G × E interactions. There
are no molecular markers available for this trait, so the process for yield improvement is
slow. We hypothesised that metabolic biomarkers could be identified from young, healthy
plants that, under field-grown conditions over two growing seasons, were (a) consistently
correlated with yield traits under terminal drought and (b) strongly correlated enough to
produce predictive models. Such models could be used by breeders to identify genotypes
that perform well under adverse conditions, without having to expose them to the relevant
stimuli (e.g., drought).

2. Results
2.1. Phenotype

Seed weight (g plant−1) was significantly different between years in the replicated
genotypes and between rainfed and irrigated treatments in both replicated and non-
replicated genotypes (Table 1, Tables S1 and S2). The hundred kernel weight (HKW)
did not significantly change between years, and no significant differences were observed
between treatments (Table 1). Significant differences that reflected the change in seed
weight (g plant−1) were observed from seed number plant−1, which was different between
years for replicated genotypes and between treatments for replicated and non-replicated
genotypes (Table 1).

Table 1. Yield parameters. Significant differences (Student’s t-test) beneath the values indicate
significant differences between years for the replicated genotypes (** p = <0.01). Significant differences
next to the values for replicated and unique genotypes show significant differences between the
rainfed and irrigated plants (** p = <0.01). For replicated genotypes n = 23, and for unique genotype
n = 13.

Seed Weight (g Plant−1) HKW (g) Seed Number (Plant−1)

Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated

Year 1 replicated genotypes 4.85 8.26 ** 21.42 21.41 23.20 38.18 **
Year 2 replicated genotypes 7.16 12.74 ** 21.11 22.4 34.68 58.36 **

Significantly different between years: ** ** ** **
Year 1 non-replicated genotypes 5.15 8.49 ** 31.59 32.27 20.55 30.37 **
Year 2 non-replicated genotypes 7.63 12.73 ** 15.48 17.18 53.04 77.10 **
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2.2. Metabolomic Profiling

Nine metabolites were profiled by gas chromatography mass spectrometry (GC-MS)
from leaf tissue from the rainfed plants (prior to withholding irrigation), in both years
(Table 2 and Table S3). The most abundant metabolite in most genotypes in year 1 was
malic acid, but in year 2 the sugar alcohol, D-pinitol, was in greater abundance overall than
malic acid (Table 2). All the tested metabolites were significantly different in concentration
between year 1 and year 2: the organic acids, such as lactic, malonic, malic and citrate, were
lower in year 2, whereas the carbohydrates, including sugar alcohols, such as chiro-inositol
and D-pinitol, were all in greater abundance in year 2. Exceptions were the observations
regarding acids, succinate and γ-aminobutyric acid (GABA), which were also in greater
abundance in year 2 (Table 2).

Table 2. GCMS metabolic profile of the leaf tissue. All values are in µg mL. n = 4.

Lactic
Acid

Malonic
Acid Succinate Malic

Acid GABA Citric
Acid

D-
Pinitol

Chiro-
Inositol

Myo-
Inositol

Year 1 replicated averages 0.52 0.88 0.25 8.53 0.51 3.05 3.85 0.57 0.91
Year 2 replicated averages 0.32 0.70 0.97 6.43 1.00 1.50 6.97 0.72 1.12

Significantly different
between years: ** ** ** ** ** ** ** ** **

Year 1 non-replicated averages 0.54 0.88 0.25 8.40 0.54 2.93 4.17 0.57 0.89
Year 2 non-replicated averages 0.30 0.69 0.96 6.51 1.04 1.51 5.87 0.75 1.07

GABA—γ-aminobutyric acid; Significant differences between years for the replicated genotypes are shown using
a Student’s two-tailed t-test, ** p = < 0.01.

Carbohydrates were analysed by enzyme assays. The most-abundant carbohydrate in
both years was starch, averaging 72–76 mg g−1 dry weight (DW) (Table 3 and Table S4).
Glucose and sucrose were in significantly greater abundance in year 2 in the replicated
genotypes, but no significant differences between years were observed for either fructose
or starch (Table 3).

Table 3. Enzyme assay profile of the leaf tissue. NSC = sum of non-structural carbohydrates. All
values are in mg g−1 DW. n = 4. Significant differences between years for the replicated genotypes
are shown using a Student’s two-tailed t-test, ** p = < 0.01.

D-Glucose D-Fructose Sucrose Starch NSC

Year 1 replicated averages 8.06 8.84 21.97 76.32 115.2
Year 2 replicated averages 11.22 7.84 66.93 72.87 158.9

Significantly different
between years: ** ** **

Year 1 non-replicated averages 9.45 8.71 21.59 66.46 106.2
Year 2 non-replicated averages 10.79 7.60 60.51 72.42 151.3

2.3. Pearson’s Correlations

Pearson’s correlations were carried out to identify relationships between metabolites
and seed number plant−1, and HKW in year 1 and year 2 (Table 4). Six out of 13 metabolites
showed a significant correlation with seed number in at least one year, which were malic
acid, GABA, D-pinitol, D-glucose, sucrose and starch (Table 4). Only two metabolites, su-
crose and D-pinitol, showed a significant correlation with the trait in both years (p = <0.05),
but GABA was significantly correlated in year 2, and p = 0.06 in year 1, so a consistent trend
was observed (Table 4).
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Table 4. Pearson’s correlation between seed number plant−1 and hundred-kernel weight (HKW), and
the metabolites. Significant correlations (* p = < 0.05, ** p = < 0.01, and *** p = < 0.001) are coloured
red and purple, and correlations where p = < 0.1 are coloured pink. GABA = γ-aminobutyric acid.

Seed Number Plant−1 Hundred-Kernel Weight

Year 1 Year 2 Year 1 Year 2

Rs Rs Rs Rs

Lactose 0.08 0.12 −0.08 0.07
Malonic acid 0.02 0.01 −0.04 0.21

Succinate 0.16 0.03 −0.02 0.02
Malic acid 0.48 *** −0.10 −0.28 −0.09

GABA 0.31 0.34 * −0.1 −0.16
Citrate 0.09 −0.17 −0.2 −0.11

D_pinitol −0.58 *** −0.52 *** 0.62 *** 0.55 ***
Chiro_inositol −0.04 0.08 0.11 −0.15
Myo_inositol −0.07 −0.09 −0.06 0.17

D-glucose −0.53 *** −0.11 0.6 *** 0.18
D-fructose −0.04 0.04 0.18 −0.02

Sucrose −0.39 * −0.43 ** 0.29 0.32 *
Starch 0.31 −0.15 −0.53 0.11

Fewer significant correlations were observed for HKW and the metabolites; indeed,
only D-pinitol was significantly positively correlated in both years of testing (Table 4).

D-Pinitol

As the strongest Pearson’s correlation in both years was between HKW and D-pinitol,
the relationship was further investigated. Both the Kabuli and Desi types were included
in the year 1 trial, so the concentration in the two types was determined (Table S1 and
Figure 1). The concentration of D-pinitol was significantly higher in the Kabuli types, with
an average of 4.8 mg g−1 DW compared to 3.8 mg g−1 DW in the Desi types (Figure 1).
The average HKW for Desi and Kabuli was 20.9 g and 40.4 g, respectively (Supplementary
Table S2). Only Desi genotypes were included in the year 2 trial, but these were comprised
of types of different origin, specifically, Australian breeding’ lines, Australian varieties,
Indian varieties and the ICRISAT reference set (Figure 1). The concentration of D-pinitol
was observed to be the highest in the Indian and Australian varieties, which were both
significantly higher than those sourced from the ICRISAT reference set, while the Australian
breeders’ lines were in between the two (Figure 1). The HKW values corresponded to this
trend, being 19.7 g, 19 g, 14.2 g and 25 g for the four sources, respectively (Table S2).
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Figure 1. Relationships between D-pinitol and seed size. (Left) Concentration of D-pinitol
(mg g−1 DW) in Desi (n = 29) and Kabuli (n = 7) varieties of chickpea in year 1. (Right) Con-
centration of D-pinitol and hundred-kernel weight (HKW) in genotypes sourced from Australian
breeding lines (ABL) (n = 8), Australian varieties (AV) (n = 13), Indian varieties (IV) (n = 6) and the
ICRISAT reference set (IRS) (n = 9). ** p = < 0.01 (Student’s t-test), and letters above the bars show
significant differences (Tukey’s HSD Test, p = < 0.05).
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2.4. Predictive Modelling

As HKW was observed to be a largely fixed trait, not changing between years and
treatments, we decided to focus the predictive modelling on seed number plant−1, as
this was the yield parameter that showed the strongest change in response to terminal
drought (Table 2). Significant correlations between seed number and multiple metabolites
were observed, so a multi-variate linear regression modelling approach was employed to
develop the model. The step akaike information criteria (AIC) feature selection procedure
reduced the number of variables to seven, which included sucrose, D-pinitol and GABA
that were identified in the Spearman’s rank correlations and also chiro-inositol, fructose,
starch and the total non-structural carbohydrate (NSC) abundance (Table 5).

Table 5. Coefficients of significantly correlated variables.

Coefficients

Estimate Std. Error t Value Pr

(Intercept) −4.81 13.75 −0.35 0.73
GABA 46.27 8.13 5.69 0.00 ***

D-pinitol −4.64 1.35 −3.44 0.00 **
Chiro-inositol 44.03 18.26 2.41 0.02 *

D-fructose 1.74 0.61 2.85 0.01 **
Sucrose 1.37 0.38 3.57 0.00 ***
Starch 1.32 0.37 3.60 0.00 ***
NSC −1.29 0.35 −3.71 0.00 ***

GABA = γ-aminobutyric acid; NSC = non-structural carbohydrates; *** p = < 0.001, ** p = < 0.01, * p = < 0.05.

These selected variables were then used to train the model using a leave-one-out
cross-validation (LOOCV) approach (see Materials and Methods). A strong significant
correlation was observed between the predicted and actual seed number plant−1 with
R2—adjusted = 0.623, demonstrating that 62% of the variation in final seed number, under
terminal drought (rainfed) conditions, could be explained by seven metabolites measured
from healthy, young leaves early in the growing season (Figure 2).
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3. Discussion

We observed no significant differences in HKW between years or treatments. Comple-
mentary to our findings, was an observation that HKW did not significantly differ between
chickpea genotypes under drought or watered conditions in a glasshouse trial, whereas
seed number did show significant differences and also a strong correlation with yield under
drought [30]. The authors concluded that HKW did not change in response to drought
because, once a seed enters the phase of rapid dry weight accumulation, it has priority
for assimilates over seeds in the early stage of development [30]. Hundred-kernel weight
was previously shown to be the most heritable yield trait in both chickpea and broadbean,
which is evidence that it is less susceptible to environmental influences [31,32]. This shows
replicability in our finding that seed number, rather than size, is a major determining factor
in yield under terminal drought.

Significant differences in the metabolic profile between the two years were observed,
highlighting the dynamic nature of metabolites. Despite this, the correlation analyses
showed that several metabolites were consistently correlated with yield traits in both years.
They were sucrose, GABA (seed number) and D-pinitol (seed number and HKW). These
three metabolites were all reported to increase during water stress in multiple species
including Arabidopsis [33,34], rice [35], sesame [36], soybean, ricebean and other tropical
legumes [37–40]. The metabolic changes that occur during stress events were linked to the
ability of particular genotypes to survive or succumb. For example, a drought-tolerant vari-
ety of sorghum accumulated greater amounts of sugars and sugar alcohols during drought
stress than a susceptible cultivar [41]. Similarly, in soybean, the drought tolerance of a wild
accession was attributed to its capacity to accumulate a greater abundance of osmoprotec-
tive compounds during drought compared to a more susceptible line [40]. These examples
link adjustments in the metabolic profile during drought (including the accumulation of
carbohydrates, GABA and sugar alcohols) with improved yield performance. However, in
our study, the metabolites were profiled from young, healthy, watered plants before the
drought stress was imposed and a correlation between these metabolites and yield under
drought was still observed. This could suggest that, to some extent, the higher yielding
(high seed number) genotypes observed in our study showed a level of pre-adaptation to
drought conditions. A similar observation was made in sesame, where it was reported that
drought-tolerant genotypes had a higher concentration of GABA even under well-watered
conditions [36]. As chickpea has been bred to complete its lifecycle under terminal drought,
it appears that the metabolic adaptations that facilitate performance under these conditions
have been selected and are still observable under well-watered conditions.

The positive correlation between D-pinitol and HKW and the negative relationship
with seed number are results of an existing negative relationship between these two yield
traits, as previously reported, which the authors attributed to parallel demands for photo-
synthates and nutrients [30,42]. The stronger of the two relationships was between HKW
and D-pinitol.

D-pinitol is a free cyclitol that is found throughout the genus Leguminosae [39]. In
mammalian systems, D-pinitol is regarded as a bioactive compound because it possesses
insulin-like properties and can lower blood glucose in patients with type 2 diabetes [43,44].
In plants, the predominant association of D-pinitol is as a compatible solute, with accumu-
lation frequently observed during abiotic stress [37–39]. Accumulation was observed to
increase as photosynthesis declined due to drought stress, providing evidence that carbon
is diverted away from the primary metabolism and into D-pinitol [39]. In transgenic to-
bacco that overexpressed a myo-inositol O-methyl transferase gene, IMT1, which catalyses
the first step in the biosynthesis of the cyclic sugar alcohol D-pinitol, large quantities of
ononitol accumulated [45,46]. When the transgenic plants were exposed to drought or salt
treatments, they were able to retain photosynthetic performance relative to controls [46].
Therefore, D-pinitol plays a role in protecting remobilisation to the seed during filling under
terminal drought conditions. The majority of scientific publications regarding D-pinitol
refer to its role in stress protection (usually drought or salt) [39,46–49]. However, our results
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point to a more central role for D-pinitol in seed size, as consistent relationships were found,
with large seeded Kabuli types having a higher concentration than smaller seeded Desi
types, and Desi varieties that had presumably been selected for seed size amongst other
attributes, had more than non-varieties. Of interest is the observation that ciceritol, an α-d-
digalactoside of D-pinitol, accounts for 36–43% of the total sugars in chickpea seeds [50,51].
It is, therefore, possible that the increased abundance of leaf D-pinitol in larger-seeded
varieties provides more of the pre-cursor material for remobilisation to the seed later in
development. It would be interesting to experiment with the exogenous feeding of either
D-pinitol or its pre-cursor, myo-inositol, to observe whether corresponding changes in seed
size or seed ciceritol are observed.

Our results also suggest that D-pinitol could be used to identify new crosses that
can produce larger seeds even before flowering occurs. For, example, if large kernel size
varieties were the main aim, a cross could be made between a larger seed size parent and a
parent with smaller seeds but another desirable trait (e.g., disease tolerance). The resultant
progeny could be screened for leaf D-pinitol concentration before flowering occurred, and
only the highest-accumulating lines could be taken forward. This would save time and
money by avoiding growing plants to maturity that do not show the desirable kernel trait.

By combining a core set of markers, we were able to develop a model that could
predict the number of mature seeds under drought conditions to a high degree of accuracy
(R2 adj = 0.62). Selecting plants for abiotic stress tolerance, e.g., drought, flooding, frost
and heat, is very challenging because, for large-scale breeding programs, crosses need to
be screened outdoors, which is dependent upon the relevant climatic conditions occur-
ring in a given year. The ability to predict genotypic performance under abiotic stress
from non-stressed plants is of huge benefit. While, ideally, molecular markers would be
more reliable for trait prediction than metabolites because they are not subject to environ-
mental perturbations, for many crops and particularly for complex traits, they are simply
not available.

Our study shows that the leaf metabolic profile of well-watered, young plants can be
measured 80 days before harvest to identify, with a high degree of accuracy, which geno-
types are more likely to produce higher seed numbers under terminal drought conditions.
Given the close correlation between yield (g/area) and seed number plant−1, it is very
likely that yield could also be the focus of our model. D-pinitol concentrations in the leaf
are strongly and consistently associated with seed size, and this could be used as a means of
early selection. The second year of our study and the year after (2018 and 2019, respectively)
were the driest on record for eastern Australia. In 2021, the net value of the national welfare
lost to this drought event was AUD 53 billion [52]. Extreme weather conditions, including
drought, are predicted to increase in frequency and severity as part of our changing climate.
Metabolite-assisted breeding offers a means to accelerate the selection of superior crosses
that continue to produce viable yields under extreme climatic conditions.

4. Materials and Methods
4.1. Field Trial

The field site was located at the University of Sydney’s IA Watson Grains Research
Centre, Narrabri, NSW Australia (30◦16′31.7” S, 149◦48′10.7” E). The field trial used in 2017
(year 1) was previously described [53]. The trials were sown on 5 and 7 June in year 1 (2017)
and 2018 (year 2), respectively.

The field sites were 0.6 ha in total, which was divided in half, into an irrigated and
rainfed treatment in an incomplete block design. For this study, the metabolite data and
associated yield parameters were only collected from the rainfed side of the field. Therefore,
this represents a fully randomised block design. Thirty-six genotypes were grown each
year, with four replicates of each plot in each treatment (rainfed or irrigated). Plots were
initially 1.6 × 6 m, which were then cut back to 4 m before podding commenced. Each plot
and the perimeter of the whole trial was surrounded by a double-row of buffer plots. Seeds
were planted using a five-row mechanical planter, and the row spacing was set to 0.32 m.
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Seeds were pre-treated with fungicide and treated with granulated inoculant (Nodulator®,
Group-N Granular Legume Inoculant, BASF Australia Limited, Southbank, VIC, Australia)
at a rate of 3.2 kg ha−1, and Granulock Z Extra fertiliser (Granulock®, Incitec Pivot Limited,
Port Lincoln, SA, Australia) at a rate of 50 kg ha−1 was applied at the time of sowing [53].

The irrigated treatment received 25 mm irrigation (total 100 mm) approximately every
two weeks from mid-August in year 1 and from May in year 2, which was homogeneously
applied to the field using a lateral move irrigator. Supplementary irrigation was supplied
only to the irrigated treated plots at three timepoints in year 1, but in year 2 the residual
soil moisture at the start of the season was so low following the previous dry year that
supplementary irrigation was supplied to both treatments until anthesis and, thereafter,
only to the irrigated treatment in year 2. A total of 92 mm of irrigation was supplied
during the experiment in year 1. In year 2, a total of 70 mm was applied prior to planting
(in two applications), and a further 190 mm was applied to the irrigated treatment and
110 mm to the rainfed treatment over the course of the experiment. The biomarker harvests
took place before drought treatment (withdrawal of irrigation) was imposed. Therefore,
the “treatments” had been equally watered at the time of the biomarker leaf harvest.

4.2. Plant Material

Forty-nine genotypes were tested over the two years, with thirty-six included each
year, and twenty-three lines being tested in both years (Table S1). In year 1, both Desi and
Kabuli types were included, but in year 2 only Desi types were cultivated. Genotypes were
selected from current cultivars bred for the northern NSW region: older Australian varieties
and lines sourced from ICRISAT including Indian varieties (denoted by the “ICCV” prefix)
and lines from the ICRISAT reference set (denoted by the “ICC” prefix). The ICC and ICCV
selections were based on pre-breeding observations and publications reporting interesting
rooting/biomass/morphology and/or drought response [54,55].

4.3. Yield Harvest

At maturity (around day after sowing (DAS) 160), a 50 × 50 cm quadrat was placed
around an area of the plot, and all plants within it were counted and then cut at the base.
The plants were placed in paper bags, dried to a constant weight and then threshed to
remove the seeds. Cleaned seed was weighed, and then both values were divided by
the number of plants to give seed yield g plant−1. Hundred-kernel weight (HKW) was
automated using a seed counter (Contador, Pfeuffer, Kitzingen, Germany). The average
number of seeds per plant was calculated as (seed yield g plant−1/HKW) × 100). All plots
with both treatments (rainfed and irrigated) were harvested, but only data from the rainfed
plots (from which the biomarkers were harvested) were used for the model development.
Machine-harvested plot yields are not included in this study because diverse genotypes
were used, and the combine harvester more effectively harvested taller, larger-seeded
genotypes than those with smaller seeds and stature.

4.4. Biomarker Harvest Protocol

Biomarker harvests took place at DAS 74 and DAS 80 in years 1 and 2, respectively.
This timepoint was selected because it was the earliest that an entire stem could be harvested
from each plot that would yield 20 mg dry weight of leaf material. This harvest point was
when the earliest-flowering genotypes had their first emerged petals. All genotypes were at
Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) Scale 55–59.
Samples were harvested from the rainfed side of the field (before the irrigation applications
were ceased and drought effects took effect). Harvests were carried out on clear days
between 12:00–2 pm to control for diurnal effects. A single stem that was representative
of canopy height was selected from each plot, cut at the base with scissors and placed
in a Whirl-Pak sample bag (Whirl-Pak, Filtration Group, https://www.whirl-pak.com/
(accessed on 15 May 2023)). Samples were frozen in liquid nitrogen, stored at −80 ◦C
and then freeze-dried (Virtis FreezeMobile, Gardiner, MT, USA). Samples were split into

https://www.whirl-pak.com/
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leaf and stem tissues, transferred to 2 mL microcentrifuge tubes and ball-milled to a fine
powder (Geno/Grinder 2010, Spex SamplePrep, Metuchen, NJ, USA). In this manuscript,
only data from the leaf samples are shown.

4.5. Metabolite Extraction

Soluble sugars and starch were enzymatically analysed, as previously described [56,57],
and GC-MS protocols were as previously described [58,59]. Metabolite extraction: Approxi-
mately 20 mg (actual weight recorded) of each freeze-dried, ball-milled plant tissue sample
was weighed into 2 mL screw cap micro centrifuge tubes. Metabolites were extracted
four times with 1 mL of 80% (v/v) ethanol, and the resulting supernatants were pooled;
two extractions were at 80 ◦C for 20 min and 10 min, respectively, and the remaining two
were at room temperature. A 0.5 mL aliquot of soluble metabolite extract and the remaining
pellet containing the insoluble fraction (including starch) were dried down in a heat block
at 50 ◦C until all the solvent had evaporated. The dried-down residue from the soluble
fraction was then resuspended in 0.5 mL of distilled water. Samples were stored at −20 ◦C
for analysis.

4.6. Soluble Sugar Analysis

Soluble sugars of samples extracted in the previous step were enzymatically quantified
using a Megazyme protocol (Megazyme Sucrose, D-glucose and D-fructose Assay Proce-
dure, K-SUFRG 04/18, Megazyme International, Co Wicklow, Ireland) by the stepwise
addition of hexokinase, phosphoglucose isomerase and β-fructosidase [60]. Samples were
photometrically quantified (Benchmark Plus, BioRad, Hercules, CA, USA) by measuring
the change in wavelength at 340 nm for 20 min after the addition of each enzyme. Su-
crose, glucose and fructose were then quantified from standard curves included on each
96-well plate.

4.7. Starch Quantification

Starch was quantified using a modified Megazyme protocol (Megazyme Total Starch
Assay Procedure, AOAC method 996.11, Megazyme International, Co Wicklow, Ireland).
Briefly, the dried pellet was resuspended in 0.4 mL of 0.2 M KOH, vortexed vigorously
and heated to 90 ◦C in a water bath for 15 min to facilitate gelatinisation of the starch.
A total of 1.28 mL of 0.15 M NaOAc (pH 3.8) was added to each tube (to neutralise the
sample) before the addition of 20 µL α-amylase and 20 µL amyloglucosidase (Megazyme
International, Co Wicklow Ireland). After incubation at 50 ◦C for 30 min and centrifugation
for 5 min, a 0.02 mL aliquot was combined with 0.6 mL of GOPOD reagent (Megazyme
International, Co Wicklow, Ireland). A total of 0.2 mL of this reaction was photometrically
assayed (Benchmark Plus, BioRad, Hercules, CA, USA) on a 96-well microplate at 510 nm
against a water-only blank. Starch was quantified from known standard curves on the
same plate. Each sample and standard were tested in duplicate. Each plate contained a
control sample of known concentration for both soluble sugars and starch analysis.

4.8. Gas Chromatography Mass Spectrometry

For the carbohydrates, sugar alcohols and organic acid analyses, gas chromatog-
raphy (GC) techniques used by Merchant et al. (2006) [58] were followed accordingly.
First, 50 µL of dried extract were suspended in 450 µL anhydrous pyridine, to which a
solution of 1:10 ratio mixture of trimethylchloroacetamide (TMCS) and bis-trimethylsilyl-
trifluroacetamide (BSTFA) was added for derivatisation. Samples were incubated for
35 min at 75 ◦C and analysed by GC-MS within 24 h. The analysis was carried out on an
Agilent 6890 Gas Chromatograph with QQQ 7000 Mass selective detector (Agilent Tech-
nologies, Santa Clara, CA, USA). Samples were injected in a split splitless injector at 300 ◦C
with a 20:1 split injection onto a HP-5 column (30 m, 0.25 mm ID, 0.25 µm film thickness)
with helium carrier gas at a constant flow of 1 mL/min. The temperature program had
an initial oven temperature set of 60 ◦C for 2 min, ramping to 220 ◦C at 10 ◦C min−1 for
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5 min and then to 300 ◦C at 10 ◦C min−1 for 5 min. GC-MS results were identified based on
retention times relative to standards and extracted ions. Peak areas were integrated, and
their relative quantities were calculated by Mass Hunter software (version B.07.01, Agilent
Technologies) and used for peak integration.

4.9. Statistics and Modelling: Linear Modelling and Feature Selection

All statistical tests, modelling and feature selection were carried out in R [61]. Student’s
t-tests were two-sided, assuming unequal variances (p = <0.05).

A multivariate linear regression model was constructed to analyse the relationship
between seed number plant−1 in rainfed (terminal drought)-treated plants and 14 metabo-
lites analysed from well-watered conditions early in the growing season. The modelling
and model evaluation and trait prediction (below) were conducted in R using the Caret
(Classification and Regression Training) package [61,62]. In order to simplify the model
by reducing the number of variables, the Step Akaike Information Criteria (AIC) [63,64]
was applied. This maximum-likelihood estimation (MLE) feature selection technique tests
whether the AIC value is increased or decreased with the step-wise addition of each ex-
planatory variable (metabolite), with a lower value being the desired outcome. Both a
forwards and backwards approach were tested, and the backwards method was found to
produce the highest adjusted R2 value. The backwards elimination method sequentially
removes variables that do not show a significant (p = <0.05) relationship to the trait, leaving
only the minimum significantly correlated set [65,66]. A backwards approach is preferable
if there is a high likelihood of collinearity amongst variables [67], which is often the case
with metabolites, e.g., Ceusters et al. [68].

4.10. Model Evaluation and Trait Prediction

The leave-one-out cross-validation (LOOCV) approach was utilised to train the model [65].
In this approach, the model is repeatedly re-fitted using a different training and test set
each time. With each iteration, a single test value (genotype) is omitted from the training
set, and the mean square error (MSE) of the predicted versus actual value for that genotype
is calculated. The process is repeated until all values have been used as the test value
(n = 72). The test MSE is the average of all the calculated MSE’s. A linear regression
between the predicted and actual values was then plotted, and the adjusted R2 and p values
were determined.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants12112172/s1. Table S1: Genotypes tested. Table S2: Yield
trait values. Table S3: GCMS metabolic profile of the leaf tissue. Table S4: Enzyme assay profile of the
leaf tissue.
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