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Abstract: Cannabigerol (CBG) is a non-psychoactive phytocannabinoid present in the Cannabis
sativa L. plant. In our study, CBG at the concentration of 10 µM was used to treat NSC-34 motor
neuron-like cells. The aim of the study was to evaluate the effects of CBG on NSC-34 cells, using
next-generation sequencing (NGS) technology. Analysis showed the activation of the WNT/planar
cell polarity (PCP) pathway and Ephrin-Eph signaling. The results revealed that CBG increases the
expression of genes associated with the onset process of cytoskeletal remodeling and axon guidance.

Keywords: cannabigerol; NSC-34; axon guidance; WNT/planar cell polarity (PCP) signaling;
Ephrin-Eph signaling

1. Introduction

Cannabis sativa is an ancient plant, whose oldest and most famous use is in medicine [1].
This plant represents a reservoir of over 100 cannabinoids, and cannabigerol (CBG) is one
of these. CBG, a non-psychoactive phytocannabinoid, is the main actor involved in most of
the medical effects of cannabis, as well as being the precursor to ∆9-tetrahydrocannabinol
(∆9-THC), cannabidiol (CBD), and many others (Figure 1). CBG has been shown to have
a therapeutic effect on many neurodegenerative diseases [2–4]. The molecular targets of
CBG are poorly characterized. CBG is an agonist of alpha (2)-adrenoceptors and mod-
erately block 5-hydroxytryptamine (5HT1A) receptors [5], and it interacts with different
receptors, such as transient receptor potential cation channels (TRPV) [6,7] and peroxi-
some proliferator-activated receptor gamma (PPARγ) [6]. Moreover, CBG shows a binding
affinity for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2). CB recep-
tors are G protein-coupled receptors (GPCRs) expressed in important brain regions and
are associated with several neurological processes. CBG seems to be a partial agonist
of both CBs; moreover, binding assays have demonstrated that CBG could also act as
an allosteric modulator for CB1 [8]. Several pieces of evidence have demonstrated the
role of natural compounds extracted from C. sativa in neurogenesis [9,10] and neuropro-
tection [11,12], and our team have previously highlighted the ability of CBG to influence
synaptic pathways [13,14]. Neurons regulate their cytoskeleton to achieve changes in shape,
migration, neurites extension, and polarization [15]. Furthermore, axon guidance is an
essential process for the nervous system in order to ensure the integrity and accuracy of the
nerve patterning [16].

NSC-34 cells are hybridoma cells of neuroblastoma and motor neuron-enriched spinal
cord cells. A previous study demonstrated that CBG treatment was efficient in promoting
survival signaling, as well as inducing regeneration in differentiated motor neuron-like
cells [17]. Considering this, we exposed undifferentiated NSC-34 cells to CBG for 24 h
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at a concentration of 10 µM. Transcriptomic analysis was performed to evaluate the acti-
vation of signaling pathways related to cytoskeletal remodeling and axon guidance after
CBG treatment.
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Figure 1. Structure of Cannabigerol (1), Cannabidiol (2), and ∆9-tetrahydrocannabinol (3).

2. Results
2.1. MTT Assay

MTT assay was performed to evaluate the effects of CBG in the concentration range
of 1–20 µM on cell viability. The results showed that CBG at the tested concentrations at
different time points—namely, 24 h, 48 h, and 72 h—did not decrease NSC-34 cell viability.
We also analyzed DMSO toxicity, given that CBG was dissolved in DMSO. However, DMSO
was not toxic at the concentrations used (Figure 2).
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Figure 2. Evaluation of possible effects of CBG at concentrations of 1, 5, 10, 15, and 20 µM, and
DMSO on NSC-34 cells viability at 24 h, 48 h, and 72 h. No significant difference in cell viability
was detected.

2.2. Transcriptomic Analysis

In treated NSC-34 cells, we focused our analysis on differentially expressed genes
(DEGs) between CBG and CTRL groups. The volcano plot in Figure 3 shows the distribution
of DEGs in the analysis.
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After q-value correction, the analysis revealed 4937 DEGs compared to CTRL. The
expression levels of markers associated with CB1 signaling were evaluated to assess the
status of the cells after treatment (Table 1). CBG has an affinity to CB1, and indeed, up-
regulation of the Cnr1 gene and of the DEGs of CB1 signals did occur (Table 1). CBG
exhibits affinity with several receptors, but our analysis did not show any variation of
genetic expression between them.

Table 1. Differentially expressed genes involved in CB1 signaling.

Genes CTRL vs. CBG
Treated Fold Change

CTRL vs. CBG Treated
log2 Fold Change

CTRL vs. CBG
Treated p-Value

CTRL vs. CBG
Treated q-Value

Cnr1 1.60 0.68 2.26 × 10−16 4.74 × 10−15

Gna13 1.10 0.15 5.43 × 10−4 2.17 × 10−3

The fold change for the analysis of CTRL vs. treated cells was computed as CBG treated/CTRL. Both the arithmetic
fold change and normalized log2 value are provided in the table. All values are rounded to the second decimal.

Subsequently, the study analyzed the WNT/planar cell polarity (PCP) signaling. As seen
in Table 2, cells treated with CBG experienced up-regulation of many genes of this pathway.
These data suggest CBG involvement in WNT/PCP-dependent cytoskeleton remodeling.

Table 2. Differentially expressed genes involved in WNT/planar cell polarity (PCP) signaling.

Genes CTRL vs. CBG
Treated Fold Change

CTRL vs. CBG Treated
log2 Fold Change

CTRL vs. CBG
Treated p-Value

CTRL vs. CBG
Treated q-Value

Fzd3 1.18 0.24 1.33 × 10−4 6.24 × 10−4

Fzd6 1.67 0.74 1.69 × 10−2 4.08 × 10−2

Fzd7 2.12 1.09 7.26 × 10−3 2.00 × 10−2

Celsr1 2.37 1.25 2.02 × 10−2 4.73 × 10−2

Celsr2 1.21 0.28 2.99 × 10−3 9.35 × 10−3

Celsr3 1.1 0.15 1.06 × 10−2 2.74 × 10−2

Dvl1 1.35 0.44 3.16 × 10−11 4.16 × 10−10

Prickle3 5.46 2.45 1.64 × 10−3 5.59 × 10−3

Ankrd6 2.23 1.16 4.11 × 10−3 1.23 × 10−2

Rhoa 1.47 0.56 2.01 × 10−68 2.65 × 10−66

Wnt7a 5.02 2.33 2.99 × 10−3 9.35 × 10−3

Wnt11 4.56 2.19 6.85 × 10−4 2.66 × 10−3

Camk2a 1.43 0.52 2.99 × 10−5 1.63 × 10−4

Camk2b 1.55 0.64 1.16 × 10−4 5.52 × 10−4

Camk2d 1.18 0.24 1.97 × 10−8 1.86 × 10−7

Camk2g 1.13 0.18 4.33 × 10−3 1.29 × 10−2

Rock2 1.16 0.22 5.67 × 10−9 5.67 × 10−8

The fold change for the analysis of CTRL vs. treated cells was computed as treated/CTRL. Both the arithmetic
fold change and normalized log2 value are provided in the table. All values are rounded to the second decimal.

Analysis of DEGs associated with the Ephrin-Eph signaling showed up-regulation of
different genes relative to the Ephrin pathway, suggesting that this signaling was affected
by the CBG treatment (Table 3).
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Table 3. Differentially expressed genes involved in Ephrin-Eph signaling.

Genes CTRL vs. CBG
Treated Fold Change

CTRL vs. CBG Treated
log2 Fold Change

CTRL vs. CBG
Treated p-Value

CTRL vs. CBG
Treated q-Value

Efna3 3.13 1.65 1.43 × 10−9 1.56 × 10−8

Efna5 1.10 0.14 1.08 × 10−2 2.80 × 10−2

Ephb3 2.34 1.23 6.73 × 10−3 1.88 × 10−2

Itgb1 1.15 0.21 1.07 × 10−11 1.48 × 10−10

Fyn 1.22 0.29 2.46 × 10−9 2.58 × 10−8

The fold change for the analysis of CTRL vs. treated cells was computed as treated/CTRL. Both the arithmetic
fold change and normalized log2 value are provided in the table. All values are rounded to the second decimal.

3. Discussion

NSC-34 is a hybrid cell line produced via the fusion of motor neuron-enriched embry-
onic mouse spinal cord cells with mouse neuroblastoma. We assessed, through MTT assay
(Figure 2), that CBG at a concentration of 10 µM did not affect NSC-34 cells’ viability.

In the biosynthesis of cannabinoids, both CBD and ∆9-THC derive from CBG, with the
latter having the lower degree of unsaturation on the terpenyl moiety. CBD and ∆9-THC have
the same molecular formula and almost identical molecular weights of 314.464 g/mol and
314.469 g/mol, respectively. The most important structural difference between the two major
cannabinoids is represented by the electrophilic cyclization step in the biosynthetic pathway,
in which CBD is generated from the loss of a proton to obtain the exocyclic double bond,
leaving the hydroxyl group free. Instead, ∆9-THC is characterized by a pyran ring due to the
closure of the phenolic hydroxyl with the menthyl moiety (Figure 1). This small divergence in
their structure is responsible for the entirely different pharmacological properties [18].

Transcriptomic analysis showed up-regulation of the gene Cnr1, which encodes
Cannabinoid receptor 1 (CB1). Our results showed differentially expressed genes in-
volved in Wnt “non-canonical” pathways. Differing from canonical pathways that lead to
β-catenin dependent transcription, non-canonical Wnt is independent of β-catenin. The
influences of ∆9-THC and CBD on the Wnt/β-catenin canonical pathway has already
been documented. CBD has been shown to mediate a neuroprotective effect through the
Wnt/β-catenin canonical pathway [19]. The effect of ∆9-THC on this pathway has already
been documented with a combination of active compounds [20], but there is no evidence
regarding its effect as a pure compound. In addition, the effect of ∆9-THC and CBD on Wnt-
non canonical signaling has not been documented. Our analysis revealed up-regulation
of different genes belonging to the non-canonical Wnt/PCP pathway, which refers to the
organization of cells within the plane of a cell sheet [21].

In fact, Wnt11 (Wnt11) and Wnt7a (Wnt7a), which are non-canonical Wnt isoforms,
were strongly upregulated after treatment with CBG (Table 2). Previous studies have
demonstrated that Wnt11 suppresses both the expression of β-catenin and represses the
effect of the canonical Wnt3a [22,23]. Wnt7a is expressed in the central nervous system,
where it stimulates synapse formation and regulates dendritic spinal growth [24]. Frizzled
receptors (Fzd), in particular Fzd3, Fzd6, and Fzd7, exhibited up-regulation (Table 2), and
these are GPCRs involved in canonical and non-canonical Wnt pathway activation [21].
Our transcriptome demonstrated up-regulation of Fzd3 and Fzd6, which have already been
found to be involved in non-canonical Wnt signaling [25]. Fzd7 is particularly relevant to
neurons; in fact, it is documented as the post-synaptic membrane receptor of Wnt7a [26],
and it is able to directly promote the growth of dendritic spines [21]. Wnt7a- and Wnt11-
binding Frizzled-7 activates the downstream cascade of the WNT/planar cell polarity
(PCP) signaling, which strongly influences the mechanism of cytoskeleton regulation, as
described in Figure 4.
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Figure 4. Mechanisms involved in the cytoskeletal remodeling of NSC-34 after CBG treatment. The
figure represents pathways involved in the process. A signal influenced by CBG is represented in
each oval. Green arrows indicate influence of CB1 activation. Continuous arrows indicate direct
associations, while dashed arrows indicate indirect association. A red X indicates that there is no
interaction between the receptor and ligand. A red palette indicates genes log2 Fold Change. The
results of transcriptomic analysis suggest that CBG induces initial cytoskeletal remodeling of NSC-34
by WNT/planar cell polarity (PCP) signaling, Ephrin-Eph signaling, and the involvement of CB1.

Celsr1, Celsr2, and Celsr3 codifying for the Cadherin EGF LAG seven-pass G-type
receptor 1, Ankrd6, Dvl1, and Prickle3 exhibited up-regulation (Table 2). The proteins
codified by these genes are involved in the Wnt/PCP pathway. These proteins interact by
assembling two different complexes: one formed by Fzd, Dvl, and ANKRD6; and the second
one formed by VANGL and Prickle. The asymmetrical distribution of these complexes at
opposite poles of the cell generates polarity [21]. Prickle3 was strongly upregulated. This
gene codifies for a protein that localizes at the mitotic spindle poles and centrioles, and
the gene has a role in PCP process [27]. Both of the PCP complexes interact with Celsr
protein, which regulates the establishment of PCP and is involved in axon guidance and
neurites morphogenesis [28]. Dvl1 is an important scaffold protein, fundamental for the
transmission of the signal of the non-canonical Wnt pathway [21]. It is also expressed at the
level of dendritic growth cones, and it is crucial in dendrite formation and maturation [29].
Ferrari et al. demonstrated that Dvl1 exerts its role when Wnt7a is expressed; when both
Dvl1 and Wnt7a are expressed they have a significant impact on regulating dendritic
morphogenesis [30]. CaMK2b, CaMK2d, CaMK2a, and CaMK2g, each codifying for different
isoforms of calcium/calmodulin-dependent protein kinase type II (CaMKII), were up-
regulated (Table 2). These protein kinases play a structural role in the reorganization of
the actin cytoskeleton during plasticity by grouping actin filaments [31].Their activation
strongly depends on the presence of Fzd7, and even more so on Dvl1 expression, promoting
dendritic tree development [30] and regulating actin cytoskeleton [32].

In addition, our analysis showed further effectors on the Wnt/PCP pathway; namely,
RhoA and Rock2 genes showed a high level of expression (Table 2). RhoA is a GTPase that
acts upon the Rho associated kinase 2, also called ROCK2 [33].
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The gene Gna13 exhibited up-regulation (Table 1). This gene codifies for the CB1-
coupled Gα13 subunit. Gα13 participates in RhoA/ROCK2 signaling [34,35], which is
important for actin cytoskeleton regulation [36]. Cell shape modifications are also involved
in axonal morphogenesis and axon guidance [37], and previous evidence has demonstrated
that the activation of CB1 can promote axon elongation and outgrowth [38].

Our analysis showed up-regulation of the gene Efna5, codifying for ephrin-A5 ligand;
strong up-regulation of Efna3, codifying for ephrin-A3 ligand; and strong up-regulation of
Ephb3, codifying for the ephrin receptor EphB3 (Table 3). These genes are involved in Ephrin-
Eph signaling, which is involved in neuronal development, axon guidance, and axonal
growth [39]. In our analysis, Eph5, codifying for EphA5 receptor, was not differentially
expressed. Castellani et al. demonstrated that when the ligand ephrin-A5 binds to a
EphA5 receptor, ephrin-A5 acts as a repulsive axonal guidance signal [40]. Therefore, our
results indicate that in NSC-34 treated with CBG, there is not an axonal repulsion signal
due to ephrin-A5 (Figure 4). In addition, our analysis showed up-regulation of protein
β1-integrin (Itgb1) (Table 3). This protein interacts with ephrin-A5, mediating cellular
adhesion and neurite growth [41]. The Src-family kinase Fyn (Fyn), which is involved in
ephrin-A5 signaling inducing axon guidance [42], demonstrated up-regulation (Table 3).
Efna3, codifying for the ephrin-A3 ligand, was up-regulated and has been shown to act as an
axonal repulsive signal [43]. Lastly, our analysis showed up-regulation of Ephb3, codifying
for the EphB3 receptor. This receptor is able to promote axon guidance in vitro [44,45].
Transcriptomic data showed a connection between the Wnt/PCP pathway and Ephrin-
Eph signaling. Additionally, the protein Celsr3, previously mentioned as being involved
in non-canonical signaling, interacts with ephrin-A5 in regulating axon guidance [46].
Transcriptomic analysis showed that treatment of NSC-34 cells with CBG (10µM) induces
cytoskeletal remodeling and axon guidance. These processes are promoted via CB1 receptor
involvement, activation of Wnt/PCP pathway, and Ephrin-Eph signaling, as summarized
in Figure 4. These results are promising, opening the door to further study that could be
useful in proving the efficacy of cannabigerol.

4. Materials and Methods
4.1. CBG Extraction from Cannabis Sativa and Isolation

CREA-CIN (Rovigo, Italy) was the provider of Cannabis sativa var. Carma, obtained
from greenhouse cultivation, where a voucher specimen is kept. The manipulation of the
plant was performed according to the authorization SP/106 23/05/2013 of the Ministry of
Health (Rome, Italy). CBG extraction was performed by heating 1 Kg of dried, powdered,
flowered aerial parts at 120 ◦C for 2.5 h, in order to obtain precannabinoid decarbossilation,
and was then extracted using acetone (2 × 9 L). Subsequently, the solvent was removed
and the remaining black resinous residue (74 g, 7.4%) was dissolved in methanol (30 mL/g
of extract). Waxes and pigments were filtered using through RP C-18 silica gel. Once
the methanol had evaporated, 36 g of a dark green extract was obtained through the
evaporation of methanol and was further purified through gravity column chromatography
on silica gel 60 (70–230 mm). From purification, 75 g of petroleum ether-EtOAc, 8:2, as
eluent, to afford 5 g of a yellow oil, which was then crystallized with petroleum ether
to obtain 3 g of pure CBG (0.3%). The JEOL ECP 300—300 MHz spectrometer (JEOL,
Pleasanton, CA, USA) was used to measure 1H-NMR spectra. The 1H (400 MHz) and 13C
(100 MHz) NMR spectra were measured on Bruker 400 spectrometers (Bruker®, Billerica,
MA, USA). Chemical shifts were measured in reference to the residual solvent signal
(CDCl3: δH: 7.26, δC: 77.16). (Supplementary Materials, Figures S1 and S2).

Waxes and pigments were eliminated using Reverse phase (RP) C-18 (POLYGOPREP60-30
C18). TLC on Merck 60 F254 (0.25 mm) plates, which were visualized by UV inspection and/or
by spraying with 5% H2SO4 in ethanol and heating, were used to monitor CBG purification.
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4.2. Cell Culture and Treatment

NSC-34 cell lines were provided by the Cedarlane Corporation (Burlington, ON,
Canada) and were maintained in DMEM High Glucose, consisting of 10% Fetal Bovine
Serum, 1% penicillin/streptomycin, and 1% L-Glutamine. All reagents were provided
by Sigma-Aldrich, Merck KGaA (Darmstadt, Germany). The cells were kept in a cell
incubator at 37◦ C with 5% CO2. Cells were seeded in 6-well plates and 96-well plates
at a density of 125.000 cells/mL. The CBG treatment was performed at a concentration
of 10 µM (3.16 µg/mL) in DMSO (<0.1%) for 24 h. Control wells equally underwent a
complete medium change. At the end of the treatment, cells in 6-well plates were harvested
to perform the transcriptomic analysis, while those in 96-well plates underwent MTT assay.

4.3. Proliferation Assessment Using MTT

To evaluate the effects on cell viability of CBG, NSC-34 cells were cultured in 96-well plates
and incubated with different CBG doses (1, 5, 10, 15, and 20 µM) for different durations (24 h,
48 h, and 72 h). Given that the CBG was dissolved in DMSO, we also included cells treated
with DMSO at the major concentration used (DMSO < 0.1%). At the end of the treatment,
cells underwent a full medium change, with the medium having been previously prepared
by adding MTT at concentration of 0.5 mg/mL (Sigma-Aldrich Merck KGaA (Darmstadt,
Germany). After 4 h in an incubator at 37 ◦C, the crystals obtained by the reaction were
resuspended in acid isopropanol. After a brief mixing, the optic density was measured using a
spectrophotometer at 570 nm.

4.4. Statistical Data Analysis

Statistical analysis was carried out using GraphPad Prism version 6.0 software (Graph-
Pad Software, La Jolla, CA, USA). The data were statistically analyzed via two-way ANOVA
tests and Bonferroni post hoc tests for multiple comparisons. A p-value of less than or
equal to 0.05 was considered statistically significant. Results are reported as mean ± SD of
N experiments.

4.5. Total RNA Extraction and Library Preparation

After 24 h of treatment with CBG at a concentration of 10µM, the cells were harvested
and centrifugated, and the supernatant was discarded. The pellet was used for RNA
extraction, along with the Maxwell® RSC simplyRNA Cells Kit (Promega, Madison, WI,
USA), which was used followed the manufacturer’s instructions. TruSeq RNA Exome
protocol (Illumina, San Diego, CA, USA) was used to perform library preparation, in
compliance with the manufacturer’s instructions.

4.6. Transcriptomic Analysis and Bioinformatics Inspection

The obtained libraries were then sequenced with an Illumina MiSeq Instrument. We
checked the quality of the raw data of the samples of CTRL and CBG at 10 µM using
FastQC 0.11.4 (Babraham Institute, Cambridge, UK). Adapters and the poor-quality bases
were removed using Trimmomatic 0.40 (Usadel Lab, Aachen, Germany) [47]. The GRCm39
version of the mouse reference genome was chosen, along with the primary transcript
assembly M28, to perform the alignment with Spliced Transcripts Alignment to a Reference
(STAR) RNA-seq aligner 2.7.10a (New York, NY, USA) [48] and transcript counting with
the python package htseq-count 0.13.5 (European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany) [49]. Using R 4.2.0 (R Core Team) and the DESeq2 library 1.36.0 [50],
we analyzed the DEGs of the CTRL against the 10 µM groups. We did not apply any fold-
change cutoff, but we removed the false-positive DEGs (q-value higher than 0.05) using the
post-hoc Benjamini–Hochberg procedure. In order to proceed with the identification of the
biological role of CBG, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [51]. In detail, we paid attention to the specific cluster of genes observed in the
pathways “Axon Guidance” (mmu04360) and “Wnt signaling pathway” (mmu04310).
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5. Conclusions

Our analysis confirms that CBG increases the expression of genes involved in the
WNT/planar cell polarity (PCP) pathway, such as Wnt11, Wnt7a, Fzd7, Dvl1, Rock2, and
the genes codifying for CAMKII isoforms. In addition, CBG increases the expression of
genes associated with ephrin-Eph, such as Efna3, Efna5, and Ephb3. Transcriptomic analysis
demonstrated that CBG treatment of NSC-34 promotes cytoskeletal remodeling, stimulates
dendrites outgrowth, and promotes axon guidance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12010193/s1, Figure S1: 13C NMR of CBG in CDCl3 400 MHz,
Figure S2: 1H NMR of CBG in CDCl3 400 MHz.
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