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Abstract: Rubus L. is one of the most diverse genera belonging to Rosaceae; it consists of more
than 700 species with a worldwide distribution. It thus provides an ideal natural “supergenus” for
studying the importance of its edible, medicinal, and phylogenetic characteristics for application in
our daily lives and fundamental scientific studies. The Rubus genus includes many economically
important species, such as blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), black raspberry
(R. occidentalis L.), and raspberry (R. chingii Hu), which are widely utilized in the fresh fruit market
and the medicinal industry. Although Rubus species have existed in human civilization for hundreds
of years, their utilization as fruit and in medicine is still largely inadequate, and many questions on
their complex phylogenetic relationships need to be answered. In this review, we briefly summarize
the history and progress of studies on Rubus, including its domestication as a source of fresh fruit, its
medicinal uses in pharmacology, and its systematic position in the phylogenetic tree. Recent available
evidence indicates that (1) thousands of Rubus cultivars were bred via time- and labor-consuming
methods from only a few wild species, and new breeding strategies and germplasms were thus
limited; (2) many kinds of species in Rubus have been used as medicinal herbs, though only a few
species (R. ideaus L., R. chingii Hu, and R. occidentalis L.) have been well studied; (3) the phylogeny
of Rubus is very complex, with the main reason for this possibly being the existence of multiple
reproductive strategies (apomixis, hybridization, and polyploidization). Our review addresses the
utilization of Rubus, summarizing major relevant achievements and proposing core prospects for
future application, and thus could serve as a useful roadmap for future elite cultivar breeding and
scientific studies.
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1. Introduction

Rubus L. is one of the most diverse and largest genera in the Rosaceae family. The genus
consists of more than 700 shrubby or herbaceous species mainly distributed throughout the
temperate zone of the northern hemisphere, with a few having expanded to the tropics and
the southern hemisphere [1–6]. Species of the Rubus genus worldwide are classified into
12 subgenera [1–3]. However, Lu et al. [6] reclassified them into 8 subgenera, whereby only
habitats in China were considered. There are two hypothetical centers of origin for Rubus:
one is North America [7,8] and the other is southwestern China [9–11]. In addition, the
pleasant flavor of the fresh Rubus fruit, its medicinal functions due to the health benefits
of its very high secondary metabolite content, and its high genetic diversity and complex
phylogeny rendering it suitable for scientific studies, make Rubus an important and ideal
genus for breeders as well as scientists [8,12,13] (Figure 1). Furthermore, the rich secondary
metabolites and the bark of Rubus are also important raw materials for cosmetics and
fiber [14].
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Figure 1. Different aspects of Rubus species utilization. The attributes of Rubus are primarily utilized 
for applications involving fruit (fresh fruit, jam, and juice), medicinal compounds (fruit, leaf, and 
stem), and scientific studies (adaptation, reproduction, polyploidy, and evolution). In addition, 
among the wild Rubus species, some can also be used to produce cosmetics or fiber products. This 
figure was created using BioRender software. 

Rubus bears aggregate drupetum fruits that have economically important edible and 
medicinal characteristics [12,13]. They have a pleasant flavor and have been dubbed “su-
perfoods” due to their very high levels of secondary metabolites, such as hydrolyzable 
tannins, anthocyanins, polyphenols, flavanols, organic acids, and many other organic 
compounds [12,15–20]. In an early investigation, Moyer et al. [15] extracted multiple an-
thocyanins and phenols from the ripe fruits of Rubus. Based on genomic resequencing, 
quadrupole time-of-flight liquid chromatography, and mass spectroscopy, 29 hydrolyza-
ble tannins and their candidate chromosomal regions were identified by Wang et al. [20]. 
Because of these diverse secondary metabolites, the superfood Rubus fruits can provide 
anti-oxidants as well as anti-cancer, anti-microbial, and anti-complement activities, in ad-
dition to having other benefits for humans [21–25]. 

Since the publication of Darwin’s On the Origin of Species, understanding the genetic 
basis of adaptation for the arisal of new species has been a central topic in evolutionary 
biology [26–29]. In the species-rich genus of Rubus, the diversity of reproductive strategy, 
such as through the process of hybridization, polyploidization, and apomixis, which en-
hances the adaptation capacity of Rubus [8,30,31]. Additionally, the various reproductive 
strategies also bring a huge challenge regarding the taxonomy of the Rubus genus in terms 
of morphological and molecular systematics [8,9,31–33]. However, in order to make better 
use of the wild germplasm in Rubus, it is necessary to develop a better knowledge of the 
clear affinity of its phylogeny. Therefore, species of the Rubus genus provide a natural 
experimental system for studying the fundamental mechanisms of adaptation via diverse 
reproductive strategies and reticulate evolutionary phylogeny. 

Over the past hundred years since Focke [1] published Species Ruborum, our under-
standing of Rubus L. has improved, including regarding its edibility [4,12,30] and in the 
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among the wild Rubus species, some can also be used to produce cosmetics or fiber products. This
figure was created using BioRender software.

Rubus bears aggregate drupetum fruits that have economically important edible and
medicinal characteristics [12,13]. They have a pleasant flavor and have been dubbed
“superfoods” due to their very high levels of secondary metabolites, such as hydrolyzable
tannins, anthocyanins, polyphenols, flavanols, organic acids, and many other organic
compounds [12,15–20]. In an early investigation, Moyer et al. [15] extracted multiple
anthocyanins and phenols from the ripe fruits of Rubus. Based on genomic resequencing,
quadrupole time-of-flight liquid chromatography, and mass spectroscopy, 29 hydrolyzable
tannins and their candidate chromosomal regions were identified by Wang et al. [20].
Because of these diverse secondary metabolites, the superfood Rubus fruits can provide
anti-oxidants as well as anti-cancer, anti-microbial, and anti-complement activities, in
addition to having other benefits for humans [21–25].

Since the publication of Darwin’s On the Origin of Species, understanding the genetic
basis of adaptation for the arisal of new species has been a central topic in evolutionary
biology [26–29]. In the species-rich genus of Rubus, the diversity of reproductive strategy,
such as through the process of hybridization, polyploidization, and apomixis, which
enhances the adaptation capacity of Rubus [8,30,31]. Additionally, the various reproductive
strategies also bring a huge challenge regarding the taxonomy of the Rubus genus in terms
of morphological and molecular systematics [8,9,31–33]. However, in order to make better
use of the wild germplasm in Rubus, it is necessary to develop a better knowledge of the
clear affinity of its phylogeny. Therefore, species of the Rubus genus provide a natural
experimental system for studying the fundamental mechanisms of adaptation via diverse
reproductive strategies and reticulate evolutionary phylogeny.
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Over the past hundred years since Focke [1] published Species Ruborum, our under-
standing of Rubus L. has improved, including regarding its edibility [4,12,30] and in the
medicinal [4,13,15,18,20,34] and phylogenetic fields [7,8,31,35,36] (Figure 1). However,
most previous studies and reviews have devoted their attention to metabolic compounds
of pharmacologic interest in only a very few specific species [13,19]. This review summa-
rizes the general outcomes for fresh fruit breeding, medicinal components, and studies
into phylogenetic relationships of the Rubus genus; based on the latest advances in the
fields of omics (genomics, transcriptomics, proteomics, and metabolomics), CRISPR/Cas,
and other genome editing technologies, experimental efficiency has improved remarkably.
Finally, we point out the important value of Rubus in fruit germplasms, medicinal research,
and understanding complex phylogenetic relationships resulting from diverse adaptative
reproduction strategies. In short, Rubus L., in the Rosaceae family, is an ideal natural “super-
genus” for breeders, pharmacologists, and evolutionary biologists. Our review addresses
major questions regarding how to better exploit the wild germplasm in Rubus species and
can thus serve as a useful roadmap for future breeding and fundamental scientific studies.

2. Studies of Edible Rubus Species

Rubus L. belongs to the Rosaceae family, from which many palatable fruit cultivars
have been bred, such as the woodland strawberry (Fragaria vesca L. var. americana Porter),
and the domesticated apple (Malus × domestica Borkh.), pear (Pyrus bretschneideri Rehd.),
and peach (Prunus persica (L.) Batsch) [1,9,37]. Rubus species are popular for their pleasant
fresh fruits, including the blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), and black
raspberry (R. occidentalis L.). Rubus fruits are aggregate drupetum fruits with varied colors,
such as red, yellow, purple, and black [12]. Rubus fruits have been called “superfoods”
because of the very high levels of beneficial secondary metabolites that they contain,
including, e.g., anthocyanins, phenolic acids, flavonoids, tannins, and other essential
compounds [19,24,38–40] (Figure 2). The chemical composition of Rubus is influenced
not only by environmental factors but also internal genetic differences. For example,
studies of blackberries found that a temperate climate and higher cumulative rainfall
increased the production of phenolic compounds [41]. The concentration of chemical
components in Rubus is also related to the storage conditions, growing season or location,
and maturity [42–45]. The genotype differences between species and cultivars in Rubus
is the major internal factor that influences the divergence of chemical compositions; for
instance, Skrovankova et al. [46] found that different cultivars show significant variations
in the production of secondary metabolites, even when they were grown under the same
environmental conditions. Furthermore, a series of studies on different Rubus genotypes,
cultivars, and species produced results consistent with those of Skrovankova [41,44,47–49].

Species of the Rubus genus have been cultivated and appeared in gardens for more
than 15 centuries in Europe, for example in Turkey and Rome [18,38]. To date, thou-
sands of cultivars have been bred, and these can mainly be divided into two types: the
primocane-fruiting (also called annual-fruiting) type, including Heritage, Amity, Autumn
Bliss, Autumn Britten, Dinkum, and Polana cultivars; and the floricane-fruiting (also
called biennial-fruiting) type, including Claudia, Emily, Esta, Lauren, and Qualicum cul-
tivars [8,12,38]. Among these, Logan, Boysen, and Marion are three elite cultivars. The
major areas for growing these cultivars are Russia (125,000 t), North America (59,123 t), and
Europe (43,000 t) [8,38]. Spurred by the human pursuit of fruit quality and increasing con-
sumption, the fruit production of Rubus cultivars has rapidly expanded for the production
of fresh fruit for use in jams and fruit juice [12,38,50,51] (Figure 1).
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Figure 2. Schematic description of the secondary metabolites of Rubus and their medicinal benefits 
to humans. The central red rectangle represents the wild Rubus species, the seven green ellipses 
represent the major secondary metabolites of Rubus, and the outermost ellipses represent the main 
medicinal functions of secondary metabolites. The various colors show different effects on human 
health. 

In the early stages of Rubus domestication, breeders commonly selected superior in-
dividuals from wild habitats [4,5]. During the nineteenth century, approximately 30 
breeding projects were conducted in North America and Europe. The elite cultivars of 
Preussen, Cuthbert, and Newburgh were bred by crossing between different subspecies 
of red raspberries [30]. However, the process of domestication has vastly reduced the mor-
phological and genetic diversities of crops [52–55]. Current cultivars are bred from cross-
ing or the improvement of only a few wild species, i.e., red raspberry (R. ideaus L.), black 
raspberry (R. occidentalis L.), and blackberry (R. fruticosus L.). In order to meet the de-
mands of visual appeal, higher yield, greater quality, excellent health benefits, and diverse 
adaptation for breeders, more wild germplasms of Rubus resources and advanced biotech-
nology should be utilized for Rubus breeding. Based on simple sequence repeat (SSR) and 
amplified fragment length polymorphism (AFLP) markers, the first linkage map for Rubus 
was constructed based on the crossing of two red raspberry cultivars, Glen Moy and Lat-
ham, from Europe and North America, respectively [56]. Bushakra et al. [57] constructed 
a genetic linkage map using 1218 markers by the crossing of S1 (R. occidentalis L.) and 
Latham (R. idaeus L.) and compared it with genomes of other genera in the rosa family, 
such as Fragaria L., Malus Mill., and Prunus L. That study reported a high consistency of 
collinearity of genomes between different genera of Rosaceae, and hundreds of new pol-
ymorphic genetic markers were found for future quantitative trait loci mapping studies. 
In recent years, different high-resolution markers and advanced sequencing methods 
have been applied for trait mapping or new wild germplasm identification in Rubus [58–
62]. 

3. Medicinal Studies of Rubus 
Rubus L. is one of the most species-rich genera in the Rosaceae family, but only a few 

species have been used as medicinal herbs [13,18,63]. According to the records of the an-
cient pharmacopoeias in Europe and China, Rubus species have been used as medicinal 
herbs for several centuries. The stems and leaves of blackberry (R. fruticosus L.) were 
soaked with white wine for use as an astringent poultice for wound healing and for diffi-
culties during childbirth, as suggested by Hippocrates [18]. The dried unripe fruits of “Fu-
Pen-Zi” (R. chingii Hu) were used to improve and enhance liver and kidney health [20,64]. 

Figure 2. Schematic description of the secondary metabolites of Rubus and their medicinal benefits to
humans. The central red rectangle represents the wild Rubus species, the seven green ellipses represent
the major secondary metabolites of Rubus, and the outermost ellipses represent the main medicinal
functions of secondary metabolites. The various colors show different effects on human health.

In the early stages of Rubus domestication, breeders commonly selected superior indi-
viduals from wild habitats [4,5]. During the nineteenth century, approximately 30 breeding
projects were conducted in North America and Europe. The elite cultivars of Preussen,
Cuthbert, and Newburgh were bred by crossing between different subspecies of red rasp-
berries [30]. However, the process of domestication has vastly reduced the morphological
and genetic diversities of crops [52–55]. Current cultivars are bred from crossing or the
improvement of only a few wild species, i.e., red raspberry (R. ideaus L.), black raspberry
(R. occidentalis L.), and blackberry (R. fruticosus L.). In order to meet the demands of visual
appeal, higher yield, greater quality, excellent health benefits, and diverse adaptation for
breeders, more wild germplasms of Rubus resources and advanced biotechnology should be
utilized for Rubus breeding. Based on simple sequence repeat (SSR) and amplified fragment
length polymorphism (AFLP) markers, the first linkage map for Rubus was constructed
based on the crossing of two red raspberry cultivars, Glen Moy and Latham, from Europe
and North America, respectively [56]. Bushakra et al. [57] constructed a genetic linkage
map using 1218 markers by the crossing of S1 (R. occidentalis L.) and Latham (R. idaeus L.)
and compared it with genomes of other genera in the rosa family, such as Fragaria L., Malus
Mill. and Prunus L. That study reported a high consistency of collinearity of genomes
between different genera of Rosaceae, and hundreds of new polymorphic genetic markers
were found for future quantitative trait loci mapping studies. In recent years, different
high-resolution markers and advanced sequencing methods have been applied for trait
mapping or new wild germplasm identification in Rubus [58–62].

3. Medicinal Studies of Rubus

Rubus L. is one of the most species-rich genera in the Rosaceae family, but only
a few species have been used as medicinal herbs [13,18,63]. According to the records
of the ancient pharmacopoeias in Europe and China, Rubus species have been used as
medicinal herbs for several centuries. The stems and leaves of blackberry (R. fruticosus
L.) were soaked with white wine for use as an astringent poultice for wound healing
and for difficulties during childbirth, as suggested by Hippocrates [18]. The dried unripe
fruits of “Fu-Pen-Zi” (R. chingii Hu) were used to improve and enhance liver and kidney
health [20,64]. More recently, as shown in Figure 2, many kinds of secondary metabolites
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with remarkable beneficial effects on humans have been extracted. Table 1 exhibits detailed
information on the species, concentration, and part from which they were extracted. For
instance, anthocyanins with an anti-oxidant function are extracted from the fruits of the
blackberry [15,19]; flavonoids with anti-oxidant, anti-cancer, and anti-inflammatory effects
are extracted from the fruits of the blackberry or Fu-Pen-Zi [16,65–67]. Other organic
compounds have been identified, mainly in blackberry or Fu-Pen-Zi, such as hydrolyzable
tannin, glycoprotein, organic acid, and phenolic compounds [19,21,61,68,69]. In addition,
reports have indicated many other kinds of beneficial effect of these secondary metabolites
on humans, for example, improving mitosis and eyesight, treating or preventing cancer,
back pain, and frequent urination [23,25,70,71]. To date, most of the secondary metabolites
mentioned above are considered safe according to data from limited studies [13,72–76]. For
example, the extracted components from R. niveus Thunb. showed no statistically significant
toxicity for mice [72]. Based on a cytotoxic experiment on Caco-2 cells, Ke et al. [77] found
that metabolites extracted from the fruit of R. chingii Hu were safe and had a favourable
effect on anti-cancer cells. Overall, the limited available data on the toxicity and allergenicity
of Rubus species indicate they are safe for humans. More in-depth investigations regarding
medicinal applications in pharmacology are needed.

In the genomic age, genomic sequencing of Rubus is already lagging behind compared
to other major crops and fruits, such as rice, maize, cotton, apple, and pear [53,78–85]. How-
ever, benefiting from the quick development of the cost-effective next-generation sequencing
(NGS) [86,87] and transcriptome (RNA-seq) technology [88,89], nuclear or plastid genomes
have been sequenced for some important medicinal species in the Rubus genus [20,90–95].
Utilizing the RNA-seq data of the red raspberry (R. idaeus L.) fruit, Hyun et al. [90] deter-
mined the regulated candidate genes for biosynthesis of γ-aminobutyric acid and antho-
cyanins, which have anti-oxidant activity. Based on unripe Fu-Pen-Zi (R. chingii Hu) fruits,
the chromosome-scale reference and genomic regions related to the biosynthetic pathway
for hydrolyzable tannin (HT) have been reported [20]. Therefore, using the results of these
studies, breeders could modify candidate genes or genomic regions of Rubus cultivars to
improve the content of targeted secondary metabolites (HT, anthocyanins, etc.) using site-
directed genome editing technologies such as CRISPR/Cas. More recently, in the field of
crop breeding, CRISPR/Cas genome-editing technology has been used with encouraging
results [96]. However, use of this speedy, proven, and precise genome editing technology
has not been reported in programs for breeding Rubus. To date, various studies taking
advantage of transcriptomic analysis at different developmental stages (green; green and
yellow; yellow, orange, and red) of Fu-Pen-Zi fruits have revealed that flavonoids and
anthocyanins are synthesized at an early stage and their levels then decrease during sub-
sequent development [61,97,98]. These studies also indicated that anthocyanins might not
be responsible for the reddish color of ripe fruits. Thus, better characterization will require
extraction of the pharmacological metabolites at the early stage of Rubus fruit development.
Meanwhile, several studies on plastid genomes have focused on the pharmacological com-
ponents of Rubus, i.e., R. eucalyptus Focke [93], R. rufus Focke [99], R. longisepalus Nakai
and R. hirsutus Thunb. [100,101], and R. phoenicolasius Maxim. [94]. However, the detailed
genetic basis and biosynthetic pathways of the pharmacological metabolites in Rubus species
are still largely unclear, and further future investment and research on different aspects are
needed [102–104].
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Table 1. Major secondary metabolites of Rubus L.

Secondary
Metabolite Species Concentration *

(mg/100 g) Part References

Anthocyanin

R. chingii

2.1~326

Leaf

[20,39,40,105,106]
R. fruticosus Fruit
R. ideaus
R. hirsutus

Flavonoid
R. chingii

2.8~6
Leaf

[20,34,40,107]R. occidentalis Fruit

Phenolic
compounds

R. chingii

13.7~1541

Root

[19,20,39,40,48,105,106,108]
R. occidentalis Stem
R. setchuenensis Leaf

Flower
Fruit

Organic
acids

R. chingii
0.2~52.9

Stem
[20,109]R. coreanus Leaf

Fruit
Glycoprotein R. chingii 14.6~81.4 Fruit [63]

* The concentration data were collected from multiple studies in which the extraction method, part, and species
varied, and thus the data presented in the table show minimum and maximum values.

4. Phylogenetic Studies of Rubus

The Rubus genus is one of the most successful models of an adaptive and evolutionary
group, with distribution worldwide except for Antarctica [1,9]. As shown in Table 2, Rubus
species were classified by Focke into 12 or by Lu into 8 subgenera according to worldwide
distribution or distribution in China, respectively. The classification and phylogenetic con-
struction of Rubus is a challenging task due to phenomena such as hybridization, apomixis,
polyploidization, and introgression, which happen frequently in this genus. Ploidy levels
among different subgenera and species are highly differentiated [7,32,33,35,58] (Table 2).
More importantly, the diverse reproductive strategies may have conferred to Rubus species
the ability to occupy various habitats worldwide, and thus demonstrate reticulate evo-
lutionary phylogeny. According to previous phylogenetic analysis based on the ndhF
gene, Howarth et al. [110] suggested that the Hawaiian Islands species (R. hawaiensis A.
Gray and R. macraei A. Gray) originated from different ancestors, in contradiction with
the morphological results. The reticulate evolution of Rubus has been indicated in recent
studies. Wang et al. [31] used multiple chloroplast and nuclear genes to investigate the
phylogenetic relationships of 142 Rubus taxa, which indicated reticulate evolutionary events
between different subgenera and species. A study based on approximately 1000 target
genes constructed the phylogenetic tree for 87 wild Rubus taxa and three cultivars, conclud-
ing that hybridization and incomplete lineage sorting (ILS) were responsible for the low
resolution and topological conflicts between different subgenera, which were not caused by
insufficient molecular signals [8]. Furthermore, it has been suggested that North America
might be the primary center of origin of Rubus, which then expanded into Asia and Europe
and finally dispersed to Oceania via birds [8].



Plants 2022, 11, 1211 7 of 12

Table 2. List of Rubus L. subgenera.

Subgenus Code Species in
Subgenus

Ploidy Level
(x = 7) References

Anoplobatus An 9 2x [8,30,111,112]
Chamaebatus Cb 6 (5) 2x, 6x [8,30,31]
Chamaemorus Cm 1 (1) 6x, 8x [8,30]
Comaropsis Co 2 4x [8,30]
Cylactis Cy 18 (8) 2x−4x [8,30,31]
Dalibarda Da 5 2x [8,30]
Dalibardastrum Ds 15 (10) 4x, 6x [8,30,31,111–113]
Idaeobatus Id 125 (83) 2x, 3x, 4x, 13x, 18x [8,20,30,31,111–113]
Lampobatus La 10 (1) 4x [8,30]
Malachobatus Ma 104 (85) 4x, 6x, 8x, 14x [30,31,111–113]
Orobatus Or 16 6x [8,30]
Rubus Ru 444 (1) 2x−12x [8,30,111,112]

The number within brackets is the corresponding number of Rubus species in China.

Additionally, a series of studies on the phylogeny of Rubus detected conflicts in the
phylogenetic affinities between plastid genes and nuclear genes in most cases [36,114,115].
The molecular and morphological topotaxies also appear inconsistent, which may result
from the multiple reproductive strategies [36,111,114–117]. In general, the difficulties of
morphological or molecular taxonomy in subgenera and between species are not caused by
lack of characteristics or signals; the real reason may be the diverse reproductive patterns
that have made this group an ideal genus for investigation of the genetic basis of different
reproductive and adaptive patterns.

5. Concluding Remarks and Future Perspectives

The Rubus genus consists of more than 700 species, but only a few of them, such as black-
berry (R. fruticosus L.), red raspberry (R. ideaus L.), and black raspberry (R. occidentalis L.),
have been domesticated or crossed by breeders to generate elite cultivars with excellent
characteristics of strong adaptability, good storage properties, and pest or disease resistance.
Unfortunately, there have been relatively few molecular breeding studies on Rubus and
fewer genomic resources exist compared to other types of crops and fruits. Rubus breeders
can reference those studies in order to improve the breeding methods for elite cultivars of
different crops and fruits.

Furtehrmore, the situation for medicinal cultivars of Rubus is worse, and most of the
investments in pharmacology have been concerned with R. ideaus L., R. fruticosus L., and R.
chingii Hu, rarely involving residual species such as R. eucalyptus Focke, R. occidentalis L.,
and R. phoenicolasius Maxim., which have also been used as medicinal ingredients for
hundreds of years. Notably, there remains a large deficiency in the study of the basic
mechanisms and genetics of the active ingredients in medicinal Rubus species. Fortunately,
advances in NGS and RNA-seq technologies offer an opportunity for researchers to spend
less money and labor investigating the above-mentioned problems and to quickly identify
and choose high-quality germplasms.

Finally, reconstructing the phylogenetic relationships for Rubus is a task made challeng-
ing by hybridization, polyploidization, apomixis, and introgression. However, researchers
can also combine consideration of morphological characteristics with omics technologies
(i.e., genomics, transcriptomics, proteomics, and metabolomics) to decipher the phyloge-
netic and evolutionary puzzles of Rubus. Consumers in the present era are increasingly
demanding tastier and healthier fresh fruits. The wild species and elite cultivars of Rubus
provide ideal candidates to address this demand due to their pleasant flavor and high
concentrations of secondary metabolites. However, only a few wild species have been
domesticated and are used in our daily food markets and medical treatment. Therefore,
in order to better exploit the abundance of Rubus wild germplasms, information on their
phylogenetic relationships and genetic diversity should be clarified. This study reviewed
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three major topics (edible, medicinal, and phylogenetic properties), but many challenges
still exist in the utilization and research of Rubus. Working as a team and applying the latest
omics strategies may open the door for developing a series of satisfactory elite germplasms
for fruit and medicine, and reveal the central evolutionary phenomenon resulting in reticu-
late evolution.
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