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Abstract

:

Soybean seeds are rich in secondary metabolites which are beneficial for human health, including tocopherols. Tocopherols play an important role in human and animal nutrition thanks to their antioxidant activity. In this study, the ‘Forrest’ by ‘Williams 82’ (F×W82) recombinant inbred line (RIL) population (n = 306) was used to map quantitative trait loci (QTL) for seed α-tocopherol, β-tocopherol, δ -tocopherol, γ-tocopherol, and total tocopherol contents in Carbondale, IL over two years. Also, the identification of the candidate genes involved in soybean tocopherols biosynthetic pathway was performed. A total of 32 QTL controlling various seed tocopherol contents have been identified and mapped on Chrs. 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20. One major and novel QTL was identified on Chr. 6 with an R2 of 27.8, 9.9, and 6.9 for δ-tocopherol, α-tocopherol, and total tocopherol content, respectively. Reverse BLAST analysis of the genes that were identified in Arabidopsis allowed the identification of 37 genes involved in soybean tocopherol pathway, among which 11 were located close to the identified QTLs. The tocopherol cyclase gene (TC) Glyma.06G084100 is located close to the QTLs controlling δ-tocopherol (R2 = 27.8), α-tocopherol (R2 = 9.96), and total-tocopherol (R2 = 6.95). The geranylgeranyl diphosphate reductase (GGDR) Glyma.05G026200 gene is located close to a QTL controlling total tocopherol content in soybean (R2 = 4.42). The two methylphytylbenzoquinol methyltransferase (MPBQ-MT) candidate genes Glyma.02G002000 and Glyma.02G143700 are located close to a QTL controlling δ-tocopherol content (R2 = 3.57). The two γ-tocopherol methyltransferase (γ-TMT) genes, Glyma.12G014200 and Glyma.12G014300, are located close to QTLs controlling (γ+ß) tocopherol content (R2 = 8.86) and total tocopherol (R2 = 5.94). The identified tocopherol seed QTLs and candidate genes will be beneficial in breeding programs to develop soybean cultivars with high tocopherol contents.
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1. Introduction


Tocopherols and tocotrienols collectively constitute the tocochromanols family, known as Vitamin E. Tocochromanols are fat-soluble phenolic compounds, synthesized by photosynthetic organisms. In soybean, vitamin E is present almost exclusively as tocopherols. Tocopherols exist in four isoforms, α-tocopherol, γ-tocopherol, β-tocopherol, and δ-tocopherol which differ from each other by the number and the location of the methyl groups. α-tocopherol possesses three methyl groups, followed by γ-tocopherol and β-tocopherol that have two methyl groups, and finally δ-tocopherol with only one methyl group [1].



Tocopherols have an important role in human and animal nutrition thanks to their vitamin E activity. However, from a nutritional perspective among the four tocopherol isoforms, α-tocopherol is the most important due to the high vitamin E activity [2]. It also has been reported to play a role in the prevention of cardiovascular diseases and cancer [3,4]. In the human body, α-tocopherol is preferentially accumulated due to its affinity with the liver α-tocopherol transfer protein (α-TTP), which enriches plasma with α-tocopherol [5].



Soybean (Glycine max Merr.) is not only one of the main sources of vegetable oil and animal feed worldwide, but also used for production of biofuel, aquaculture feed, and as source of protein for the human diet due to a high protein (40–42%) and oil contents (18–22%) [6], which make it an important crop worldwide.



Soybean seeds are rich in secondary metabolites beneficial for human health including tocopherols. Total tocopherol content is relatively high in soybean seeds compared to other oilseeds crops, and γ-tocopherol is the predominant form, while α-tocopherol content is less than 10% of the total tocopherol content [3,4,7].



Since soybean oil provides 30% of the total worldwide oil consumption and ~70% of the vitamin E in the American diet comes from soybean oil, developing soybean cultivars with high seed α-tocopherol contents could have tremendous positive effects on the health benefits associated with eating soybeans and their market value.



In soybean, tocopherol seed content and composition vary from one cultivar to another, being controlled by several genetic and environmental factors. These factor make it one of the most complex quantitative traits [8] and many studies have focused on investigating the genetic and molecular factors underlying this trait [9,10,11,12].



A ‘TK780’ by ‘B04009’ RIL population (n = 94) was used to identified six QTLs involved in α-tocopherol biosynthesis on Chr. 9, 11 and 12 [7]. Also, using a ‘OAC Bayfield’ × ‘OAC Shire’ RIL population across three locations over 2 years, and 151 SSR markers, 26 SSR markers linked to QTLs with individual and total tocopherol content across 17 chromosomes were identified [13]. Likewise, using a ‘Beifeng 9’ by ‘Freeborn’ RIL population in six environments, 18, 13, 11, and 13 QTLs associated with seed α-tocopherol, γ-tocopherol, δ-tocopherol, and total tocopherol contents were identified respectively [14].



Tocopherol biosynthesis takes place at the plastid’s envelope, where a combination of two precursors derived from different pathways occurs. The homogentisic acid (HGA), a product of the cytosolic shikimate pathway, is used to form the aromatic ring of tocopherols, while phytyl diphosphate (PDP), a product of either the methylerytrithol phosphate (MEP) pathway or the phytol recycling pathway [15], forms the prenyl tail. The condensation of these two precursors is catalyzed by the homogentisate phytyl transferase (HPT) and creates 2-methyl-6- phytyl-1,4-benzoquinol (MPBQ), which can be further methylated by MPBQ methyltransferase (MPBQ-MT) to 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ). The cyclization of the MPBQ and DMPBQ by the tocopherol cyclase produces γ-tocopherol and δ-tocopherol, respectively. The conversion of γ-tocopherol and δ-tocopherol to α-tocopherol and β-tocopherol is catalyzed by the γ-tocopherol methyltransferase (γ-TMT) and it represents the last step of the tocopherol biosynthesis pathway.



Many studies have elucidated the genes involved in tocopherol pathway in Arabidopsis. The tyrosine produced by the shikimate pathway is catalyzed by Tyrosine Aminotransferase (TAT) resulting in the formation of P-hydroxy Phenyl Pyruvate (HPP). The HPP will be catalyzed by p-hydroxyphenylpyruvate dioxygenase (HPPD) to produce the homogentisic acid, this enzyme is controlled by PDS1. In A. thaliana, mutants of pds1 have shown a lack of tocopherols and plastoquinone with a lethal photobleached phenotype, this result showed the importance of PDS1 in the tocopherol biosynthesis pathway [16]. The overexpression of the PDS1 gene in tobacco leaves or in A. thaliana seeds only gave moderately increased tocopherol concentrations [17,18]. The phytyl diphosphate (PDP) can be derived, either from the MEP pathway after reduction of geranylgeranyl diphosphate (GGDP) by the Geranylgeranyl Diphosphate Reductase (GGDR) enzyme, or from the phytol recycling pathway. Many studies have investigated the phytol recycling pathway and have shown that mutants of vte5-1 are devoid of phytol kinase. Also, vte5-1 mutants have shown a reduction in total tocopherol content in seeds and leaves with 80% and 65% respectively, compared to the wild type [19]. The VTE5 gene controls the phytol kinase that catalyzes the phytol phosphorylation producing Phytolmonophosphate which is catalyzed by Phytolphosphate kinase VTE6 leading to phytyl diphosphate (PDP) formation. Arabidopsis vte6 mutants have shown tocopherol deficiency in leaves and a reduction in plant growth and seed longevity. The overexpression of the VTE6 gene resulted in a two-fold increase in PDP that resulted in higher γ-tocopherol accumulation in seeds [20]. Homogentisate phytyl transferase (HPT) catalyzes the condensation of HGA and PDP to produce 2-methyl-6-phytyl-1,4- benzoquinone (MPBQ). In Arabidopsis, the HPT enzyme is encoded by the VTE2 gene [21,22].



The Arabidopsis devoid of VTE2 have shown a complete deficiency in all tocopherol derivatives and all pathway precursors, which means that this is a crucial step in the tocopherol biosynthetic pathway [23]. The MPBQ-MT enzyme is encoded by the VTE3 gene, which is a limiting step in producing α- and γ-tocopherol. In Arabidopsis, vte3-2 mutants were lacking in α- and γ-tocopherol and exhibited a pale green phenotype, abnormal chloroplasts and did not survive beyond the seedling stage [24,25].



The VTE1 gene catalyzes the conversion of 2-methyl-6-phytyl-1,4- benzoquinone (MPBQ) and 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ) to δ-tocopherol and γ-tocopherol, respectively. vte1 mutants have a nonfunctional tocopherol cyclase enzyme (TC) and are totally devoid of all tocopherol forms, and accumulate DMPBQ, the γ-tocopherol precursor [26]. The overexpression of the VTE1 gene in Arabidopsis plants showed an improvement in total tocopherol by 7-fold in leaves, as well as a major shift from α- to γ-tocopherol [27].



The VTE4 gene encodes the γ-tocopherol methyltransferase (γ-TMT) that catalyzes the methylation of the γ-tocopherol and δ-tocopherol to produce α-tocopherol and β-tocopherol, respectively. The co-expression of both At-VTE3 and At-VTE4 in soybean showed an accumulation of >95% of α-tocopherol, in addition to a 5-fold increase of seed vitamin E activity [28].



In soybean, few genes have been reported to play a role in seed tocopherol content. These genes are γ-TMT1, γ-TMT2, and γ-TMT3 mainly [29]. Also, the Di-glucose binding protein with Leucine-rich repeat domain gene (Glyma.02G099800); Eukaryotic aspartyl protease family protein gene (Glyma.02G100800); Cytochrome b561/ferric reductase transmembrane protein family gene (Glyma.02G101300); Transmembrane amino acid transporter family protein gene (Glyma.02G098200); and plant U-box 26 gene (Glyma.02G102900) were identified and determined to be significantly associated with α-tocopherol, γ-tocopherol, δ-tocopherol and total tocopherol in soybean seeds [30].



In this study, the genetic factors associated with tocopherol content in soybean were investigated, QTL for seed α-tocopherol, β-tocopherol, δ-tocopherol, γ-tocopherol, and total tocopherol contents were mapped, the link between the biosynthesis genes for tocopherol and soybean seed tocopherol content was studied, and the in-Silico tocopherol biosynthetic pathway in soybean was reconstructed.




2. Results


2.1. The SNP-Based Genetic Map


The SNP-Based genetic map used in this study was described previously and identified QTLs that control seed isoflavone contents [31]. The map which covered 4029.9 cM, was composed of 2075 SNP markers, and was based on 306 RILs of F × W82 [31].




2.2. Tocopherol Contents Frequency Distribution, Heritability, and Correlation


The frequency distributions among different tocopherol contents were not always normal in the FxW82 RIL population based on Shapiro–Wilk’s method for normality test. Only total-tocopherol 2017 (T-Toc-2017) and δ-tocopherol 2020 (δ-Toc-2020) were normally distributed. The positive or negative skewness and kurtosis value (>3) were also identified in the RIL population (Table 1; Figure 1).



Each tocopherol component also showed a different degree of variation in the parameters of traits, and the variability appeared to not be greatly impacted by different environments. α-tocopherol 2017 (α-Toc-2017), displayed the highest coefficient of variation (CV) value (83.64%); however, the CV of (α-Toc-2020) was 55.49% indicating that phenotypic variability among tocopherol contents was constant year over these 2 years.



The broad sense heritability (h2) of (µg/g of dry seed weight) for seed α-tocopherol (α-Toc), δ-tocopherol (δ-Toc), γ+β-tocopherol ((γ+β)-Toc), and total tocopherol (T-Toc) contents (in µg/g of dry seed weight) across two different years appeared to be quite diverse. δ-Toc had the highest heritability (71%) and the h2 for T-Toc was 41% (Table 2). However, the h2 values for (γ+β)-Toc and α-Toc were negative (−41% and −61%, respectively) implying that there was biologically meaningful phenotypic repulsion among these traits. The high heritability of seed δ-Toc contents suggested that a large portion of phenotypic variation could be detected in the mapped QTL. The RILs-Year interactions still played a significant role in the molecular formation among tocopherols in soybean seeds based on our two-way ANOVA analysis because the σGE2 is relatively high (data not shown). It should be used as a parameter for trait improvement.



Due to cost effect of this undergraduate student-centered project, only technical replicates could be applied, and F value and probability could not be generated from the dataset (Table 2). Hence, we only calculated the Sum Sq and Mean Sq to determine σG2 and σGE2 for each trait (Table 2) using type I sum of squares (ANOVA (model)) function in R program but not σe2 due to limited replicates.




2.3. Seed Tocopherol Contents QTL


We used both the interval mapping (IM) and composite interval mapping (CIM) methods of WinQTL Cartographer 2.5 [32] to identify QTLs that control seed α-Toc, δ-Toc, (γ+β)-Toc, and T-Toc contents; however, only QTLs identified by CIM method with LOD scores >2.5 are reported here. A total of 32 QTL that control these seed tocopherols contents have been identified and mapped on Chr. 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20 in this RIL population grown in both years (2017 and 2020) (Table 3, Figures S1 and S2).



Five QTLs controlling α-tocopherol content in soybean were identified on Chrs. 6, 1 and 2 (Table 3, Figures S1 and S2). The qα-Toc-2-IL-2017 (192.6–197.6 cM) and qα-Toc-3-IL-2020 (195–197 cM) were collocated on Chr. 06. Additionolly, eight QTLs underlying δ-tocopherol content were identified on Chrs. 1,2,6,8,16,20. The qδ-Toc-3-IL-2017 located on Chr.6 explains 27.9% of the phenotype (Table 3, Figures S1 and S2). For the γ+β tocopherol content, ten QTLs were identified on Chrs. 2,6,8,12,13, and 16 (Table 3, Figures S1 and S2). Twelve QTLs controlling total tocopherol content were identified and mapped on Chrs. 1, 5, 6, 7, 8, 9, 10, 12, 16, 17, 20 (Table 3, Figures S1 and S2).




2.4. In Silico Reconstruction of the Tocopherol Biosynthetic Pathway in Soybean


The tocopherol biosynthetic pathway has been investigated in the model plant Arabidopsis thaliana. The genes and compounds involved in that pathway were previously reported [33]. To reconstruct the tocopherol biosynthesis pathway in soybean, the reverse BLAST of these genes was conducted using SoyBase.



Thirty-seven candidate genes underlying the soybean’s tocopherol pathway were identified (Figure 2). In the Shikimat pathway five candidate genes were identified for Tyrosine Aminotransferase (TAT) including Glyma.06g235500, Glyma.06g235900, Glyma.12g161500, Glyma.12g205900, and Glyma.13g295000. Two candidate genes were identified for hydroxyphenylpyruvate dioxygenase (HPPD) (PDS1), Glyma.14G030400, and Glyma.02G284600. In the last step of the MEP pathway three candidate genes underlying the geranylgeranyl diphosphate reductase (GGDR) that catalyzes the production of phytyl diphosphate (PDP) from geranylgeranyl diphosphate (GGDP), were identified, Glyma.02G273800, Glyma.05G026200, and Glyma.17G100700 (Figure 2).



For the phytol recycling pathway, one candidate gene was identified to be the phytol kinase (VTE5) Glyma.20G190100, and two candidate genes were identified to be the phytol-phosphate kinase (VTE6) Glyma.13G265200, and Glyma.12G233800 (Figure 2).



In the core tocopherol pathway, twelve candidate genes were identified for the HPT (VTE2), Glyma.17G061900, Glyma.13G097800, Glyma.03G033100, Glyma.10G070100, Glyma.01G134600, Glyma.10G295300, Glyma.20G245100, Glyma.08G274800, Glyma.10G070300, Glyma.13G152814, Glyma.13G152780, and Glyma.13G152746, four were identified for the TC (VTE1), Glyma.04G082500, Glyma.06G084100, Glyma.04G082300, and Glyma.04G082400. Five candidate genes were identified for the MPBQ-MT (VTE3), Glyma.02G143700, Glyma.10G030600, Glyma.02G002000, Glyma.20G211500, and Glyma.10G178600, in addition to three for the γ-TMT (VTE4), Glyma.09G222800, Glyma.12G014200, and Glyma.12G014300 (Figure 2).




2.5. The Association between the Identified Tocopherol Pathway Candidate Genes and the Identified Tocopherol QTL


Among the identified candidate genes, 11 were located close to the identified QTLs on Chrs. 2, 5, 6, 10, 12, and 17 (Table 4, Figure 2). These candidate genes include the tocopherol cyclase candidate (TC) gene Glyma.06G084100 that is located close to seven seed tocopherol QTLs controlling δ-tocopherol, α-tocopherol, and total tocopherol on Chr. 6 (Table 4).



On Chr. 2, the MPBQ-MT candidate genes Glyma.02G002000 and Glyma.02G143700 are located close to qδ-Toc-2-(2017). The Glyma.02G002000 candidate gene is also located close to qα-Toc-2-(2020) and q(γ+ß)-Toc-1-(2020) (Table 4, Figure 2). The γ-TMT candidate genes Glyma.12G014200 and Glyma.12G014300 are positioned near to QTLs controlling γ+ß tocopherol and total tocopherol (Table 4, Figure 2). The HPT candidate gene Glyma.17G061900, and the GGDR candidate gene Glyma.17G100700 are located close to QTLs controlling total tocopherol on Chr. 17 (Table 4, Figure 2). Glyma.05G026200 is a GGDR candidate gene that is positioned near to a QTL underlying total tocopherol on Chr. 5 (Table 4, Figure 2).




2.6. Association between the Identified Candidate Genes and the Previously Reported QTL


Mapping the identified genes to the previously reported QTL regions associated with soybean seeds tocopherols was done using data from SoyBase and previous studies describing the QTL underlying tocopherol contents in soybean [7,13,34,35]. Six candidate genes were located within the identified seed tocopherol QTLs and ten were very close to some of these regions (Table 5).



Among these QTLs, qαTC-9 QTL was collocated with the γ-TMT3 (Glyma.09G222800) [7]. Also, γ-TMT2 (Glyma.12G014300) and γ -TMT1 (Glyma.12G014200) are located 703 kb and 711 kb, respectively, apart from qαTC-12 QTL associated with α-tocopherol content [7]. Whereas the fourth tocopherol candidate gene (Glyma.06G084100) was located 9.7 Mbp from the QTVEC2_2 QTL underlying total seed tocopherol content identified earlier [34]. The HPT gene (Glyma.17G061900) is located 4 Mbp apart from qαγR-17 QTL associated with seed α-tocopherol content [7]. Moreover, Glyma.04G082500, Glyma.04G082300, and Glyma.04G082400, the tocophetol cyclase candidate genes, were located within qδTC-4 QTL associated with δ-tocopherol [7]. The MPBQ-MT genes Glyma.02G002000 and Glyma.02G143700 were located within two QTL controlling the seed γ-tocopherol content. The first one is the seed tocopherol, γ-1-5 QTL [34] (https://soybase.org/; accessed on 3 April 2022) and the second one is the seed tocopherol, γ-2-5 [35] (https://soybase.org/; accessed on 3 April 2022). The two HPT candidate genes Glyma.10G070100 and Glyma.10G070300 and the MPBQ-MT candidate gene Glyma.10G030600 are located 3.3, 3.18, and 7.6 Mbp, respectively from the seed total tocopherol, T-Toc 2-2 QTL [35] (https://soybase.org/; accessed on 3 April 2022). The MPBQ-MT candidate gene Glyma.20G211500 and the HPT candidate gene (Glyma.20G245100) were located 0.22 and 0.9 Mbp apart from the seed tocopherol, QTVEC2_2 QTL controlling total tocopherol content [35] (Table 5).




2.7. Organ-Specific Expression of the Identified Candidate Genes


To investigate the role of the identified 37 candidate genes, the expression analysis of these genes was performed in Williams 82 cv. using the publicly available RNA-seq database at SoyBase (https://soybase.org/; accessed on 3 April 2022). The tissues that were included in this dataset were leaves, nodules, roots, pods, and seeds. Amongst the 37 candidate genes, no RNAseq data was available for the TC candidate gene Glyma.04G082400, the HPT candidate gene Glyma.08G274800, and the MPBQ-MT candidate gene Glyma.10G178600. The rest of the tocopherol candidate genes presented different gene expression patterns. Most of the identified candidate genes were expressed in all the analyzed tissues except for the HTP candidate gene, Glyma.03G033100, that was not expressed in any of the tissues. While the two GGDR candidate genes, Glyma.05G026200 and Glyma.17G100700, the HPT candidate gene, Glyma.13G097800, and the MPBQ-MT candidate gene, Glyma.02G143700, were highly expressed in flowers. The two GGDR candidate genes Glyma.05G026200 and Glyma.17G100700, the MPBQ-MT candidate genes Glyma.02G143700, Glyma.02G002000, and Glyma.10G030600, the TC candidate gene Glyma.06G084100, and the γ-TMT candidate gene Glyma.12G014300 were abundantly expressed in leaves. The GGDR candidate genes Glyma.05G026200, Glyma.02G273800 and Glyma.17G100700, and the TAT candidate gene Glyma.12G161500 were highly expressed in seeds. The TAT candidate genes Glyma.06G235900 and Glyma.12G205900, the two GGDR candidate genes Glyma.05G026200 and Glyma.17G100700, and the MPBQ-MT candidate genes Glyma.02G143700 and Glyma.10G030600 were highly expressed in pods. The γ-TMT candidate gene Glyma.09G222800, the GGDR candidate genes Glyma.05G026200 and Glyma.02G273800 were highly expressed in roots. Whereas the TAT candidate genes Glyma.12G161500 and Glyma.13G295000, the GGDR candidate genes Glyma.05G026200 and Glyma.02G273800, and the MPBQ-MT candidate gene Glyma.10G030600 were highly expressed in the nodules (Figure 3A, Table S1).



Amongst the identified candidate genes, eleven were located close to the tocopherol seed QTLs identified in FxW82 RIL population, in tocopherol seed content in soybean. Glyma.05G026200 and Glyma.17G100700 are highly expressed in seeds in Williams 82 cv., followed by Glyma.02G002000, Glyma.02G143700, Glyma.10G030600, Glyma.12G014300, and Glyma.06G084100 that have moderate expression profiles in seeds. The rest of the genes have a low expression profile in seeds except for Glyma.10G070100 and Glyma.10G070300 that have a limited expression profile, with very low to no expression in seeds (Figure 3B).





3. Discussion


Tocopherols are lipophilic antioxidants that are important for human health due to their ability to prevent the oxidation of unsaturated fatty acids by scavenging the free radicals and prevent cell membrane damage [13]. Soybean seeds contain the highest tocopherol concentrations among all legume species [36]. The dominant tocopherol isoform in soybean seeds is γ-tocopherol with amounts reaching up to 70% of the total tocopherol content, while α-tocopherol isoform has a lower concentration of about 10% of the total tocopherol content. The α-tocopherol isoform has the highest vitamin E activity [4] and has the highest affinity with the hepatic tocopherol transfer protein. Therefore, improving soybean seed tocopherol composition and content is crucial.



Several studies have revealed the genetic and molecular bases underlying tocopherol content in soybean [7,13,14,29,30,34,35] as summarized recently in [37].



Among the QTLs identified in these studies, qαTC-9 QTL was collocated with the γ-TMT3 Glyma.09G222800; [7], however, the QTL identified in this study on Chr. 9 was more than 40 Mbp apart from this gene. Also, γ-TMT2 (Glyma.12G014300) and γ -TMT1 (Glyma.12G014200) are located 703 kb and 711 kb, respectively, apart from the qαTC-12 QTL associated with α-tocopherol content [7]. Similarly, in this study, these candidate genes are located 2.7, 2.6 and 2.6 Mbp apart from q(γ+ß)-Toc-3-(2017), q(γ+ß)-Toc-4-(2017), and qT-Toc-6-(2017), respectively, on Chr. 12 (Table 4, Figures S1 and S2). Also, the TC candidate gene (Glyma.06G084100) was located 9.7 Mbp from the QTVEC2_2 QTL underlying the total tocopherol identified earlier [34]. Likewise, this gene is located close to seven seed tocopherol QTL, 2 Mbp from the qδ-Toc-3-(2017) (R2 = 27.8), 4.8 and 4.4 Mbp from qα-Toc-1-(2017) and qα-Toc-2-(2017), respectively, 4.3 and 2.3 Mbp from qT-Toc-2-(2017) and qT-Toc-3-(2017), respectively, 2.09 Mbp from q(γ+ß)-Toc-1-(2017), and 4.5 Mbp from qα-Toc-2-(2020) on Chr. 6 (Table 4, Figures S1 and S2). On Chr. 2, the MPBQ-MT candidate genes Glyma.02G002000 and Glyma.02G143700 are located 1.2 and 4.6 Mbp, respectively from qδ-Toc-2-(2017). Also, the Glyma.02G002000 candidate gene is located 0.7 and 4.06 Mbp apart from qα-Toc-2-(2020) and q(γ+ß)-Toc-1-(2020), respectively (Table 4, Figures S1 and S2). This is coherent with previous studies [34,35], where these two candidate genes were located within seed tocopherol, gamma 1-5 [35] (https://soybase.org/; accessed on 3 April 2022) and seed tocopherol, gamma 2-5 [34] (https://soybase.org/; accessed on 3 April 2022).



The QTL associate with δ-tocopherol explains 27.87% of the phenotype, and the one associated with α-tocopherol explains only 9.96% of the phenotype. A TC (Glyma.06G084100) gene was identified close to these QTLs, the TC enzyme is involved directly in the conversion of MPBQ to δ-tocopherol, and indirectly in the conversion to α-tocopherol (Table 4, Figure 2). α-tocopherol is the most known potent fat-soluble antioxidant, it is preferentially absorbed and accumulated in humans [38], its activity has been demonstrated in the prevention and treatment of heart disease, cancer and Alzheimer’s disease [39]. Alpha-tocopherol has been designated as the most beneficial tocopherol compound among health professionals. Unfortunately, this compound is present in small amount in soybean oil when compared to sunflower, canola or corn oil [40]. Therefore, improving α-tocopherol content in soybean is a priority for the soy-industry, the identification in the two years data of the qα-Toc-2-IL-2017 (192.6–197.6 cM) and qα-Toc-3-IL-2020 (195–197 cM) that were collocated on Chr. 06 will provide an opportunity for breeding lines with high α-tocopherol.



Interestingly, the HPT candidate gene (Glyma.17G061900) is located 4 Mbp apart from qαγR-17 QTL associated with α-tocopherol [7]. Similarly, this candidate gene is located 1.06 Mbp apart from qT-Toc-5-(2020) identified here on Chr. 17 (Table 4, Figures S1 and S2). The two HPT candidate genes Glyma.10G070100 and Glyma.10G070300 and the MPBQ-MT candidate gene Glyma.10G030600 are located 3.3, 3.18, and 7.6 Mbp, respectively from the seed tocopherol, total 2-2 QTL [34,35] (https://soybase.org/; accessed on 3 April 2022). Likewise, in this study these genes are located 2.95, 3.04 and 1.28, respectively from qδ-Toc-2-(2020), and qT-Toc-3-(2020) on Chr. 10 (Table 4, Figures S1 and S2). The MPBQ-MT candidate gene Glyma.20G211500 and the HPT candidate gene (Glyma.20G245100) were located 0.22 and 0.9 Mbp apart from seed tocopherol, QTVEC2_2 QTL controlling total tocopherol content identified earlier [34], however, the QTL identified in this study on Chr. 20 was located more than 40 Mbp apart from these genes. Moreover, Glyma.04G082500, Glyma.04G082300, and Glyma.04G082400 tocopherol cyclase candidate genes were located within qδTC-4 QTL associated with δ-tocopherol and identified earlier [7].



Although previous studies have reported some soybean genes as candidates for the tocopherol biosynthesis pathway [41], the present study shows the most comprehensive analysis of the whole soybean genome, showing the potential candidate genes for the tocopherol biosynthetic pathway in soybean.



Most QTL regions that were identified in 2017 were not found in 2020 except the qα-Toc-2-IL-2017 (192.6–197.6 cM) and qα-Toc-3-IL-2020 (195–197 cM) that were collocated on Chr. 06. This could be explained by the difference in weather conditions between 2017 and 2020. In August 2017 the temperature ranged between 8 and 33.3 °C, while in August 2020 the temperature ranged between 13.3 and 32.8 °C (https://www.extremeweatherwatch.com/; accessed on 3 April 2022). It has been proven that temperature stress during all stages of development affect soybean seed tocopherol concentrations [42].



The QTL region identified on Chr.7, qTotal-Toc-4-IL-2017 (81.4–88.9 cM), is 7.6 cM from a QTL region previously identified [7]. Likewise, the QTL region identified on Chr. 20 is 61.21 cM away from a QTL region identified in previous studies [34,35]. Interestingly, the QTL region identified on Chr.12 qγ+ß-Toc-3-IL-2017, qγ+ß-Toc-4-IL-2017, qTotal-Toc-6-IL-2017 (0.5–18.5 cM) and Chr.8 qγ+ß-Toc-2-IL-2017 and qT-Toc-2-IL-2020 (12.9–31.2 cM) were reported in previous studies [7,34]. Which make them important regions to investigate further for candidate genes. The rest of the QTLs are novel (Table 4, Figures S1 and S2).



Although previous studies identified QTL regions for soybean seed tocopherol content on Chr.6, all the identified QTLs map to the region between 74.5 and 118.5 cM (Table S2) [7,34,35]. The QTL regions identified in this study on Chr.6 clusters between 173.7 and 207 cM, which is the region that encompass an important gene in the tocopherol biosynthesis pathway, namely the tocopherol cyclase candidate gene, Glyma.06G084100. This QTL on Chr.6 is responsible for 27.8% of δ-tocopherol, 9.96% of α-tocopherol, 6.16% of γ+ß-tocopherol, and 6.95% of total tocopherol content




4. Materials and Methods


4.1. Plant Materials


The F6:13 ‘Forrest’ × ‘Williams 82’ RIL population (n = 306) described previously was used in this study [30,43]. The parents and RILs were grown in Carbondale, southern Illinois in 2017 and 2020, and seeds were harvested at maturity of all RILs and parents.




4.2. Tocopherols Quantification


At maturity, seeds of the parents and RILs were harvested and analyzed for α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), α+ß-Tocopherol ((γ+ß)-Toc), and total-Tocopherols (T-Toc) using a protocol developed and validated in the Nguyen Lab, the University of Missouri. Briefly, approx. 1gr. of soybean seeds were ground to fine powders with a Thomas Wiley Mini-Mill, followed by lyophilizing for 48 hrs. Approx. 200mg of powder were mixed with 2mL 200-proof ethanol and vortexed, followed by an incubation with agitation at 75 °C for 2 hrs. The products were then filtered into HPLC vials for analysis along with standard solutions of tocopherols. Quantification of tocopherols was performed by employing an external calibration curve method, in which each curve was created with the six standard solutions of 0.62, 1.25, 2.5, 5, 10, and 20 μg/mL.




4.3. DNA Isolation, SNP Genotyping, and Genetic Map Construction


DNA Isolation, SNP Genotyping, and the construction of the F×W82 genetic linkage map have been described earlier [30]. Briefly, SNP genotyping was performed with Illumina Infinium SoySNP6K BeadChips (Illumina, Inc. San Diego, CA, USA) and the genetic map was constructed with JoinMap 4.0 software with a LOD score of 3.0 and maximum distance of 50 cM as described earlier [30].




4.4. Seed Tocopherols QTL Detection


We used WinQTL Cartographer 2.5 [31] and both interval mapping (IM) and composite interval mapping (CIM) methods to identify QTL that control seed α-Toc, δ-Toc, γ+ß-Toc, and T-Toc in this RIL population; however, only QTL detected with CIM are reported here. QTL identified via IM are reported in the supplementary data section (Table S4A,B). MapChart 2.2 [32] was used to draw chromosomes with CIM tocopherols QTL locations.




4.5. Tocopherols Candidate Genes Identification


The reverse blast of the genes underlying the tocopherol pathway in Arabidopsis was conducted using the available data at SoyBase (https://soybase.org/; accessed on 3 April 2022). The sequences of the Arabidopsis genes were obtained from the Phytozome database (https://phytozome-next.jgi.doe.gov; accessed on 3 April 2022), these sequences were used for Blast in SoyBase. The obtained genes that control the tocopherol biosynthetic pathway were mapped to the identified tocopherol QTL.




4.6. Expression Analysis


The expression analysis of the identified tocopherol candidate genes that are located within or close the identified seed tocopherol QTLs was performed using the publicly available data from SoyBase (https://soybase.org/; accessed on 3 April 2022) to produce the expression profiles of these candidate genes in the soybean reference genome Williams 82 in Glyma1.0 Gene Models version.





5. Conclusions


In conclusion, 32 QTL controlling seed tocopherol contents on Chr. 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20 were identified. 37 candidate genes involved in soybean tocopherol biosynthetic pathway have also been identified among which 11 were located close to the QTL regions identified in this study. Two of these candidate genes were highly expressed in seeds Glyma.05G026200 and Glyma.17G100700, followed by Glyma.06G084100, Glyma.02G002000, Glyma.02G143700, Glyma.10G030600, and Glyma.12G014300 with moderate expression profiles in seeds (Figure 3B).



Forrest and Williams 82 sequences of the eleven candidate genes located close to the identified QTLs were compared, and the results have shown that three of them have SNPs between the Forrest and Williams 82 sequences, Glyma.06G084100, Glyma.17G061900 and Glyma.17G100700 (Figure 4). The TC candidate gene Glyma.06G084100 has 5 SNPs in the coding sequence, one of them caused a missense mutation (T379A) (Figure 4) in addition to 12 SNPs and 2 InDels in the 5′UTR region (Table S3). The HPT candidate gene, Glyma.17G061900, has only one SNP located in the coding sequence that caused a missense mutation (G326A) (Figure 4). For the GGDR candidate gene, Glyma.17G100700, there is also only one SNP that caused a silent mutation (Figure 4). These SNPs could play a role in the difference of tocopherol content between Forrest and Williams 82 cultivars. Glyma.06G084100 is associated with the qδ-Toc-3-(2017) (R2 = 27.8), qα-Toc-1-(2017), qα-Toc-2-(2017), qT-Toc-2-(2017), qT-Toc-3-(2017), q(γ+ß)-Toc-1-(2017), and qα-Toc-2-(2020) on Chr. 6 (Table 3, Figures S1 and S2). While Glyma.17G061900 and Glyma.17G100700 are associated to qT-Toc-5-(2020) on Chr. 17 (Table 2, Figures S1 and S2). These genes could be used in breeding programs or gene editing technology to develop soybean lines and cultivars that produce high amounts of the beneficial tocopherols (vitamin E) for human consumption.




6. Patents


Patent resulting from this work is under submission.
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The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants11091258/s1, Table S1. Expression profiles of the tocopherol biosynthesis candidate genes in soybean based on RNAseq data available from RNAsequencing data (http://www.soybase.org/soyseq; accessed on 3 April 2022). Table S2. QTLs identified in previous studies on Chr. 6. Table S3. Positions of SNPs between Forrest and Williams 82 cultivars in the promoter of the tocopherol cyclase candidate gene (GmTC06, Glyma.06G084100). Table S4. A. QTLs controlling seed tocopherols contents in Carbondale, IL (2017)—Identified by Interval Mapping Method. B. QTLs controlling seed tocopherols contents in Carbondale, IL (2020)—Identified by Interval Mapping Method. Figure S1. Positions of QTL that control seed α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), (γ+β)-Tocopherol ((γ+β)-Toc), and Total-Tocopherols (T-Toc) contents on chromosomes 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20. The QTL have been identified in F×W82 grown in two environments in Carbondale, IL over two years (2017 and 2020). Legend: (γ + β) = (G + β) and (Carb-IL) = Carbondale, IL. Figure S2. QTL that control seed α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), (γ+β)-Tocopherol ((γ+β)-Toc), and Total-Tocopherols (T-Toc) contents identified by IM and CIM methods in the F×W82 RIL population grown in two environments in Carbondale, IL over two years (2017 and 2020).
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Figure 1. The distribution of seed tocopherol contents (μg/g of seed weight) in the FxW82 RIL population. The seed α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), (γ+β)-Tocopherol ((γ+β)-Toc), and Total-Tocopherols (T-Toc) contents were tested in the RILs harvested in Carbondale, IL 2017 and 2020, respectively. 
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Figure 2. Tocopherol metabolic pathway [15] with identified candidate genes in soybean. TAT: Tyrosine Aminotransferase; HPPD: Hydroxyphenylpyruvate Dioxygenase; GGDR: Geranylgeranyl Diphosphate Reductase; HPT: Homogentisate Phytyl Transferase; MPBQ-MT: methylphytylbenzoquinol methyltransferase; TC: tocopherol cyclase; γ-TMT: gamma tocopherol methyltransferase. MEP Pathway: methylerythritol 4-phosphate pathway. 
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Figure 3. (A). Tissue specific expression of the identified tocopherol candidate genes. (B). Expression pattern of the 11 tocopherol candidate genes located within tocopherol QTL in Williams 82 (RPKM) were retrieved from publicly available RNA-seq data from Soybase database (http://www.soybase.org/soyseq; accessed on 3 April 2022). 
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Figure 4. Positions of SNPs between Forrest and Williams 82 cultivars in Glyma.06G084100, Glyma.17G061900 and Glyma.17G100700 coding sequences. In the gene model diagram, the light blue/light green boxes represent exons, blue/green bars represent introns, dark blue/dark green boxes represent 3′UTR or 5′UTR. SNPs were positioned relative to the genomic position in the genome version W82.a2. 
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Table 1. Mean, range, CV (%), skewness, kurtosis, and value of Shapiro-Wilk normality test (W value) for seed tocopherol content of the RILs in Carbondale, IL. SE: Standard error.
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Year

	
Trait

	
Mean (μg/g)

	
Range (μg/g)

	
CV (%)

	
SE

	
Skewness

	
Kurtosis

	
W Value (p < 0.05)






	
2017

	
δ-tocopherol17

	
95.86

	
94

	
19.73

	
1.09

	
0.01

	
2.21

	
0.98 **




	
γ+β-tocopherol17

	
172.44

	
97.1

	
9.78

	
0.97

	
0.48

	
3.18

	
0.98 **




	
α-tocopherol17

	
4.94

	
40.7

	
83.64

	
0.24

	
4.46

	
32.89

	
0.52 ***




	
Total-tocopherol17

	
271.5

	
150.7

	
8.97

	
1.41

	
0.25

	
2.9

	
0.99




	
2020

	
δ-tocopherol20

	
94.5

	
76

	
14.67

	
0.81

	
0.2

	
3.1

	
0.99




	
γ+β-tocopherol20

	
180.67

	
149.2

	
10.06

	
1.06

	
−0.36

	
5.59

	
0.97 ***




	
α-tocopherol20

	
5.13

	
25.7

	
55.49

	
0.16

	
3.13

	
21.28

	
0.71 ***




	
Total-tocopherol20

	
279.44

	
206.4

	
9.13

	
1.48

	
0.16

	
4.32

	
0.98 **








** p < 0.01, *** p < 0.001.
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Table 2. The broad sense heritability (h2) of tocopherol traits (δ-tocopherol, (γ+β)-tocopherol, α-tocopherol, and total-tocopherol) from the seeds harvested at Carbondale, IL in 2017 and 2020.
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Response: δ-tocopherol

	

	




	

	
Df

	
Sum Sq

	
Mean Seq

	
H2




	
Line

	
592

	
163,429

	
276.06

	
0.71




	
Year

	
1

	
391

	
391.28

	




	
Line:Year

	
1

	
81

	
80.65

	




	
Residuals

	
0

	
0

	
NA

	




	
Response: γ+β-tocopherol

	

	




	

	
Df

	
Sum Sq

	
Mean Seq

	
H2




	
Line

	
592

	
191,945

	
324.23

	
-0.41




	
Year

	
1

	
6

	
6.13

	




	
Line:Year

	
1

	
457

	
456

	




	
Residuals

	
0

	
0

	
NA

	




	
Response: α-tocopherol

	

	




	

	
Df

	
Sum Sq

	
Mean Seq

	
H2




	
Line

	
592

	
7479.9

	
12.635

	
−0.61




	
Year

	
1

	
20

	
20.041

	




	
Line:Year

	
1

	
20

	
20.41

	




	
Residuals

	
0

	
0

	
NA

	




	
Response: Total-tocopherol

	

	




	

	
Df

	
Sum Sq

	
Mean Seq

	
H2




	
Line

	
592

	
377,872

	
638.3

	
0.47




	
Year

	
1

	
205

	
205.28

	




	
Line:Year

	
1

	
338

	
337.55

	




	
Residuals

	
0

	
0

	
NA
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Table 3. QTLs that control seed α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), (α+ß)-Tocopherol ((α+ß)-Toc), and Total-Tocopherols (T-Toc) contents in two environments over two years (A. 2017 and B. 2020). The two environments are in Carbondale, IL (2017) (A) and (2020) (B). Only solid QTL with LOD scores >2.5 and identified by CIM are reported.
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A. QTL that Control Seed Tocopherols Contents in Carbondale, IL (2017)




	
Trait

	
QTL

	
Chr.

	
Marker/Interval

	
Position (cM)

	
LOD

	
R2

	
Additive

	
Environment




	
α-Tocopherol

	
qα-Toc-1

	
6

	
Gm06_1537675-Gm06_1570293

	
173.7–178.7

	
6.1

	
9.96

	
1.648195

	
Carbondale, IL




	
qα-Toc-2

	
6

	
Gm06_1858327-Gm06_2048675

	
192.6–197.6

	
6.77

	
9.95

	
1.477826

	
Carbondale, IL




	
δ-Tocopherol

	
qδ-Toc-1

	
1

	
Gm01_1887205-Gm01_1653315

	
174.2–179.2

	
3.06

	
3.1

	
−3.30536

	
Carbondale, IL




	
qδ-Toc-2

	
2

	
Gm02_1481798-Gm02_9925870

	
133.5–140.2

	
3.4

	
3.57

	
5.481172

	
Carbondale, IL




	
qδ-Toc-3

	
6

	
Gm06_1674534-Gm06_4447485

	
183.8–207

	
23.01

	
27.9

	
10.14229

	
Carbondale, IL




	
γ+ß-Tocopherol

	
qγ+ß-Toc-1

	
6

	
Gm06_1674534-Gm06_4368839

	
185.8–203.2

	
5.13

	
6.16

	
4.161084

	
Carbondale, IL




	
qγ+ß-Toc-2

	
8

	
Gm08_3018731-Gm08_4266625

	
17.8–31.2

	
3.02

	
3.78

	
−3.23578

	
Carbondale, IL




	
qγ+ß-Toc-3

	
12

	
Gm12_3820261-Gm12_3818392

	
0.5–1

	
4.14

	
5.23

	
3.852091

	
Carbondale, IL




	
qγ+ß-Toc-4

	
12

	
Gm12_3805393-Gm12_3696093

	
2.5–18.5

	
7.18

	
8.86

	
5.050705

	
Carbondale, IL




	
qγ+ß-Toc-5

	
13

	
Gm13_2587196-Gm13_2048499

	
189.1–210.7

	
3.79

	
5.43

	
3.906039

	
Carbondale, IL




	
Total-

Tocopherols

	
qTotal-Toc-1

	
5

	
Gm05_3674925-Gm05_3256515

	
29.4–32.2

	
3.63

	
4.42

	
8.695197

	
Carbondale, IL




	
qTotal-Toc-2

	
6

	
Gm06_1739930-Gm06_2073990

	
188.9–197.6

	
4.07

	
5.05

	
−5.69939

	
Carbondale, IL




	
qTotal-Toc-3

	
6

	
Gm06_3849946-Gm06_4447485

	
200.1–207

	
5.67

	
6.95

	
−6.57105

	
Carbondale, IL




	
qTotal-Toc-4

	
7

	
Gm07_3635708-Gm07_1829304

	
81.4–88.9

	
2.88

	
3.46

	
−5.31938

	
Carbondale, IL




	
qTotal-Toc-5

	
9

	
Gm09_3483063-Gm09_3544488

	
74.8–78

	
3.13

	
3.78

	
−4.56753

	
Carbondale, IL




	
qTotal-Toc-6

	
12

	
Gm12_3820261-Gm12_3696093

	
2.5–18.5

	
4.84

	
5.94

	
4.753021

	
Carbondale, IL




	
B. QTLs that control seed tocopherols contents in Carbondale, IL (2020)

	




	
Trait

	
QTL

	
Chr.

	
Marker

	
Position (cM)

	
LOD

	
R2

	
Additive

	
Envt.




	
α-Tocopherol

	
qα-Toc-1

	
1

	
Gm01_3466825-Gm01_5255151

	
4.1–10.1

	
5.81

	
0.35

	
2.35

	
Carbondale, IL




	
qα-Toc-2

	
2

	
Gm02_5141136-Gm02_1020061

	
137.1–139.8

	
2.9

	
0.04

	
0.82

	
Carbondale, IL




	
qα-Toc-3

	
6

	
Gm06_1954068-Gm06_2015292

	
195–197

	
2.01

	
0.03

	
0.5

	
Carbondale, IL




	
δ-Tocopherol

	
qδ-Toc-1

	
1

	
Gm01_4912170-Gm01_4852475

	
91.6–93.6

	
2.57

	
0.04

	
−2.66

	
Carbondale, IL




	
qδ-Toc-2

	
8

	
Gm08_1810148-Gm08_2201336

	
125.7–130.8

	
2.42

	
0.04

	
2.86

	
Carbondale, IL




	
qδ-Toc-3

	
10

	
Gm10_3943637-Gm10_3935014

	
79.2–81.4

	
2.4

	
0.03

	
−2.53

	
Carbondale, IL




	
qδ-Toc-4

	
16

	
Gm16_1079308-Gm16_3673245

	
0.5–12.5

	
3.71

	
0.05

	
−6.65

	
Carbondale, IL




	
qδ-Toc-5

	
20

	
Gm20_3665142-Gm20_1046460

	
174.9–176.9

	
2.68

	
0.04

	
−5.95

	
Carbondale, IL




	
(γ+ß)-Tocopherol

	
q(γ+ß)-Toc-2

	
2

	
Gm02_5155733-Gm02_4311734

	
130.5–132.5

	
2.15

	
0.04

	
−9.75

	
Carbondale, IL




	
q(γ+ß)-Toc-1

	
16

	
Gm16_1079308-Gm16_3673245

	
2.5–18.5

	
2.87

	
0.23

	
−10.56

	
Carbondale, IL




	
Total-

Toopherol

	
qT-Toc-1

	
1

	
Gm01_3504836-Gm01_5566630

	
0.1–1.7

	
4.52

	
0.08

	
−14.62

	
Carbondale, IL




	
qT-Toc-2

	
8

	
Gm08_2622664-Gm08_2852874

	
12.9–13.3

	
2.11

	
0.03

	
−4.44

	
Carbondale, IL




	
qT-Toc-3

	
10

	
Gm10_3935014-Gm10_3890052

	
79.4–84.4

	
2

	
0.03

	
−4.27

	
Carbondale, IL




	
qT-Toc-4

	
16

	
Gm16_1079308-Gm16_3673245

	
0.5–18.5

	
3.1

	
0.18

	
−13.92

	
Carbondale, IL




	
qT-Toc-5

	
17

	
Gm17_3916734-Gm17_3929518

	
6.2–48.7

	
3.07

	
0.18

	
−11.81

	
Carbondale, IL




	
qT-Toc-6

	
20

	
Gm20_3665142-Gm20_1046460

	
174.9–176.9

	
2.51

	
0.03

	
−10.65

	
Carbondale, IL
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Table 4. Tocopherol candidate genes located within or close to the tocopherol QTL identified in the FxW82 RIL population grown in Carbondale, IL over two years A. 2017 and B. 2020.
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A. QTLs that Control Seed Tocopherols Contents in Carbondale, IL (2017)




	
Trait

	
QTL

	
Wm82.a4. v1 Gene Models

	
Glyma1.0 Gene Models




	
Gene ID

	
Start

	
End

	
Gene ID

	
Start

	
End

	
Dist. (Mbp)




	
α-Tocopherol

	
qα-Toc-1

	
Glyma.06G084100

	
6,435,516

	
6,441,328

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
4.8




	
qα-Toc-2

	
Glyma.06G084100

	
6,435,516

	
6,441,328

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
4.4




	
δ-Tocopherol

	
qδ-Toc-1

	

	

	

	

	

	

	




	
qδ-Toc-2

	
Glyma.02G002000

	
237,750

	
243,006

	
Glyma02g00440

	
237,612

	
245,017

	
1.2




	
Glyma.02G143700

	
15,253,811

	
15,256,708

	
Glyma02g16210

	
14,623,815

	
14,626,862

	
4.6




	
qδ-Toc-3

	
Glyma.06G084100

	
6,435,516

	
6,441,328

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
2.01




	
(γ+ß)-Tocopherol

	
q(γ+ß)-Toc-1

	
Glyma.06G084100

	
6,435,516

	
6,441,328

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
2.09




	
q(γ+ß)-Toc-2

	

	

	

	

	

	

	




	
q(γ+ß)-Toc-3

	
Glyma.12G014200

	
1,020,484

	
1,023,995

	
Glyma12g01680

	
1,020,554

	
1,024,132

	
2.7




	
Glyma.12G014300

	
1,028,051

	
1,031,954

	
Glyma12g01690

	
1,028,132

	
1,032,092

	
2.7




	
q(γ+ß)-Toc-4

	
Glyma.12G014200

	
1,020,484

	
1,023,995

	
Glyma12g01680

	
1,020,554

	
1,024,132

	
2.6




	
Glyma.12G014300

	
1,028,051

	
1,031,954

	
Glyma12g01690

	
1,028,132

	
1,032,092

	
2.6




	
q(γ+ß)-Toc-5

	

	

	

	

	

	

	




	
Total-Tocopherols

	
qT-Toc-1

	
Glyma.05G026200

	
2,284,067

	
2,286,242

	
Glyma05g01000

	
606,481

	
608,812

	
2.6




	
qT-Toc-2

	
Glyma.06G084100

	
6,435,516

	
6,441,328

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
4.3




	
qT-Toc-3

	
Glyma.06G084100

	
6,435,516

	
6,441,328

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
2.3




	
qT-Toc-4

	

	

	

	

	

	

	




	
qT-Toc-5

	

	

	

	

	

	

	




	
qT-Toc-6

	
Glyma.12G014200

	
1,020,484

	
1,023,995

	
Glyma12g01680

	
1,020,554

	
1,024,132

	
2.6




	
Glyma.12G014300

	
1,028,051

	
1,031,954

	
Glyma12g01690

	
1,028,132

	
1,032,092

	
2.6




	
B. QTLs that control seed tocopherols contents in Carbondale, IL (2020)




	
Trait

	
QTL

	
Wm82.a4. v1 Gene Models

	
Glyma1.0 Gene Models




	
Gene ID

	
Start

	
End

	
Gene ID

	
Start

	
End

	
Dist. (Mbp)




	
α-Tocopherol

	
qα-Toc-1

	

	

	

	

	

	

	




	
qα-Toc-2

	
Glyma.02G002000

	
237,689

	
243,112

	
Glyma02g00440

	
237,612

	
245,017

	
0.7




	
qα-Toc-3

	
Glyma.06G084100

	
6,466,090

	
6,471,839

	
Glyma06g08850

	
6,460,802

	
6,466,636

	
4.5




	
δ-Tocopherol

	
qδ-Toc-1

	

	

	

	

	

	

	




	
qδ-Toc-2

	

	

	

	

	

	

	




	
qδ-Toc-3

	
Glyma.10G030600

	
2,658,064

	
2,661,302

	
Glyma10g03590

	
2,650,012

	
2,653,309

	
1.28




	
Glyma.10G070100

	
6,923,409

	
6,931,780

	
Glyma10g08080

	
6,888,551

	
6,893,731

	
2.95




	
Glyma.10G070300

	
7,023,173

	
7,029,710

	
Glyma10g08150

	
6,986,426

	
6,992,505

	
3.04




	
qδ-Toc-4

	

	

	

	

	

	

	




	
qδ-Toc-5

	

	

	

	

	

	

	




	
(γ+ß)-Tocopherol

	
q(γ+ß)-Toc-2

	
Glyma.02G002000

	
237,689

	
243,112

	
Glyma02g00440

	
237,612

	
245,017

	
4.06




	
q(γ+ß)-Toc-1

	

	

	

	

	

	

	




	
Total-Tocopherol

	
qT-Toc-1

	

	

	

	

	

	

	




	
qT-Toc-2

	

	

	

	

	

	

	




	
qT-Toc-3

	
Glyma.10G030600

	
2,658,064

	
2,661,302

	
Glyma10g03590

	
2,650,012

	
2,653,309

	
1.23




	
Glyma.10G070100

	
6,923,409

	
6,931,780

	
Glyma10g08080

	
6,888,551

	
6,893,731

	
2.95




	
Glyma.10G070300

	
7,023,173

	
7,029,710

	
Glyma10g08150

	
6,986,426

	
6,992,505

	
3.05




	
qT-Toc-4

	

	

	

	

	

	

	




	
qT-Toc-5

	
Glyma.17G061900

	
4,728,685

	
4,734,790

	
Glyma17g06940

	
4,998,801

	
5,004,742

	
1.06




	
Glyma.17G100700

	
7,920,291

	
7,923,450

	
Glyma17g10890

	
8,190,830

	
8,194,219

	
4.2




	
qT-Toc-6
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Table 5. Tocopherol candidate genes associated to the previously reported QTLs.
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Gene ID

	
Start

	
End

	
QTL

	
QTL Start

	
QTL End

	
Parents

	
Number Loci Tested

	
Lod Score

	
Interval Length

	
Reference






	
Glyma.09G222800

	
44,341,974

	
44,346,311

	
qαTC-9

	
43,927,286

	
44,366,371

	
TK780 X B04009

	
ND

	
13.1

	
ND

	
[7]




	
Glyma.12G014200

	
1,026,615

	
1,029,095

	
qαTC-12

	
1,507,927

	
1,790,872

	
TK780 X B04009

	
ND

	
7.8

	
ND

	
[7]




	
Glyma.12G014300

	
1,033,151

	
1,037,054

	
qαTC-12

	
1,507,927

	
1,790,872

	
TK780 X B04009

	
ND

	
7.8

	
ND

	
[7]




	
Glyma.04G082500

	
6,948,445

	
6,954,177

	
qδTC-4

	
6,780,105

	
7,188,146

	
TK780 X B04009

	
ND

	
5.5

	
ND

	
[7]




	
Glyma.04G082400

	
6,946,447

	
6,947,480

	
qδTC-4

	
6,780,105

	
7,188,146

	
TK780 X B04009

	
ND

	
5.5

	
ND

	
[7]




	
Glyma.04G082300

	
6,945,685

	
6,946,469

	
qδTC-4

	
6,780,105

	
7,188,146

	
TK780 X B04009

	
ND

	
5.5

	
ND

	
[7]




	
Glyma.06G084100

	
6,466,090

	
6,471,839

	
Seed tocopherol, alpha 1-2

	
16,106,296

	
16,256,544

	
OAC Bayfield X Hefeng 25

	
107

	
ND

	
ND

	
[35]




	
Glyma.14G030400

	
2,204,142

	
2,206,424

	
Seed tocopherol, alpha 2-1

	
675,214

	
2204,996

	
Hefeng 25 X OAC Bayfield

	
606

	
ND

	
ND

	
[34]




	
Glyma.02G143700

	
14,826,295

	
14,829,286

	
Seed tocopherol, gamma 1-5

	
13,316,369

	
37,285,448

	
OAC Bayfield X Hefeng 25

	
107

	
ND

	
ND

	
[35]




	
Seed tocopherol, gamma 2-5

	
14,288,241

	
45,267,040

	
Hefeng 25 X OAC Bayfield

	
606

	
ND

	
56.73

	
[34]




	
Glyma.02G002000

	
237,689

	
243,112

	
Seed tocopherol, gamma 1-5

	
13,316,369

	
37,285,448

	
OAC Bayfield X Hefeng 25

	
107

	
ND

	
ND

	
[35]




	
Seed tocopherol, gamma 2-5

	
14,288,241

	
45,267,040

	
Hefeng 25 X OAC Bayfield

	
606

	
ND

	
56.73

	
[34]




	
Glyma.13G097800

	
21,299,008

	
21,305,797

	
Seed tocopherol, delta 1-3

	
15,248,933

	
15,306,234

	
OAC Bayfield X Hefeng 25

	
107

	
ND

	
ND

	
[35]




	
Glyma.17G061900

	
4,728,685

	
4,734,790

	
qαγR-17

	
8,786,113

	
9,025,866

	
TK780 X B04009

	
ND

	
4.1

	
ND

	
[7]




	
Glyma.17G100700

	
792,0291

	
7,923,450

	
Seed tocopherol, gamma 3-6

	
5,891,979

	
36,718,722

	
OAC Bayfield X OAC Shire

	
550

	
2.6

	
67.66

	
[13]




	
Glyma.12g161500

	
30,805,424

	
30,815,155

	
Seed tocopherol, total 3-5

	
24,129,662

	
37,556,592

	
OAC Bayfield X OAC Shire

	
550

	
3.4

	
29.62

	
[13]




	
Glyma.12g205900

	
38,082,220

	
38,086,113

	
Seed tocopherol, alpha 3-3

	
24,129,662

	
37,556,592

	
OAC Bayfield X OAC Shire

	
550

	
3.5

	
29.62

	
[13]




	
Seed tocopherol, total 3-5

	
24,129,662

	
37,556,592

	
OAC Bayfield X OAC Shire

	
550

	
3.4

	
29.62

	
[13]




	
Glyma.13g295000

	
38,800,738

	
38,805,839

	
Seed tocopherol, delta 3-2

	
37,603,911

	
40,131,770

	
OAC Bayfield X OAC Shire

	
550

	
2.6

	
17.11

	
[13]




	
Seed tocopherol, delta 3-3

	
31,449,060

	
43,325,731

	
OAC Bayfield X OAC Shire

	
550

	
3.8

	
52.94

	
[13]
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