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Abstract: Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are
Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas
citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters
its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast.
It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young
stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf
epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant
gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where
citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into
the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require
an integrated management program to control the disease. The main aim of the present manuscript
is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease
management. Although an adequate method to completely eradicate citrus canker has not been
introduced so far, many new methods are under research to abate the disease.

Keywords: citrus canker; epidemiology; eradication; future prospects; pathogen profile; symptoms;
Xanthomonas citri pv. citri; Xanthomonas citri pv. aurantifolii

1. Introduction

One of the major threats to sustainable crop production and food security is the
increased number of invasive and aggressive plant pathogens. They greatly decrease the
yield and quality of the crop. Citrus forms the backbone of the agriculture industry in many
countries [1]. Its growth and yield are affected by many pathogens. Citrus canker, one of
the most ravaging biotic stresses to citrus, causes substantial economic impacts to the citrus
industry, thus limiting trade and production. It affects all commercial citrus varieties and
many related rutaceous species [2]. This review aims to shed light upon advanced research
studies regarding the pathogen profile of citrus canker, its mechanism of infection, and
management strategies; provide an overview of previous research studies; and highlight the
sectors that may need more attention to find success in complete eradication of this disease.
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2. Historical Perspective

The region where citrus canker originated is a matter of disagreement. It is suspected
that it emerged from Southeast Asia [3,4]. Because of the identification of canker lesions
on the oldest citrus herbaria in England’s royal botanical garden, it was reported that
citrus canker first emerged in India and Indonesia. From 1827–1831, infected Citrus medica
was collected from India. From 1842–1844, infected Citrus aurantifolia was collected from
Indonesia. [5,6]. In other research, Lee (1918) suspected southern China to be the origin of
citrus canker A [7,8]. The geographical origin of citrus canker is a controversial topic. The
reports lead us to believe that citrus canker disease originated from tropical areas in Asia
such as India, Indonesia, and China.

It is believed that citrus canker spread to other regions largely by the movement of
budwood. Eventually, this disease was traced in the Gulf States region of the US in 1915.
The shipment of contaminated nursery stock from Asia is suspected to be responsible for
the eruption in the Gulf States [9]. The presence of this disease has also been reported in
other countries such as Argentina, Brazil, Australia, Oman, Saudi Arabia, and Uruguay. Its
spread affected Asia, South America [10], South Africa [11], Oceania, and Australia [12].

Citrus canker has an extensive history in Florida. The pandemics that occurred in
Mexico in 1981 and Florida in 1984 were non-identical to the Asiatic strain of canker [9,13].
A large-scale epidemic was also found in urban Miami, Florida in 1995. In some of these
locations, efforts were made to remove the bacteria causing disease, but not all efforts
were successful. It was rediscovered in 1997, and the efforts to remove this disease began
again [2].

Keeping in view the significant losses caused by citrus canker, efforts to eradicate it
and prevent further spreading were made in all the previously mentioned countries. These
methods consisted of ignition of the on-site trees, application of bactericidal formulations,
routine checkups of the plant nurseries and orchards, and isolation. Some regions such as
Australia and Argentina [14] have been successful in eradicating the pathogen, whereas
many others including Brazil, Mali, Uruguay, and Florida are still struggling for disease
management [13].

Despite the efforts to eradicate the citrus canker in America, New Zealand, England,
and South Africa, it reappeared again in some countries. After approximately 70 years
of successful eradication, the Asiatic canker strain was again reported in Texas in May
2016 [15]. Similarly, after successful eradication of citrus canker from South Africa during
the 20th century, it reappeared in 2006 in several African countries including Mali, Somalia,
Ethiopia, and Senegal [16].

Eradication programs for citrus canker require extensive budgets, which led to their
termination in some countries/states that were continuously getting exposed to citrus
canker, such as Florida (program terminated in 2006) and Brazil (terminated in 2009) [17].
Management practices and other regulations are still implemented by growers in such
areas to limit the losses. In Pakistan, the first case of citrus canker originated from Punjab.
Citrus canker is found mostly in the areas of Punjab where citrus is grown in a commercial
setting. [18]. In India, this disease was first reported in Punjab [19,20]. It was also found in
Tamil Nadu. The disease is a grave issue for acid lime (C. aurantifolia) in places where it is
being grown in a large setting for market purposes (e.g., Akola area in Central India, Nellore
and Periyakulum regions in Southern India, and Khera region of Western India) [21]. Later,
it was also discovered in Kinnow Mandarin nurseries in Punjab [9].

3. Pathogen Profile

The causative agents of citrus canker are Xanthomonas citri pv. Citri, Xanthomonas
citri pv. Aurantifolii, and their pathotypes. Citrus canker is a rod-shaped, slender, gram-
negative bacterium belonging to the family Xanthomonadaceae, which is considered as
one of the most significant and largest families of bacterial plant pathogens. It is capable of
producing slow-growing, non-mucoid colonies in culture [2,22]. It usually ranges in size
from 1.5–2.0 × 0.5–0.75 µm [22]. The taxonomy of its causative agents and their strains has
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always been problematic [23–27]. Previous investigations revealed that the first research
that focused on the description of citrus canker was carried out in 1914 by the Bureau
of Plant Industry, United States Department of Agriculture (based on the samples from
orange and grapefruit growers in Florida, Texas, and Mississippi). It was then declared
a new organism, named ‘Pseudomonas citri’, as its etiological agent. It was described as a
short, motile rod bacterium with rounded ends along with a polar flagellum [28,29]. It was
also reclassified as Xanthomonas campestris pv. citri and then as Xanthomonas axonopodis pv.
citri after its detailed genomic investigation [23,25,27]. Similarly, the name of the causative
agent of cancrosis B and C is usually published as Xanthomonas fuscans pv aurantifolii or
Xanthomonas citri pv aurantifolii [30,31]. Here, we are abbreviating the causative agents
of canker A, B, and C as Xcc, XauB, and XauC, respectively. Stable classification of the
species of genus ‘Xanthomonas’ has been a challenge for a long time, and the reason for it
is that this genus possesses a great phytopathogenic diversity in contrast to a phenotypic
uniformity [32]. Currently, the most acceptable and validly published name of the causative
agent of citrus canker is Xanthomonas citri, whose different pathovars are responsible for
causing different types of citrus canker [27]. It is regarded as a quarantine organism in
various citrus-producing countries that are canker-free or have successfully eradicated the
disease, in order to limit its spread [33].

Major Types of Pathovars of Xanthomonas citri

There are five major pathovars belonging to Xanthomonas citri that are responsible
for causing diseases in citrus, i.e., citri, aurantifolii (Pathotype B, C, D) and citrumelo (also
referred to as type E), and they also have many bacterial strains [25,34,35]. These five patho-
vars were initially studied as causal agents of citrus canker A, B, C, D, and E, respectively,
but detailed studies have highlighted a controversy about the causative agents of citrus
canker D and E.

The identification of pathotype-D was controversial, as only one pathogenic bacte-
rial strain of this pathotype had been isolated and identified. Disease caused by it was
commonly referred to as Citrus bacteriosis. Later, it was named Citrus leaf spot (mancha
foliar de los citricos), and the fungus Alternaria limicola was confirmed as its actual causative
agent [35]. The symptoms caused by E-strain, as well as its host range, genome, pathogenic-
ity, and many other factors varied significantly from characteristics of other canker-causing
pathovars of Xanthomonas citri, which led to the reclassification of citrus canker E (Florida
nursery form of citrus canker) as Citrus Bacterial Spot (CBS) disease [36–39]. These patho-
vars were found to be associated with each other at the levels of DNA binding of greater
than 60%, which reveals that they belong to one species [40]. They can be distinguished
from each other using various physiological techniques, serological tests, fatty acid anal-
yses, pathogenicity tests, PCR-based assays, total protein files, RFLP analyses, genome
sequencing, restriction enzyme analyses of amplified DNA fragments of an HRP-related
DNA sequence, DNA–DNA hybridization, or any other biochemical or molecular tech-
nique [41–48]. Table 1 shows a brief comparison between these five pathovars.

Table 1. Comparison of Pathovars.

Pathotype
References

A B C D E

Common
disease name Asiatic canker cancrosis

B/false canker

Mexican lime
cancro-

sis/cancrosis
C

Citrus bacterio-
sis/Mexican

bacteriosis(later
named as citrus

leaf spot)

Citrus Bacterial
Spot

(CBS)/Florida
Nursery strain

of CC [34–36]

Pathovar citri Aurantifolii
(Strain-B)

aurantifolii
(Strain-C)

aurantifolii
(Strain-D) (mis-

understood)
citrumelo
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Table 1. Cont.

Pathotype
References

A B C D E

Origin Asia Argentina Brazil Mexico Florida

Known
geographical
distribution

Many citrus
growing regions

especially in Asia,
USA, South

America, Oceania

Argentina,
Uruguay,
Paraguay

State of Sao
Paulo, Brazil Mexico Florida

Discovery 1830 (controversial) 1923 on lemon
1963 on

Key/Mexican
lime

1981 on
Key/Mexican

lime

1984 on
Swingle

citrumelo
[6,34,37]

Susceptible
host

Sweet orange,
grapefruit, lemon,

pummelo,
mandarin, sweet

lime, also observed
in some other

rutaceous plants

Lemons and
Mexican lime,
also observed

in sweet orange,
grapefruit,

cider, mandarin,
Volkamer

lemon, sweet
lime

Mexican lime,
also detected in

sour orange
and lemon

Mexican lime

Swingle
citrumelo,
Grapefruit,

mandarin, sour
orange, sweet
orange, lemon,
Key/Mexican

lime

[30,34–36]

pthAor its
functional
homologs

Present Present Present - Absent
[30,31,38]

Pathogenicity Highest Low High Lower lowest

Symptoms

Distinctive corky
necrotic lesions,

sometimes
possessing
chlorotic or

water-soaked
haloes

Same as A, but
symptoms take

longer to
appear, and
lesions may
vary in size

from A

Similar to A Similar to A

Flat
water-soaked
spots which

may be
surrounded by

necrosis
[30,35]

Parts of plant
that may be

affected

Leaves, twigs,
young stems, or

fruits

Leaves, twigs,
young stems, or

fruits

Leaves, twigs,
young stems, or

fruits

Leaves, twigs,
young stems, or

fruits

Usually twigs
and leaves only

Defoliation
and dieback May occur May occur May occur May occur Does not occur

No. of
Bacterial
strains

Many strains Many strains Many strains Only one strain
known (Xc 90) Many strains [39]

4. Types of Citrus Bacterial Canker

Three major types of citrus bacterial canker (CBC) are known, which are named Asiatic
canker (citrus canker A), cancrosis B (citrus canker B), and cancrosis C (citrus canker C)
caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. Aurantifolii pathotype-B
(XauB), and pathotype-C (XauC), respectively [31,49]. The most aggressive one is Asiatic
canker (citrus canker A) [9,50].

Different phenotypic traits of the three strains have been compared, and their phy-
logenetic relationships and comparative genomic analyses have been studied in detail
in various studies. Different molecular and genetic analyses have shown that XauB and
XauC strains are more closely associated with each other as compared to the Xcc strain.
They all elicit almost similar symptoms but vary greatly in aggressiveness, host range,
and geographical distribution (mentioned in detail in Table 1). The three strain types
contain 65 families of orthologous genes that are specific to them and are absent in all
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other completely sequenced species of genera Xanthomonas and Xylella. The Xcc-specific
genes are greater in number than the analogous genes for XauB and XauC [30]. The three
strains can be robustly classified into two distinct clades, i.e., C-c clade or citri-citri clade,
consisting of all A strains, and aurantifolii clade, consisting of XauB and XauC strains [31].

Table 2 shows a brief comparison of their various characteristics, genetic analyses, and
responses to some basic identification tests. Analyzing genomes of the strains comparatively
allows us to understand the difference in their virulence, host ranges, and metabolism.
For instance, the absence of genes encoding for hlyD (an ABC transporter) and hlyB (a
membrane-fusion protein) in the type 1 secretion system (T1SS) of XauB strains, which are
involved in toxin secretion, might contribute to their decreased competitive capability with
other organisms. Similarly, the lack of specific gene clusters from the type 4 secretion system
(T4SS) in XauB and XauC strains, which play a dominant role in bacterial pathogenesis,
adaptation, and cellular interaction, might play a role in their competitive capability with
other bacteria. The absence of some specific gene clusters in the type 4 pilus (T4p) and genes
involved in hemagglutinin and hemolysin synthesis in XauB and XauC strains affect their
self-aggregation capability, tissue adhesion process, and biofilm formation. The absence of
vapBC and tspO genes is suspected to be one of the reasons behind decreased pathogenicity
of XauB and XauC strains. Some effectors (xopF1, xopB, xopE4, xopJ, xopAF, and xopAG)
which are absent in Xcc strains might be the cause of host range restriction in XauB and
XauC strains. Presence of the xacPNP gene only in Xcc strains contributes to its high
virulence as compared to other strains [30,31,51]. All the strains contain at least one pthA
or pthA-like gene, which is considered as a crucial pathogenicity determinant. Its presence
is necessary to elicit canker lesions and plays a noteworthy role in restricting the host
range of these Xanthomonas species to citrus species and some closely related rutaceous
species [52,53]. Effectors xopA1 and xopE3 which are present in all strains of citrus canker
are also suspected to play a significant role in citrus canker [30].
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Table 2. Comparison of major types of citrus canker.

Xcc XauB XauC References

Host range Diverse Less diverse Restricted

[30]

Xanthum gum production Highest Almost 3 times less than Xcc Almost 2 times less than Xcc

Cellular growth Non-fastidious, similar
cellular mass values as XauC Fastidious Non-fastidious, similar

cellular mass values as Xcc.

Comparative genetic analysis

Genes related to flagellum synthesis

Major 3 clusters of genes (F1,
F2, and F3) present. Another

4th cluster is also present,
consisting of 2 genes.

Unrelated genes are also
present in the region between

F1 and F2 (XACSR9).

F2 gene cluster is absent.
No genes are present in the
region between F1 and F2.

All four gene clusters are
present.

No genes are present in the
region between F1 and F2.

Presence of XacPNP gene Present Absent Absent

Type 1 Secretion System genes (T1SS) hlyB and hlyD encoding
genes and TolC present

hlyB and hlyD encoding
genes absent, TolC present

hlyB and hlyD encoding
genes and TolC present

[31]

Type 4 Secretion System genes (T4SS) Both in plasmid and
chromosome

Only in plasmid, lack
chromosomal copy

Only in plasmid, lack
chromosomal copy

Genes involved in the regulation and synthesis of Type IV pilus
(T4p)

Many genes are present
including pilX, pilV, pilA,
pilL, and fimT, forming

atleast 4 clusters of genes.

Among different clusters of
genes, pilX, pilA, pilV.pil anf

fimT genes are absent

Among different clusters of
genes, pilX, pilA, pilV, pil,
and fimT genes are absent

Genes related to synthesis of Hemagglutinin and Hemolysin

Present in two regions of
genome

XAC4112-XAC4125
XAC1810-XAC1819

The genes present in 2nd
region (XAC1810-XAC 1819)
including fhaB and fhaC are

absent

The genes present in 2nd
region (XAC1810-XAC 1819)
including fhaB and fhaC are

absent

vapBC and tspO gene Present Absent Absent

Effector XopS Present (in some cases as
pseudogene) Absent Absent
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Table 2. Cont.

Xcc XauB XauC References

Effector XopK Present Found as pseudogene Found as pseudogene

[30,31,51]Effector XopF1, xopB, xopE4, xopJ, xopAF, xopAG Absent Present (in some cases as
pseudogene)

Present (in some cases as
pseudogene)

Effectors xopE2, xopN, xopP, xopAE Present Present Absent

Basic physiological, biochemical, and serological tests

[39]

Reaction with Mab A1 (ELISA test) Reacts Does not react Does not react

Phage sensitivity
Bacteriophage Cp1 Variable response Insensitive Insensitive

Bacteriophage Cp2 Variable response Insensitive Insensitive

Bacteriophage Cp3 Insensitive Sensitive Insensitive

Casein hydrolysis test Positive Negative Positive

Gelatin hydrolysis test Positive Negative Negative

Growth in presence of
3% NaCl Grows No growth observed No growth observed

Maltose Grows No growth observed No growth observed
[54]

Aspartic acid Grows No growth observed No growth observed

General features of genome

[15,30]

Genome

Size (bp) 5,274,174 4,877,808 5,012,633

# of contigs 3 239 351

%GC 64.7 64.9 64.8

Protein coding genes

Total 4427 3804 3921

With functional assignment 2779 2694 2728

Hypothetical 262 117 184

Conserved hypothetical 1386 993 1009
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Table 2. Cont.

Xcc XauB XauC References

RNAs

rRNA operons 2 2 2

tRNAs 54 51 51

XacPNP = Plant natriuretic peptide (belonging to Xcc); Mab = Monoclonal Antibodies; ELISA = Enzyme-linked immunosorbent assay; General features of genome of XauB and XauC are based on
94% and 96% of their genomes.
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Pathogenic Variants of Citri Pathovar

Two variants of Xanthomonas citri pv. citri were reported later. The pathotype A*
was identified for the first time in Mexican limes (Citrus aurantifolii) in various Southwest
or Western Asian countries including Oman, Saudi Arabia, Iraq, UAE, and Iran in the
1990s [39]. Pathotype Aw (‘w’ represents ‘Wellington’ strain) was identified for the first time
in Mexican limes (Citrus aurantifolii) and alemow (Citrus macrophylla Wester) trees situated
in Southern Florida (Wellington and Lake Worth) in 2000. However, other susceptible citrus
trees surrounding the infected trees did not exhibit any canker symptoms, thus indicating
the host specificity of this pathotype [34]. Afterwards, it was reported that these strains
probably had a common origin in India (Southwest Asia), which is also the putative origin
of pathotype A [37,55].

The three pathogenic variants A, A*, and Aw mainly differ in pathogenicity and host
ranges. The pathotype A has a broad host range, whereas the other two have restricted host
ranges, possessing the ability to elicit canker lesions only on Mexican/key lime and alemow
under natural conditions. They are also geographically restricted, whereas pathotype A is
found in several citrus-producing regions [34,39]. They were initially distinguished from
pathotype A due to their inability to produce typical canker lesions on Duncan grapefruit,
which is highly susceptible to Xcc pathotype A [56]. Pathotype Aw varies from pathotype
A* due to its ability to induce a hypersensitive response (HR) in grapefruit, sweet orange,
and some other citrus species [34]. XopAG (avrGf1) is considered to be responsible for
inducing the hypersensitive response (HR), which is found in Aw strains, thus acting as a
host-restricting factor. It is also found in very few A* strains.

The three pathogenic variants vary in the presence or absence of genes belonging to the
classes of the secretion system, effectors, lipopolysaccharides, and other functional groups,
which may influence the variation in their virulence, host range specificity, metabolism,
etc. [57]. They greatly exhibit genomic differences related to horizontal gene transfer, single
nucleotide polymorphism, and recombination [48]. It is suggested that the acquisition of
productive genes and lack of detrimental genes is most probably the reason behind the
ability of pathotype A to attack a broader host range than A* and Aw pathotypes [58].
Many types of research have been conducted to study their comparative genomic analysis
and evolutionary history in detail [42,48,51,59–61].

These pathogenic variants were associated with pathovar citri due to their genetic and
phenotypic correspondence with pathotype A [56]. DNA reassociation analysis revealed
that all Xcc-Aw, Xcc-A∗, and Xcc-A strains are closely related, and their DNA similarities
range from 70.7–94.1%. Their DNA similarities with the strains of X. citri pv. aurantifolii
range from 34.6 to 50.6%, which represents that they are quite dissimilar [34]. A*/Aw

strains show greater genetic diversity than the A-strain [59]. At the pathotype level, A*
strains are the most diverse, having the highest average genome polymorphism [48].

5. Symptoms

All the newly growing parts of a plant are vulnerable to this bacterium. The symptoms
of citrus canker include noticeable necrotic lesions that appear on leaves, twigs, and fruits.
These early symptoms show as early as 4–7 days after the entry of bacterium into the plant
tissues under ideal conditions, which include the presence of water film and temperatures
in the range of 20–30 ◦C [62]. If the conditions are not ideal, the symptoms take longer than
expected, i.e., more than 60 days [63]. The lesions can be felt by moving the fingers on the
surface of the affected group of cells. Their center then becomes lifted and cork-like [9].

Xcc has the ability to normally affect green citrus tissues when they are in the expansion
state of growth. The leaves, twigs, and fruits become more immune to injury when they
reach their full size of maturity and start to harden off [13]. An important indication of
citrus canker is citrus tissue hyperplasia (more than usual mitotic cell division), resulting in
the elicitation of canker lesions [9,52].
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5.1. On Leaves

In the case of leaves, the first symptoms that appear are 2–10 mm erumpent circular
patches usually on the lower epidermis or the side facing away from the stem [9]. Lesions
appear mostly on both sides of the leaf. On leaves, round spots are lifted and form vesicle-
like soft eruptions that could either be white or yellow. These eruptions then become stiff
and become a light tan. Afterwards, they evolve into corky canker lesions that do not feel
smooth when touched. Frequently, a water-soaked margin is created around the necrotic
tissue [37]. In due course, a depression is formed in the center of the lesions of the leaf,
eventually leading them to fall out. This creates a shot-hole effect [55]. Premature removal
of leaves and the progressive death of twigs pose the major problems for the plant as the
disease escalates. Most lesions on a leaf are of similar size because there is typically only
one infection period.

5.2. On Twigs and Fruits

In the case of twigs and fruits, the indications of citrus canker are almost the same.
These symptoms include elevated lesions along with a boundary of oil or a water-soaked
margin. Commonly, there is no chlorosis around twig lesions, but there is a chance that it
might occur in fruit lesions. The indications of chlorosis take time to dissipate. In the areas
where citrus canker is domestic, twig wounds present on the pointed new shoots supply
most of the sustaining Xcc infusion [13]. Lesions present on stems may collapse to divide
the epidermis along the stem length, and banding of immature stems may happen most
frequently [9].

The untimely falling and discoloration of fruit are the major economic effects of this
disease. The fruits with cankers are rejected by the fresh trade, which causes substantial
economic loss. The lesions on leaves and stems that are elderly have more raised edges,
and most of the time, they are bounded by a yellow chlorotic disc (that might vanish as
the canker lesions become old) and a sunken center. Sunken centers are most of the time
detectable on fruits, but the lesions do not perforate deep into the outer skin of the fruit
and do not affect the inside quality [9,55].

6. Pathogen’s Infection Mechanisms

The Xcc bacteria attack stems, leaves, and fruits, with the major entrance sites being
stomata and wounds. After the bacteria colonize the apoplast, the pathogen that caused
cell hyperplasia damages the leaf epidermis. The lesions on stems, leaves, and fruits
rise, darken, and become thick, forming the distinctive elevated necrotic corky lesion.
The pathogen can be transferred to new growth on other citrus plants after the disease
propagates in lesions and in the presence of moisture on them [64]. The genes that code
for bacterial attachment and shallow structure components, protein secretion systems,
poisons, and plant cell wall-degrading enzymes have all been discovered in Xcc and help
it to survive and cause disease in citrus [65]. A study suggests that Xcc may use several
pathways to attack its host [66]. Figure 1 briefly explains the disease cycle of citrus canker.

6.1. Role of Adhesin Proteins in Bacterial Adhesion

In the pathogenicity phase, bacterial adhesion is very critical. It is mediated by adhesin
proteins that are secreted from the type V protein secretion system. It consists of two differ-
ent routes that translocate protein domains or large proteins. One is the autotransporter
pathway, whereas the other one is the TPS (two-partner secretion) pathway [67]. At least
one homolog to the TPS type V secretion system is present in the Xcc genome, whose
function is to secrete an FhaB-like hemagglutinin protein that codifies for the XacFhaB
protein. The gene XacFhaC, which is located upstream of XacFhaB, encodes a putative
TpsB partner secretion of the XacFhaB protein [68]. Mutation in XacFhaB disrupts bacterial
adhesion and aggregation and causes a more dispersed, smaller, and decreased number
of cankers. Mutants in the transporter protein XacFhaC, on the other hand, exhibited an
intermediate virulence phenotype similar to the infection of wild-type bacteria, which
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suggests that changing to that XacFhaB could also be released from another partner other
than XacFhaC [69]. Thus, this adhesin protein is critical in the early phases of infection [66].
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6.2. Significance of Type III Protein Secretion System

Invasion of the pathogen into the host’s cell triggers its immunity system. After
successfully landing on a host, the pathogen must pass through the host’s cell wall to reach
the cell membrane, where they interact with the receptors that detect PAMPs (pathogen-
associated molecular patterns). When the pathogen is identified by these receptors, it
triggers PAMPs-mediated immunity that eliminates the pathogen. In order to deal with it,
the pathogen possesses the ability to intervene with the identification in the cell membrane,
or it secretes effector proteins that may change the resistance response expression into the
plant’s cytosol [66]. Flagellin of Xcc flagella is a common PAMP that triggers the plant’s
immunity [70].

When the pathogens successfully cancel out the primary immunity of plants, they
encounter a more specific pathogen detection system developed by plants that includes
direct or indirect identifying of microbial proteins by resistance proteins (R) and activating
the resistance signaling routes [71].

The type III protein secretion system is crucial for pathogenicity and is codified by
the HRP (for hypersensitive response and pathogenicity) cluster [72,73]. Xcc induces
a hypersensitive reaction in resistant plants and non-host plants [74]. A T3SS consists
of a flagellum (in phytopathogens, the HRP pilus) and a basal body that maintains the
stability of the structure. This complicated structure facilitates bacterial adhesion to the
host cell membrane to guarantee that effector proteins are transported to the plant cell’s
internal region [75]. This system secretes many effector proteins [76]. PthA, the crucial
pathogenicity determinant of citrus canker, is also secreted by this system, and it belongs
to the avrBs3 gene family [52]. Its expression is enough to cause the death of host plant
cells [77]. The HRP cluster is crucial for the occurrence of HR in non-host and citrus canker
in host plants [78].
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6.3. Xanthan and Biofilm Formation

Biofilm formation plays a crucial role in the bonding of the pathogen and its host. Thus,
it is a necessary factor for a successful pathogen attack, survival, and epiphytic fitness, but
it does not affect the virulence of the pathogen [79,80]. It is made of xanthan polysaccharide
and some other components [22]. The genus Xanthomonas is distinguished by the produc-
tion and emission of an exopolysaccharide (EPS) xanthan, which is manufactured by FhaB
and the gum operon [81]. It is modulated by the rpf (regulation of pathogenicity factors)
gene cluster [82] which also encodes the cell–cell signaling system [83]. GumD, a crucial
component of biofilm formation, is a glycotransferase gene of gum cluster and catalyzes
the initial step involved in the production of xanthan [79]. GumD mutants showed reduced
oxidative stress survival and epiphytic survival on citrus leaves during the stationary phase,
which shows that xanthan facilitates the survival of bacteria on the host plant [80]. The
XacFhaB adhesin as well as the EPS take part in the production of biofilms in Xcc. These
molecules are also linked to bacterial motility, which results in bigger cankers on citrus
leaves infected with the bacterium [69]. When an adequate population of the pathogen
manages to invade the host cell, they shed their flagella and aggregate to form biofilm.
Stages of biofilm formation are shown in Figure 2.

6.4. Damage to Host’s Machinery

Xcc contains a plant natriuretic peptide (PNP)-like gene known as XacPNP that is pro-
duced during citrus canker disease, but no other phytopathogen or bacterium does [84,85].
Higher plants have been found to rely on natriuretic peptides (PNPs) to regulate their
salt and water balance and to grow [86]. They have been found in conductive tissue [87]
and become active in response to osmotic stress and K+ deficiency [88]. XacPNP has a lot
of similarities to PNPs in terms of its sequence and domain structure, and it can trigger
physiological responses in plants such as stomatal opening [85]. Lesions generated by citrus
canker in leaves infected by a xacPNP mutant are more necrotic than those produced by
wild-type bacteria, which eventually results in early bacterial cell death [85,89]. This sug-
gests that Xcc creates favorable conditions for its survival in the plant’s cell by modifying
its responses [85,89].
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Moreover, Xcc also decreases the photosynthesis efficiency of host plant cells. De-
creases in the expression of sugar-regulating proteins including Rubisco and Rubisco
activase, as well as of ATP synthase and an increase in NADH dehydrogenase were ob-
served, indicating a loss in efficiency of photosynthesis [90]. It also increases the synthesis
and movement of gibberellic acid, auxins, and ethylene in the host cell [91,92]. PthA and
PthA2 of T3SS regulate the auxin and gibberellin synthesis and assign RNA polymerase II
to start its targeted transcription. They also regulate the organization of the cell wall, the
transport of lipids, and the sugar metabolism of host cells [92].

7. Eradication and Control Measures

The increase in international travel and trade has dramatically escalated the risk of
introducing invasive plant pests and pathogens to crops [37]. In order to prevent the
introduction of and limit the spread of disease and eradicate it, various methods are be-
ing adopted. A proper eradication technique for citrus canker has not been developed
until now, but various measures could be taken to control it. It has been a center of focus
for researchers since its discovery [2]. Countries where this disease is not endemic rely
on adopting different methods to avoid the introduction of the bacterial pathogen into
the region, reduce the inoculum sources, eradicate the pathogen, and minimization its
dissemination [93,94]. The regions where citrus bacterial canker is endemic require an
integrated management program for its control which includes planting resistant varieties
and canker-free nursery stock, establishing windbreaks and fences, spraying copper bac-
tericides, disinfecting, controlling attacks of citrus leaf miner, and applying systematic
acquired resistance (SAR) inducers [37,94,95]. Some of the efficacious methods of citrus
canker control are mentioned below.

7.1. Physical Approaches
7.1.1. Tree Removal

Tree removal is efficacious only when the disease is localized and limited to a small
number of citrus trees. Previously, the “rule of 1900 feet” was used to eradicate the infected
trees. According to that rule, all trees within a radius of 1900 feet (579 m) from an infected
tree were removed to limit the spread of the disease [55]. The trees were then reduced to
pieces of generally less than 10 cm in size through wood chipping machinery and were
dumped and covered with soil [2]. Replantation of citrus in the areas that had undergone
the eradication process was allowed only when they were declared canker-free for at least
2 years [96]. This regulation was included in Florida’s Citrus Canker Eradication Program
(CCEP) and practiced at the end of 1999 in Florida. It gained negative responses from
commercial and residential citrus growers [96,97]. This “1900 feet rule” was suspended in
January 2006 as it was not an economically sustainable method [98].

7.1.2. Periodic Inspection of Citrus Orchards

After some interval of time, the regular inspection of citrus trees facilitates quick
identification of the pathogen; thus, it helps in rapid eradication of the disease.

7.1.3. Windbreaks

The spread of citrus canker is exacerbated by warm, humid, cloudy climates, strong
winds, and heavy rainfall. Establishing windbreaks help in the prevention of direct interac-
tions of wind with citrus trees, thus reducing penetrations of the pathogen into the host.
Moreover, strong winds may damage the tissues of citrus trees, which causes wounds on
the plant surface and facilitates the bacterial attack, but this can be reduced by establish-
ing windbreaks. Establishing windbreaks in combination with the application of copper
bactericides has been proven effective for controlling citrus canker [99].
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7.1.4. Planting Resistant Varieties

Different citrus cultivars vary in susceptibility to citrus canker. Planting resistant
cultivars in the region where the risk of spread of the pathogen is relatively high can help in
minimizing the economic losses caused by citrus canker. The more canker-resistant varieties
are kumquat (Fortunella spp.), calamondin (Citrus mitus), and citron (Citrus medica) [9,37].
The practicality of this strategy is limited given the limited commercial potential of
those varieties.

7.1.5. Pruning or Defoliation

Pruning or defoliation of infected summer and autumn shoots before a monsoon and
burning is beneficial to control canker spread. Moreover, the application of copper sprays
in combination with pruning has proven to be significantly beneficial in controlling minor
outbreaks of citrus canker [9,37].

7.1.6. Other Precautionary Measures

Other precautionary measures, such as the sanitization of instruments and workers
and the careful use of instruments to avoid wounds, should also be observed in citrus
orchards and nurseries [9].

7.2. Chemical Approaches
7.2.1. Copper Sprays

Different experiments have proven that the application of copper products for the
control of citrus canker is quite efficacious. Copper bactericides can diminish the bacterial
population present on the leaf’s surface. They develop a protective layer over the leaves and
the fruits that disappears with the expansion of the surface area. They need to be sprayed
multiple times after some interval of time to achieve sufficient control on susceptible
hosts [2,100]. The most suitable time for its application is during the summer and spring
months when the conditions are most favorable for pathogen attacks [101].

Treatment with the sprays of copper ammonium carbonate (CAC), copper hydroxide,
copper pentahydrate, copper oxychloride along with kasugamycin, tribasic copper sulfate,
and the mixture of sodium arsenate and copper sulfate was also found effective for con-
trolling citrus canker through different experiments [95,102,103]. Magna-bon is a chelated
copper formulation whose treatment has also been proven beneficial for the control of this
disease and has a low metallic copper ratio (5%) [95,104].

The efficacy of copper sprays is adversely affected by wind-driven rain that directly
introduces the pathogen into stomata, bypassing the protective layer of copper developed
on the surface, but this can be overcome with the help of windbreaks [105,106]. Moreover,
the continuous application of copper sprays for a long time induces resistance to copper
in the pathogen population [2], which can be overcome with the addition of maneb or
mancozeb to the copper bactericides [9,102,107]. Another major disadvantage of using
copper products is that their continuous application can cause accumulation of copper in
citrus soils that can be disadvantageous for the soil, the environment, and the plant [108].
In order to lessen its unhealthy effects, it can be used in combination with some other
agent (such as streptomycin) with a lower metallic copper rate [95]. Tree-Row-Volume
(TRV) methodology can also be helpful in this regard as it reduces the usage of water and
chemical in sprays and is suitable for reducing citrus canker through copper sprays [109].

7.2.2. Alternative Bactericides

Zinkicide is a zinc-oxide-based nano-formulation that has the potential to limit the
spread of citrus canker and reduce the development of canker lesions. It is easier to spray,
has high anti-microbial activity, and is less toxic compared to copper and copper-zinc
formulations [110]. Another formulation consisting of didecyldimethylammonium and
zinc-chelate, named MS3T (multifunctional surface, subsurface and systematic therapeutic)
formulation, not only controls citrus canker but also improves fruit yield and quality [111].
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Similarly, hexanoic acid [112] and hexyl gallate (G6) can also be used as an alternative to
copper sprays. Hexyl gallate targets the outer membrane of the pathogen and can be used
long-term without inducing resistance in the bacteria [113].

7.2.3. Application of Antibiotics

Antibiotics represent one of the main discoveries of the last century that changed the
treatment of a large array of infections in a significant way. However, increased consump-
tion has led to an exposure of bacterial communities and ecosystems to large amounts of
antibiotic residues. The application of various antibiotics (such as gentamicin and strepto-
mycin) hampers the growth of the pathogen but is less effective than copper sprays and
may induce resistance in the pathogen when used excessively [114,115]. Currently, there
are concerns over resistance, but it has not led to any legal measures to reduce antibiotic use.
However, antibiotic use in communities has been reduced and altered in several countries.

7.2.4. Post-Harvest Sanitization

Sanitizing citrus fruits after harvesting reduces the risk of the spread of citrus canker
through trade. For this purpose, various chemical sanitizers such as sodium hypochlorite,
chlorine dioxide, peracetic acid, and calcium oxychloride are used [116].

7.2.5. Systematic Acquired Resistance (SAR) Inducers

Systematic Acquired Resistance (SAR) is actually plant’s natural defense but can be
activated in the absence of phytopathogens with the aid of chemical inducers [117,118]. It
needs the signal molecule salicylic acid (SA) and is related to the accumulation of proteins
related to pathogenesis [119].

Season-long control of foliar infection by Xcc is achieved by soil application of sys-
temic neonicotinoid insecticides and the commercial systemic acquired resistance (SAR)
inducer, acibenzolar-S-methyl (ASM). The protection provided by ASM is equivalent to
that provided by copper hydroxide (CH) foliar sprays applied at 21-day intervals. When
compared to the untreated control, all treatments dramatically reduced the occurrence
of canker lesions on fruit. When started before the susceptible foliar flush in the spring,
SAR inducers coupled with CH sprays offered the best control of fruit canker [120]. In
the absence of high-intensity rains or tropical storms, ASM soil soaking and season-long
rotations with thiomethaxom and imadocloprid were extremely efficient in controlling
citrus bacterial canker on young grapefruit and orange plants. SAR treatments had a degree
of control equivalent to eleven CH and/or STREP sprays spaced 21 days apart [121].

7.2.6. Chemical Control of Citrus Leaf Miner (CLM)

Citrus leaf miner (Phyllocnists citrella) feeds on citrus leaves, thus facilitating the spread
of citrus canker by exposing the leaf mesophyll tissues to the pathogen. Application of
systematic neonicotinoid insecticides such as clothianidin and abamectin has been proven
effective for its control [122,123]. The application of 1.5 g of the active ingredient (a 3:1 blend
of (Z,Z,E)-7,11,13-hexadecatrienal–(Z,Z)-7,11-hexadecadienal) per hectare of citrus orchards
in combination with permethrin also significantly eradicates its population [124,125].

7.3. Biological Control
7.3.1. Genetic Engineering

The introduction of particular genes in plants and the overexpression of plant pattern-
recognition receptors and exogenous defense-enhancing genes with the aid of genetic
engineering techniques provide an innovative strategy to boost the plant defense system
and disease resistance [126,127].

Invasion of a pathogen in the plant system triggers the activation of its defense system.
Plants may synthesize antimicrobial proteins as a first line of defense, which includes a
variety of small antimicrobial peptides [128,129]. Introductions of antimicrobial peptides
into citrus rootstocks and scion cultivars have been reported to enhance their resistance
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to citrus canker. Thionins are cysteine-rich antimicrobial peptides whose modified form
remarkably inhibited the pathogen growth and increased the plant resistance against citrus
canker when overexpressed in Carrizo citrange [130]. The incorporation of antimicrobial
peptide genes PR1aCB and AATCB in ‘Tarocco’ blood orange (Citrus sinensis Osbeck)
inhibited the Xcc growth [131]. The integration of Shiva A and Cecropin B into the citrus
genome has also been proven helpful in this regard [132]. Similarly, expression of the
dermaseptin gene and attacin A gene from Tricloplusia ni in transgenic plants lessened their
sensitivity to citrus canker. Attacins are antimicrobial peptides and are released into the
insect haemolymph when the bacteria invade to cause infection. The genes encoding these
antimicrobial proteins are isolated from specific insects and are used in genetic engineering
in order to obtain resistance to phytopathogenic bacteria [133–135].

Studies have demonstrated that overexpression of AtNPR1 (Arabidopsis NPR1 gene),
which is a key positive regulator of the systematic acquired resistance (SAR) in citrus plants,
enhanced the resistance against citrus canker [136]. Greater expression of NbFLS2 (FLS2
gene from Nicotiana benthamiana) in transgenic citrus plants also increased its resistance
against citrus canker and increased ROS production. The interaction of bacterial flagella
and NbFLS2 improved plant basal defense. The development of canker lesions was also
significantly reduced in some transgenic plants [126]. Increased expression of CsMAPK1
which is a citrus Mitogen-Activated Protein Kinase [137], and of the Xanthomonas resistant
gene, Xa21, from rice, encodes for receptor kinase-like proteins [138,139] and can also be
helpful in this regard. Fewer signs of epidermal rupture were observed in the plants with
higher levels of CsMAPK1 [137].

Polyamines are thought to be a significant source of hydrogen peroxide production,
which triggers the hypersensitive response and activation of defense-related genes. Thus,
polyamines play a crucial role in establishing resistance in a plant against a specific disease.
The endogenous polyamine level can be regulated by the overexpression of polyamine
biosynthetic genes. Using this concept, a transgenic citrus plant was produced by the
introduction of MdSPDS1, which is an apple spermidine synthase gene, into sweet orange
(Citrus sinensis Osbeck ‘Anliucheng’). Overexpression of MdSDPS1 remarkably lowered
the susceptibility of the transgenic plant to citrus canker [140,141].

Genome editing allows targeted genome modification for improving different traits of
interest of many organisms and is garnering the attention of researchers, especially after the
introduction of CRISPR-based systems (Clustered Regularly Interspaced Short Palindromic
Repeats). So far, it is the most efficient and cost-effective genome editing technique [142].
The CsLOB1 (lateral organ boundary 1) gene of citrus plays a crucial role in disease suscep-
tibility. The CsLOB1 promoter interacts with the pthA4-effector binding elements (EBE) to
facilitate the attack of Xcc. CRISPR/Cas9-mediated genome editing of the CsLOB1 gene
and the promoter remarkably reduced the susceptibility to citrus canker [143,144]. Reports
have shown that CRISPR/Cas9-mediated genome editing of CsWRKY22, a marker gene for
pathogen-triggered immunity in Wanjincheng oranges [145] and disruptive mutagenesis
of CsDMR6 (Downy Mildew Resistance 6) in citrus varieties, [146] also have significantly
reduced their susceptibility to citrus canker. CRISPER/Cas12a (Cpf1)-mediated genome
editing [147] requires more attention as it exhibits higher efficiency and can be used as a
powerful tool in future for the development of canker-resistant citrus varieties.

7.3.2. Biological Control of CLM

The wasp Ageniaspis citricola is a natural predator of citrus leaf miner and thus helps
in controlling its population and limiting the spread of citrus canker [148,149].

7.3.3. Use of Plant Extracts

Plant extracts contain a variety of biomolecules that may possess antibacterial proper-
ties [150]. Thus, such extracts can be used as an alternative to environmentally unfriendly
and costly synthetic bactericides. Sprays of various plant extracts on citrus plants have
been proven to be essential in controlling Xcc, such as with extracts of Allium cepa L.,
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Calotropisgi gantea, Allium sativum L., Gardenia florida, Melia azedarch, Eucalyptus camelduensis,
Azadirachta indica, and Dalbrgia sisso [151]. Moreover, aqueous extracts of Hibiscus subdariffa
L., Punica granatum L., Spondias pinnata L., and Tamarinus indica L lessened canker incidence
in limes [152].

7.3.4. Endophytic Bacteria

Endophytic organisms colonize the internal tissues of the host plants without causing
harm to them [153]. Many endophytic bacteria act as biocontrol agents and positively affect
the growth of host plant [154]. For biocontrol of citrus canker, many strains of endophytic
bacteria such as Burkholderia cepacia [155], Bacillus velezensis [156], Bacillus amyloliquefa-
ciens [157], Kosakonia cowanii [158], Bacillus subtilis [159], and Bacillus thuringiensis [160]
have shown fruitful results. Bacillus strains have been proven very effective for canker
control [159].

7.3.5. Treatment with Bacteriophages

Different strains of Xcc, XauB, and XauC show sensitivity to various bacteriophages,
which helps in reducing the inoculum [161]. Various Xcc strains isolated in Japan were
found sensitive to Cp1 and Cp2 bacteriophages, whereas XauB strains were found sensitive
to Cp3 bacteriophage (also mentioned in Table 2) [39,162,163]. A filamentous phage XacF1
was also found to be effective for canker control and has the ability to cause various
physiological changes to the bacterial host cells [164]. Phage treatment can be more effective
in combination with Systematic Acquired Resistance (SAR) inducers [165]. Treatment
with bacteriophage combined with acibenzolar-S-methyl (ASM) significantly reduced the
incidence of citrus canker [166].

8. Conclusions and Future Prospects

Citrus canker has been problematic for years due to high virulence, easy transmission,
rapid spread, the complex pathogenic profile, mutations in the pathogen’s genome, and the
presence of multiple strains. It can be predicted that new strains will continue to emerge in
future. Even after eradication from a particular place, the risk of its reappearance remains.
So, it is very crucial to develop a proper environmentally friendly strategy to completely
control it. Genetic and molecular analyses have helped us in understanding its mechanism
of action, which has paved the way for creating its control methods. More in-depth analyses
of the pathogen and its evolving nature may help us find a key to a permanent solution.
The use of endophytic bacteria as control agents also needs more research as it is an
environmentally friendly method and shows great efficiency in controlling canker [159].

With the sequencing of the citrus genome and elucidation of its fascinating evolutive
history [167], we now have unique tools to breed new varieties and look for desired traits
in a targeted manner. Since traditional breeding of citrus varieties is challenging due
to different constraints that include polyploidy, polyembryony, extended juvenility, and
long crossing cycles, targeted genome editing technology has the potential to shorten
varietal development for some traits, including disease resistance [144]. A great example of
precise genome editing is the technique known as Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) and its associated Cas9 protein. Through this approach,
it has been possible to confer resistance to pathogen infection in citrus by modifying
an effector binding element in the promoter region of one single allele of the canker
susceptibility gene CsLOB1 [168] or in both alleles of the gene in Duncan grapefruit [144].
Certainly, a long-lasting solution will be the development of citrus cultivars resistant to
disease through engineering, and other strategies based on overexpression of pathogenesis-
related protein PR1 have also shown some promising results [169].
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