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Abstract: Plant growth is affected by various abiotic stresses, including water, temperature, light,
salt, and heavy metals. Selenium (Se) is not an essential nutrient for plants but plays important
roles in alleviating the abiotic stresses suffered by plants. This article summarizes the Se uptake and
metabolic processes in plants and the functions of Se in response to water, temperature, light, salt, and
heavy metal stresses in plants. Se promotes the uptake of beneficial substances, maintains the stability
of plasma membranes, and enhances the activity of various antioxidant enzymes, thus alleviating
adverse effects in plants under abiotic stresses. Future research directions on the relationship between
Se and abiotic stresses in plants are proposed. This article will further deepen our understanding of
the relationship between Se and plants.
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1. Introduction

The environment is complex and varied for plants. Adverse conditions can cause
biotic and abiotic stresses in plants. Biotic stresses include insect pests, diseases, and weeds,
whereas abiotic stresses are classified as water, temperature, light, salinity, and heavy
metals. Abiotic stresses are the main environmental factors that inhibit plant growth and
reduce crop productivity and quality. Abiotic stresses cause significant molecular and
physiological changes in plants, including rapid transcriptional and metabolic adjustments,
osmotic potential regulation, reduction in leaf expansion pressure, and ultimately lead to
the slowdown or cessation of plant growth [1,2]. Abiotic stress tolerance is a key factor in
determining crop productivity. Thus, strategies to improve plant tolerance to abiotic stresses
have attracted increasing interest. These strategies include applying plant hormones [3]
and altering cultivation practices [4].

Selenium (Se) is a non-metallic element of the oxygen group. It is an essential trace
element for humans and animals and plays important roles in their health [5]. Recent studies
have shown that Se is not an essential nutrient for plants but can be taken up and metabolized
by plants. According to the Se concentration of plant shoots under natural conditions, plants
can be classified into non-accumulators (<100 mg kg−1 Se DW) [6], secondary accumulators
(100–1000 mg kg−1 Se DW), and hyperaccumulators (>1000 mg kg−1 Se DW). Although
the ability of different plants to absorb and enrich Se varies greatly, low concentrations of
Se are beneficial to plant growth, whereas high concentrations can be toxic. For example,
Khaliq et al. [7] soaked rice seeds with a low concentration of Se (15–60 µmol L−1) solution
and found that this treatment significantly promotes the emergence rate of rice seeds and
growth of rice seedlings. Moulick et al. [8] soaked rice seeds with 2.89–8.67 µmol L−1

Na2SeO3 solution and found that this treatment significantly increases the chlorophyll

Plants 2023, 12, 44. https://doi.org/10.3390/plants12010044 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12010044
https://doi.org/10.3390/plants12010044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-4686-0404
https://orcid.org/0000-0001-5144-2878
https://doi.org/10.3390/plants12010044
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12010044?type=check_update&version=2


Plants 2023, 12, 44 2 of 17

content, height, spike length, and grain weight of rice plants, which ultimately improve
the yield and quality of rice. By contrast, high concentrations of Se can be harmful to
plant growth [9]. Treatment of Cardamine violifolia with 80 µmol L−1 sodium selenate can
significantly reduce the chlorophyll content and biomass, and the plants are under the
symptoms of poisoning [10]. The high Se accumulation caused by 200–400 µmol L−1

selenate might be beyond the Se tolerance of the plant and generate Se stress, seriously
inhibiting the growth and causing abnormalities in the nutrition synthesis and metabolism
of C. violifolia [11].

Recently, many studies have found that appropriate concentrations of Se can enhance
the abiotic stress tolerance of plants. Djanaguiraman et al. [12] found that Se application
can reduce the membrane damage of sorghum cells by enhancing antioxidant defense, thus
protecting cell integrity, improving heat tolerance, and reducing yield losses in sorghum
under high-temperature stress. Hasanuzzaman et al. [13] also revealed that Se application
enhances the antioxidant defense and methylglyoxal detoxification systems in plants,
thereby increasing tolerance to drought-induced oxidative damage. Similarly, Se improves
the nutrient uptake, amino acid metabolism, and antioxidant defense system in kale
oilseed rape under chromium (Cr) stress, thus reducing Cr toxicity [14]. This review
mainly summarizes the recent studies on the regulatory roles of Se in the photosynthetic
characteristics, antioxidant enzyme activity, and cell permeability in plants under abiotic
stresses. This article will help us understand the functions of Se in responding to abiotic
stresses in plants and the relationship between Se and plants.

2. Se Metabolism in Plants
2.1. Se Uptake by Plants

The two main forms of bioavailable Se in soils are selenate and selenite. Selenate is
mainly found in alkaline and oxidized soils, whereas selenite mainly exists in acidic and
reduced soils [15]. Plants also can take up organic Se, such as seleno-amino acids, but
plants cannot absorb elemental or metal-selenide compound complexes [6,16].

The uptake and assimilation pathway of selenate by plants has been well uncovered
currently (Figure 1). Selenate is taken up by the sulfate uptake transporter system in
plants [17]. Sulfate transporters (SULTR) in plants have four major groups. The first group
(SULTR1) is composed of high-affinity sulfate transporters, including SULTR1;1 [18] and
SULTR1;2, which are located in the root system and are the most studied transporters.
They are responsible for the uptake of selenate from the soil, but evidence shows that
SULTR1;2 is the predominant selenate uptake protein, rather than SULTR1;1. The second
group (SULTR2) is composed of low-affinity sulphate transporters and located in various
tissues of plants, including the two isoforms SULTR2;1 and SULTR2;2. They are located
in the leaves and roots and play important roles in the entry of selenate into the vascular
system [19]. The third group (SULTR3) is found only in the leaves. SULTR3;1 is located in
chloroplasts. The biosynthesis reduction of this transporter leads to a decrease in sulfate
content in chloroplasts [20]. The fourth group (SULTR4) is found in the vacuole membrane.
This group contains two isoforms, namely, SULTR4;1 and SULTR4;2. They are associated
with sulfate transfer in the vacuole [21].

Different from selenate, the uptake of selenite in plants may be attributed to phosphate
transporters and water channel proteins [22–24]. A recent study has shown that Se applica-
tion on rice can significantly upregulate the expression of phosphate transporter (OsPT2),
implying that it may play a key role in the uptake of selenite in rice [23,25,26]. Plants can
also take up organic Se via amino acid permeases. Two common types of organic Se are
selenocysteine (SeCys) and selenomethionine (SeMet) [16]. Kikkert and Berkelaar found
that the uptake of SeCys and SeMet is 20- and 40-fold faster than that of selenate in spring
canola and 2- and 100-fold faster in wheat [16]. This difference in uptake is mainly related
to the differences in Se species and their concentrations.
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Figure 1. Schematic diagram of Se assimilation and metabolism in plant cells. SULTR, sulfate/selenate
cotransporter; APSe, adenosine phosphoselenate; APS, adenosine phosphosulfate; SR, Sulfite Reduc-
tase; GSH, glutathione; SAT, serine acetyltransferase; OAS, O-acetylserine; (Se) Cys, (seleno)cysteine;
OPH, O-phosphohomoserine; (Se)Met, (seleno) methionine; MMT, methylmethionine methyltrans-
ferase; DMSeP, dimethylselenoproprionate; DM(D)Se, dimethyl(di)selenide (volatile); SMT, seleno-
cysteine methyltransferase.

2.2. Se Assimilation by Plants

Plants metabolize Se via the sulfur metabolic system because of the chemical similarity
of the two elements [27]. Similar to that of sulfur, the assimilation of Se occurs in the cytosol
and plastids of plant leaf cells [28]. Selenate is translocated into the leaves after being taken
up by the roots. Selenate is firstly activated by adenosine triphosphate sulfurase to form
adenosine 5′-phosphoselenate and continuously reduced by adenosine 5′-phosphosulfate
reductase to generate selenite [29,30]. Selenite can be further converted into selenide. The
reduction of sulfite into sulfide is achieved by the action of sulfite reductase (SR) during
sulfate metabolism [31]. The reduction from selenite to selenide may also be achieved
by the action of SR. Subsequently, selenide is further transformed into SeCys under the
catalysis of cysteine synthase [15,32]. Plants cannot distinguish between SeCys and Cys;
thus, SeCys can displace Cys and be non-specifically incorporated into proteins, resulting
in protein dysfunction and causing plant toxicity [33]. Some plants retain the capacity to
process SeCys into non-toxic forms, thus avoiding Se toxicity. Part of SeCys is broken down
to elemental Se by the mediation of SeCys lyase. Elemental Se can be excreted by plant cells,
thus declining the Se concentration in the plant body. The other part of SeCys is converted
into selenocystathionine by cystathionine-γ-synthase and then into selenohomocysteine
by cystathionine-β-lyase. Selenohomocysteine would be transformed into SeMet under
the catalysis of Met synthase [34]. Plants also can process SeCys and SeMet into non-
protein amino acids. SeCys and SeMet can be converted into methyl SeCys (MeSeCys) and
methyl SeMet (MeSeMet) under the mediation of SeCys methyltransferase and S-adenosyl-
L-Met:Met-S-methyltransferase, respectively. This process can reduce the misincorporation
of SeCys and SeMet into proteins [15]. MeSeCys and MeSeMet are further converted into
volatile dimethyl diselenide and dimethyl selenide. The two volatile compounds would be
excreted from plant cells, thereby reducing the Se concentration in plants and reducing Se
damage to plants [35,36].
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3. Se and Stresses in Plants
3.1. Se and Drought

Water stress on plants can be divided into two types, drought and flooding, both of
which are very detrimental to plant growth. Among the various environmental stresses,
drought is the most damaging to plants. Drought can reduce chlorophyll content [37] and
cause stunted shoot growth but stimulate root growth [38]. The correlation between Se and
flooding stress in plants remains unclear to date. However, studies have demonstrated that
Se can effectively alleviate drought stress in crops [39]. The mechanism involved in this
effect can be categorized into the following aspects.

Se increases the activity of antioxidant enzymes in plants and improves the non-
enzymatic breakdown of superoxide radicals [40], thereby reducing the accumulation of
excess reactive oxygen species (ROS) and mitigating oxidative damage to cell membranes.
ROS play important roles in plant resistance to abiotic stresses [41]. Plants subjected to
drought produce large amounts of ROS, including superoxide anions, hydrogen peroxide,
hydroxyl radicals, singlet oxygen, and methyl and lipid peroxide radicals [42]. The accu-
mulation of ROS in plant cells can cause varying degrees of oxidative damage to biological
membrane proteins and DNA and further disrupt the respiration and photosynthesis of
plant cells [43]. Suitable concentrations of Se can increase the activities of antioxidant en-
zymes or the contents of other antioxidant substances, thus accelerating the scavenging of
intracellular free radicals [44]. ROS elimination helps prevent oxidative stress and enhance
the antioxidant capacity of plants. Cucumber seedlings grown in nutrient solution with
1 and 5 µmol L−1 have higher drought tolerance capacity than normal ones because the for-
mer have increased superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase
(APX), and catalase (CAT) activities and reduced ROS accumulation in the root system [45].
Se also effectively reduces drought stress in olives. Spraying of olive leaves with 50 and
150 mg Se L−1 can significantly enhance the activities of APX, CAT, and glutathione per-
oxidase (GPOX) and the content of malondialdehyde (MDA), thus effectively scavenging
excess ROS and protecting cells from oxidative damage [46].

Se enhances water uptake and the relative water content in plants. Relative water con-
tent is an indicator of plant water status and reflects the balance between water availability
and the transpiration rate of leaf tissues [47]. The relative intracellular water content is
significantly reduced when plants are under drought and inhibited nutrient uptake [48],
which can lead to plant death in the long term. Exogenous Se can increase the relative water
content of plant cells in crops, such as sorghum [49], spring barley [50], and canola [51],
consequently reducing the stress-generated damage and improving the drought tolerance
of plants. The underlying mechanism is that Se promotes water uptake by the root system
of plants under drought conditions. However, the details underlying the mechanism re-
main to be revealed. Se can possibly enhance the vigor of the root system to absorb water
under drought conditions.

Se protects chlorophyll and maintains photosynthesis. Drought stress causes water
deficiency in plants, closing of leaf stomata, and induction of stomatal conductance [52],
which would further inhibit the supply of CO2 and reduce the rate of CO2 assimilation [53].
Therefore, long-term drought would eventually damage chlorophyll and prohibit photo-
synthesis in plants [50]. Se can effectively mitigate this damage to plants. Application of a
30 g/ha solution of Na2SeO4 to the leaves can significantly enhance stomatal conductance
in spring barley cells under drought stress, thus enhancing photosynthesis [50]. Drought
stress in rice can significantly reduce photosynthesis. Application of soil Se at a concen-
tration of 0.5 mg kg−1 increases chlorophyll index, CO2 assimilation efficiency, and net
photosynthesis in rice [44]. Application of low concentrations of Na2SeO4 to canola under
drought stress can significantly increase chlorophyll a and chlorophyll b contents, which
enhance photosynthetic efficiency [51]. This phenomenon may be ascribed to that Se can
reduce the accumulation of ROS in plants subjected to drought [42]. However, the exact
mechanisms underlying this effect remains unclear.
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Interestingly, Zhou et al. [54] found that flooded irrigation treatment increases the soil
soluble Se concentration, and the Se in soil solution is present in the form of selenite and
selenomethionine Se oxide. On the one hand, enhancement in the concentrations of soluble
Se in the soil through flooding irrigation can significantly promote Se levels in grain and
straw rice. On the other hand, Se at a relatively higher level is effective in mitigating the
adverse effects of flooding in plants. Thus, irrigation practices and Se application can form
a virtuous circle for plant growth.

3.2. Se and Temperature Stress

Temperature is important for plant growth. The biochemical reactions and phys-
iological activities in plant cells are dependent on suitable temperature. Temperature
stress is an important abiotic stress for plant growth because it causes serious damage
to plants, including dysregulation in photosynthetic processes, disturbance in enzyme
activity, and metabolic disorders [55,56]. High-temperature stress causes premature leaf
senescence, resulting in loss of chlorophyll, aggravation in membrane damage, and a
decline in photosynthetic capacity [57]. By contrast, low-temperature stress inhibits chloro-
phyll biosynthesis and antioxidant enzyme activity but increases ROS production and
cell membrane damage [58–60]. Therefore, high and low temperatures can restrain plant
growth, even leading to plant death in severe cases. Se can effectively regulate high or
low-temperature stress in plants. This effect is attributed to the following mechanisms
(Figure 2).
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(i) Se protects chlorophyll and helps maintain photosynthesis. High-temperature stress
accelerates the degradation of chlorophyll [61], increases photorespiration, reduces ribulose-1,
5-bisphosphate carboxylase/oxygenase (RuBisco) activity, and interferes with the electron
transport chain of the photosynthetic system in plants [62]. Se can protect chlorophyll
and mitigate temperature stress-induced damage to photosynthesis [63]. Seliem et al. [64]
found that Se nanoparticles (SeNPs) promote photosynthetic processes and increase the
total chlorophyll content of different varieties of Chrysanthemum morifolium Ramat under
heat stress at 40 ◦C. Similarly, in strawberry seedlings under low-temperature stress, the
stomatal conductance is decreased and the concentration of intercellular carbon dioxide
is increased. Spraying leaves with Se remarkably maintains the homeostasis of stomatal
conductance and intercellular carbon dioxide in strawberry leaves, thus effectively re-
pairing the photosynthesis and mitigating the damage of low temperature on strawberry
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plants [65]. Se can also contribute to the stabilization of iron-sulfur clusters in the photo-
system and regulation of the flow of electrons in chlorophyll cysts at the subcellular level,
thus enhancing the quantum yield of light response [42]. Therefore, Se helps maintain
photosynthesis in crops under temperature stress.

(ii) Se improves the antioxidant capacity and alleviates the oxidative damage of plants
under low temperatures. Wheat seeds soaked with 26.45 µmol L−1 sodium selenate
and germinated at a low temperature (3 or 5 ◦C) show enhanced CAT and polyphenol
oxidase activities and reduced ROS concentration [66], thus protecting the cell membrane.
Wheat seedlings treated with Se under low-temperature stress also significantly enhance
the activities of POD and APX [67]. A low concentration of sodium selenite solution
(28.90 µmol L−1) significantly increases the activities of SOD, CAT, and POD in strawberry
seedlings under low-temperature stress, which effectively alleviate oxidative damage in
strawberry seedlings [65]. Low temperature and heat stress can be regulated by Se through
changing the activities of antioxidant enzymes. In cotton under high-temperature stress
(35/22 ◦C, day/night), Se enhances the activities of GPOX and CAT, thus increasing the heat
tolerance of cotton [68]. However, a Se-induced increase in the activities of low-molecular-
weight non-enzymatic antioxidants, such as glutathione (GSH), also contributes to the
enhancement of heat tolerance in cotton [68].

Furthermore, Se may facilitate the dissipation of excess energy from photosystem
ii reaction centers in plants under heat stress, thus slowing down ROS synthesis and
effectively mitigating oxidative damage in plants [69].

(iii) Se enhances osmotic protection in plants. Proline and soluble sugars act as osmotic
protectants and regulate cellular metabolic activities [70]. A high level of free proline is one
of the factors enhancing cold tolerance in plants under low-temperature stress [71]. Soluble
sugars act as osmotic protectants and important metabolic substrates and play a dynamic
role in controlling numerous procedures in plant development [72].

Se can increase proline content in plants possibly by affecting the activities of pro-
line synthesis-related enzymes [63,73]. Sorghum seeds exposed to low concentrations of
selenate (15.87 and 31.75 µmol L−1) show a significant increase in proline and soluble
sugar contents when germinated under low temperatures (4 ◦C or 8 ◦C) [67]. Similar
phenomena were observed in potatoes and cucumber. Spraying 126.6 µmol L−1 SeNPs
on the leaves of Coriandrum sativum can significantly increase it soluble sugar content
by 1.5 times [74]. These studies suggest that appropriate concentrations of Se effectively
increase the accumulation of proline and soluble sugar and enhance cold resistance in
plants under low-temperature stress.

(iv) Se regulates the expression of genes associated with temperature stress. Tobacco
cell cultures treated with selenate show lower expression levels of some stress-related
protein genes, such as the heat-stimulated protein Hsp90, BiP (Hsp70 family), 14-3-3s,
and cytochrome c, when they are under high-temperature stress (5 min, 50 ◦C). HSP90
and HSP70 function in organelle-specific protein sorting [75,76] and ubiquitin-mediated
proteasomal degradation [77] and are related to thermal resistance in plants [78]. Therefore,
the regulation of these genes by Se would contribute to protect plants from heat stress.

In summary, appropriate concentrations of Se are beneficial for protecting the physio-
logical and biochemical activities of plants, thus effectively alleviating the negative effects
of adverse temperatures. High and low temperatures are important abiotic stresses that
affect crop production worldwide. Methods to mitigate the effects of adverse temperature
on crop yield and quality are difficult to achieve. Application of Se may be a viable strategy
to ameliorate the adverse effects of temperature stress on crops.

3.3. Se and Light Stress

Light is the only source of energy for compound accumulation and plays an impor-
tant role in plant growth, physiology, biochemistry, and morphological establishment in
plants [79]. Plants cannot photosynthesize adequately under low light, leading to a defi-
ciency in energy and inhibiting their growth [80]. Strong light can damage the chloroplasts
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and weaken photosynthesis [81]. Studies have demonstrated that low concentrations of Se
can protect cystoid membranes, maintain the stability of cystoids and chloroplast stroma,
significantly increase the content of beneficial elements directly related to the structural
function of chloroplasts in plant leaves, and aid in the recovery of membrane structure
under low or strong light stress [75,82].

Se alleviates chloroplast damage by regulating antioxidant substances when plants are
exposed to strong and low light. Potato plants exposed to 600 mmol m−2 s−1 of strong light
show remarkable alteration in transcriptive levels of chloroplast CuZnSOD and GPX when
they are treated with low concentrations of Se [83]. This result suggests that Se facilitates
the activation of protection mechanisms when plants are exposed to intense light. Elevation
in the response to oxidative stress induced by Se enhances the stability of photosynthetic
pigments and promotes the recovery of chlorophyll in plants after light stress, even making
the chlorophyll content reach the initial level in plants before light stress [84].

Ultraviolet (UV) light is another form of light stress aside from low or strong light.
Recent studies have highlighted UV as a regulator of plant growth and development rather
than as a destructive stressor [85]. High UV intensity can decrease photosynthetic pigment
levels, respiratory potential, Ca+ concentration, and leaf thickness [86]. Se effectively miti-
gates the effects of UV radiation on plants. Pumpkin plants grown in the field are sensitive
to UV-B radiation. UV-B negatively affects the electron flow at the end of the electron
transport system and impairs the flow of electrons in the respiratory chain, thus decreasing
the yield [87]. Foliar spraying of Se counteracts this effect, significantly increasing the
fruit yield of plants exposed to UV-B radiation [87]. However, the underlying mechanism
remains unclear. Evidence suggests that Se can enhance the accumulation of antioxidant
substances, increase the activity of antioxidant enzymes, and reduce the accumulation
of ROS in plants under UV stress. Wheatgrasses germinated from Se-rich wheat grains
exhibit increased total flavonoid and phenolic contents than non-seleniferous ones when
they are exposed to UV-B stress [88]. The former also shows a higher scavenging rate of
DPPH radicals and activities of SOD and CAT but lower lipid peroxidation [88]. Treatment
with Na2SeO3 solutions (28.90, 57.80, and 115.6 µmol L−1) also increases the isoflavone
content and inhibition of NO production in soybean under UV stress [89]. The antioxidant
activity of soybean cells is thus increased. Aside from increasing antioxidant capacity, Se
can promote the accumulation of UV-absorbing compounds. Golob et al. [90] found that
foliar spraying with 52.91 µmol L−1 sodium selenate significantly increases the content of
some UV-absorbing compounds, such as Si and Ca, in wheat seedlings under UV radia-
tion [91]. It can also increase light reflectance and reduce transmittance, thus enhancing the
protection of wheat under UV stress [90].

3.4. Se and Salt Stress

High salt levels in the soil cause salt stress in plants. Salt stress can induce nutritional
imbalance, water deficit, oxidative stress, and disruption of cellular ion homeostasis in
plants [92]. Plants can be generally classified into two major types according to salinity
tolerance, namely, halophytes (salt-tolerant) and glycophytes (salt-sensitive). Glycophytic
plants can tolerate relatively low salt concentrations ranging from 50 mM to 250 mM NaCl,
whereas halophytic plants are adapted to natural conditions of high salt (approximately
500–1000 mM NaCl) in the soil [93]. The Food and Agriculture Organization of the United
Nations states that salt stress poses a serious threat to more than 6% of the land [94].
Salt stress reduces the uptake of water and nutrients, increases the osmotic potential of
plant cells [95], inhibits plant photosynthesis, and alters plant metabolism and physiology,
thereby inhibiting plant growth and reducing yields [96]. For instance, when Na+ and
Cl- are taken up in large quantities by the root system, metabolic impairment and photo-
synthetic efficiency reduction would occur [97,98]. Se can enhance resistance to salt stress
and mitigate the negative effects of salinity in plants. The underlying mechanisms are
concluded as follows (Figure 3).
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Se enhances photosynthesis. Se is effective in enhancing chlorophyll fluorescence
parameters and photosynthetic pigment content and maintaining the ultrastructure of
chloroplasts in plants under salt stress [99,100]. Diao et al. [101] found that Se can promote
net photosynthetic rate and stomatal limitation and reduce intercellular CO2 concentration,
thus promoting the photosynthesis of tomato seedlings under salt stress. Enhancement
of photosynthesis may be because the chloroplast membrane system of leaf cells is less
damaged and maintains better integrity by Se in plants under salt stress [102].

However, Se concentration must be set carefully because Se accumulated in high
amounts in the leaves may inhibit the enzymatic kinetics or electron transport chain
in photosynthesis [99,103,104]. The tertiary structure of most proteins depends on the
formation of disulfide bonds (S-S). A new diselenide bond (Se-Se) or selenosulfide bond
(Se-S) can easily form because of the replacement of Cys by SeCys in proteins when the
plant cells contain a high concentration of Se [99]. This phenomenon disrupts the structure
of the PSII complex in chloroplasts and exerts a strong inhibitory effect on photosynthetic
electron transfer [99]. In addition, the substitution of Se for sulfur in the key enzymes
involved in chlorophyll synthesis reduces their activity, disrupts the biochemical reaction,
and severely hampers chlorophyll synthesis [99].

Se regulates osmotic pressure and maintains the stability of the plasma membrane in
plants under salt stress. Se can increase the content of relevant osmotic protectants, such
as proline, soluble sugars, and soluble proteins, and alleviate electrolyte leakage from the
cell membranes in plants under salt stress [105]. Se also reduces the content of the lipid
peroxidation product MDA and helps maintain membrane stability. For example, free pro-
line content is increased by 72.7% and MDA content is reduced by 87.5% in NaCl-stressed
wheat leaves treated with a low concentration (1–8 µmol L−1) of Na2SeO3. This treatment
can also minimize electrolyte leakage from plant cell membranes by approximately 58%
compared with the control group [99].

Se enhances antioxidant enzyme activity and alleviates oxidative damage. Se effec-
tively enhances the activities of antioxidant enzymes (e.g., SOD, POD, APX, CAT), thus
scavenging excess ROS and free radicals in the body and alleviating the oxidative stress
damage caused by salt stress in plants. The enhancement of antioxidant enzyme activities
and alleviation of oxdative stress in plants exposed to salt stress by Se have been reported
in many species, such as wheat [99], bitter melon [106], soybean [107], melon [108], and
peanut [109]. In melon plants, salt stress increases electrolyte leakage and MDA content.
Treatment with Se can significantly reduce the symptoms of salt stress by significantly
increasing the activities of SOD, POD, and CAT by 130%, 50%, and 20%, respectively, when
compared with non-seleniferous melon plants, thus reducing the oxidative damage of
ROS [108].
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Se enhances the glyoxalase system to protect biomolecules, such as nucleic acids and
proteins. Plants under salt stress accumulate excess methylglyoxal, which subsequently
produces carbonyl stress, damaging the biomolecular proteins, DNA, RNA, lipids, and
biofilms. The glyoxalase system in plants can effectively remove excess methylglyoxal
while regulating GSH regeneration to maintain the dynamic balance in cells [110–113].
Rahman et al. [107] found that Se treatment enhances the antioxidant defense and glyoxalase
systems of soybean under salt stress, thus protecting lipids, nucleic acids, proteins, and
other biomolecules [105,106].

Se is effective in reducing Na+ uptake and accumulation in plants under NaCl stress. In-
creased salt concentrations in the soil decrease the ability of plants to take up water [87].
Once Na+ and Cl- are taken up in enormous amounts by the roots, the metabolic pro-
cesses would be impaired, and the photosynthetic efficiency would be decreased [86,114,115].
Sheikhalipour et al. [106] applied chitosan SeNPs to bitter melon under NaCl stress and found
that this treatment increases the uptake of K+ but reduces the uptake of Na+, thus improving
salt tolerance in bitter melon [116,117]. Similar results have been observed in maize and black
bean. Interestingly, the uptake and translocation of Cl- are not influenced by Se.

3.5. Se and Heavy Metal Stress

Common heavy metals include Cd, Hg, Pb, Cu, and Cr, which are introduced into the
ecosystem as a result of mining, chemical, and agricultural production activities. Heavy
metals induce lipid peroxidation. The balance between the production and scavenging
of free radicals in cells is disrupted when plants take up excessive amounts of heavy
metals, resulting in the accumulation of large amounts of ROS, which further trigger the
peroxidation of unsaturated fatty acids in membranes and damage membrane structure
and function [118]. High concentrations of these elements not only cause poisoning in
plants but also endanger the health of animals that consume them, eventually posing a
risk to human health [119]. We review the studies concerning the correlation between Se
and heavy metals and conclude the mechanism involved in the mitigation effects of Se on
heavy metal stress in plants (Figure 4).

Se enhances plant photosynthesis. Heavy metal toxicity can inhibit photosynthesis by
triggering the degradation of chlorophyll molecules by enhancing chlorophyllase activity and
replacing the central Mg+ in the porphyrin ring, affecting overall plant growth and yield [120].
However, Se significantly enhances chlorophyll a, chlorophyll b, and total chlorophyll con-
tents in plants under heavy metal stress, thereby facilitating photosynthesis [74,121]. Se also
helps rebuild damaged cell membranes, chloroplast structures, and photosynthetic system
components in plants [102,122–124].

Se enhances transpiration in plants. The water potential, leaf osmotic potential, and
relative water content are significantly reduced in plants under heavy metal stress [74]
because ion channels and stomata of cell membranes are damaged or even closed, resulting
in the reduced transpiration and disruption of plant growth and metabolism [125]. Se can
enhance transpiration and water transport in plants under heavy metal stress and reduce
leaf temperature. For example, Cd stress inhibits the stomatal size, density, and stomatal
conductance of C. sativum cells. A low concentration of SeNPs (126.6 µmol L−1) effectively
improves the water potential (80%), leaf osmotic potential (52%), gas exchange properties,
and transpiration rate of C. sativum [74].
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Se enhances osmotic protection. It can enhance the proline and soluble sugar contents
and help maintain the stability of the plasma membrane in plants under heavy metal
stress [74]. Proline enhances membrane stability and reduces the degradation of proteins
and carbohydrates [126]. Soluble sugars are important osmotic protectants for plants [127].
Application of low concentrations of SeNPs (126.6 µmol L−1) effectively enhances the
proline content and total soluble sugar content of C. sativum under Cd stress by 39% and
64% [74], respectively, compared with those without Se treatment, thereby reducing the
metal toxicity of Cd. Sun [128] demonstrated that Se application can reduce Cd-induced
phytotoxic effects on cucumber plants by regulating stress response-related proteins and
pathways, such as glycolysis pathway and nitrate assimilation pathway, which may increase
Cd tolerance.

Se reduces the uptake and translocation of heavy metals in plants. Se promotes the
formation of Fe plaques around the roots of plants under Hg stress [129], thus hindering
heavy metals from entering the roots and accumulating in plants. Zhou and Li found that
Se increases the adsorption of Hg2+ by Fe plaques in rice and causes an average of 1.42-fold
increase in Se-treated plants compared with non-seleniferous plants [130]. Moreover, Se
interacts with heavy metals. Thus, Se application leads to the formation of inert HgSe
or/and HgSe-containing proteinaceous complexes in the rhizosphere [121]. For instance,
Se forms insoluble HgSe precipitates with Hg in the roots, thus reducing the mobility
and availability of Hg [129]. Similarly, Se reduces the levels of methylmercury (MeHg), a
carcinogen in rice. The reduction in soil MeHg concentrations could be mainly attributed to
the formation of Hg-Se complexes and thus reduction of microbial MeHg production [131].
Se can inhibit the translocation of heavy metals. The addition of selenite can significantly
decrease the Cd concentrations in xylem sap, suggesting that Se can reduce Cd levels in the
rice shoots by inhibiting Cd translocation from the roots to the shoots. This phenomenon
could be ascribed to the increasing formation of Cd-thiol complexes in the roots and the
reduction of Cd transport to the shoots [132].

Se can inhibit the translocation of heavy metals [132] because Se promotes the for-
mation of heavy metal-thiol complexes, thereby reducing heavy metals in the xylem sap
and the transfer of heavy metals from the roots to the shoots [133]. The common thiol
compounds in plants include GSH, metallothionein, and phytochelatin (PCs) [134,135].
The complexes formed by PCs and heavy metals can be transferred into the vacuoles via
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vesicular membrane ATPases [136]. Therefore, the heavy metals can be segregated in the
vacuoles [113].

Se enhances the uptake of nutrient elements, such as Ca, K, and Mg. Heavy metal
stress can restrict the uptake and transfer of nutrient elements by plants and interfere with
normal physiological activities, thus leading to the malnutrition of plants [74]. Se can not
only inhibit the uptake of Cd but also mitigate the inhibitory effect of Cd stress on the
uptake of nutrient elements in plants [137]. Water spinach [138] Brassica napus L. [14] and
C. sativum [74] show an increase in the uptake of some essential elements, such as Ca, K,
and Mg, but a reduction in the accumulation of Cd and Pb.

Se also regulates the expression of genes related to antioxidant enzymes. In mustard,
Se affects the expression of genes encoding antioxidant enzymes (SOD, POD, CAT, GR, and
GST-1) in mustard and increases the concentrations of some components in the cell wall
(such as pectin, lignin, and hemicelluloses) [139,140]. It increases the thickness of the cell
wall by regulating the expression of genes related to lignin synthesis (OsPAL, OsCoMT,
and Os4CL3) [141], thereby stimulating the accumulation of metal(loid)s in the cell wall
and inhibiting the transfer of heavy metals in plants [142,143].

Se increases the activity of antioxidant enzymes (e.g., SOD, POD, and GPX) and
accelerates the removal of ROS induced by heavy metals in plants [42,144]. Heavy metal
stress increases the synthesis of ROS and free radicals in plant tissues, leading to oxidative
damage in plants. Treatment with SeNPs (126.6 µmol L−1) increases CAT activity by 76%
compared with the control in C. sativum under Cd stress [74]. Therefore, Se decreases ROS
(e.g., OH−, O2−, and H2O2) levels, which protects the plants from oxidative stress induced
by heavy metals [145].

Se, although not essential for higher plants, can mitigate the damage of heavy metal
stress. Se fertilizers can be used to regulate heavy metal stress in plants [146]. However,
high concentrations of Se are toxic to plants because of changes in protein structure and
function, particularly in Se-sensitive plants [9]. For example, improper concentrations of
selenite increase lipid peroxidation and hydrogen peroxide production in Brassica napus L.
under Cd stress, leading to further depletion of antioxidants and ultimately a further
reduction in the biomass of the edible fraction of Brassica napus L. [147]. Therefore, the
application of Se to alleviate heavy metal stress in plants must be carefully considered
before it can be used in practical production.

4. Conclusions and Future Prospects

Abiotic stresses are abiotic environmental conditions that are not conducive to plant
survival, growth, and development and even lead to injury, destruction, and death. Se
can reduce the harmful effects of abiotic stresses on plants. This review describes the
transportation and metabolism of Se in plants and summarizes the mechanisms by which
Se alleviates abiotic stress in plants. This article concluded the functions of Se in abiotic
stress in plants from several aspects. First, Se enhances the photosynthetic properties of
plants. it can promote the synthesis of photosynthetic pigments and repair the damage
of photosynthetic organelles, such as chloroplasts in plants. Second, Se enhances the
activities of antioxidant enzymes. Se can significantly enhance the activities of antioxidant
enzymes, such as SOD, POD, and CAT, and accelerate the removal of excessive ROS in
plants. Third, Se regulates cell permeability and promotes the accumulation of resistant
substances. Se can promote the content of osmoprotectants, such as proline and soluble
sugar, thus maintaining cell osmotic pressure. Fourth, Se inhibits the transport of salt
and metal ions in plants. Se can encourage these ions to form complexes or precipitate,
effectively reducing their uptake in plants. Fifth, Se regulates the expression of related
genes and proteins to improve plant tolerance. However, the specific mechanisms of these
effects remain unclear.

Further investigations are needed to reveal the molecular mechanisms by which
Se regulates abiotic stress response in plants. Some advanced technologies, such as the
genomics, transcriptomics, and proteomics, can help identify the key genes, metabolites,
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proteins, and regulators that play key roles in the regulation of Se on abiotic stress. The
detailed functions of these key genes, proteins, and metabolites can be characterized using
genetic engineering approaches. Thus, some abiotic stress-tolerant species would be created
and reserved as germplasm resources. These germplasm resources may play roles in the
future. Applying suitable concentrations of Se in crops may be a selectable way to mitigate
crop losses in the presence of abiotic stress. However, the application of Se needs caution
because inappropriate concentrations of Se may exert toxic effects on plants.
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