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Abstract: Hydroponic culture containing 200 mM NaCl was used to induce oxidative stress in
seedlings of cultivars initially primed with 1 mM SNP and 10 µM ABA. Exogenous application of
sodium nitroprusside (SNP – a nitric oxide donor) and abscisic acid (ABA) was well sensitized more in
cv. Swarna Sub1 than cv. Swarna and also reflected in different cellular responses. The major effects of
salinity, irrespective of the cultivar, were lowering the water relation, including relative water content
and osmotic potential, and decreasing the compatible solutes like alanine, gamma-aminobutyric
acid, and glycine betaine. The accumulated polyamines were reduced more in cv. Swarna with a
concomitant decrease in photosynthetic reserves. NADP-malic enzyme activity, sucrose accumulation,
ascorbate peroxidase, and glutathione S-transferase activities gradually declined under NaCl stress
and the catabolizing enzymes like invertase (both wall and cytosolic forms) also declined. On the
contrary, plants suffered from oxidative stress through superoxide, hydrogen peroxide, and their
biosynthetic enzymes like NADP(H) oxidase. Moderation of Na+/K+ by both SNP and ABA were
correlated with other salt sensitivities in the plants. The maximum effects of SNP and ABA were
found in the recovery of antioxidation pathways, osmotic tolerance, and carbohydrate metabolism.
Findings predict the efficacy of SNP and ABA either independently or cumulatively in overcoming
NaCl toxicity in rice.

Keywords: abiotic stress; antioxidant defense; osmotic potential; oxidative stress; phytohormone
signaling; neurotransmitters; reactive oxygen species; polyamines

1. Introduction

Chemical elicitation has been one of the feasible measures for crop plants to diminish or
mitigate abiotic stress factors. A number of chemical residues acting as elicitors, which are
mostly analogous to plants’ metabolites, have been used to moderate the stress perception
(its signaling, induction of selected gene(s), and finally, the manifestation of physiological
responses). For each elicitor residue, significant variations can be observed among the
stress tolerant and sensitive cultivars through downstream cellular and physiological
responses. Those elicitors are in-built residues in plant cells actively engaged in existing
metabolic pathways and often identified as effective in many crop species. Nitric oxide
(NO) is one that is principally a derivative of reactive nitrogen species (RNS) and is
produced as a byproduct of alteration of nitrate and nitrite reduction. It is a highly diffusible
and multipurpose inter/intra-signaling residue involved in osmotic balance, membrane
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transport, and antioxidation under abiotic stresses such as water deficits [1], salinity [2],
hypoxia/anoxia [3], and metal and xenobiotic toxicity [4]. A number of endogenous growth
regulators, including gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), salicylic
acid (SA), polyamines (PAs), jasmonic acid (JA), signaling moieties like Ca2+ and cyclic
nucleotides, and redox stabilizing glutathione are complementary with NO activity for
stress tolerance. Nitric oxide, with its instability in nature and additional free electrons, can
easily neutralize the excess intracellular reactive oxygen species (ROS) through reduction
with NADP(H) [5]. This is more prevalent in water or salinity stress where oxidative redox
may be directly encountered by NO. Thereby, downstream physiological activities like
membrane peroxidation, membrane transport, metabolite turnover, and enzyme-substrate
saturation are rescued. NO and ABA signaling pathways can often sense ROS metabolism,
such as induction and distribution of hydrogen peroxide (H2O2), following downstream
cellular responses facing salt stress [6].

Interestingly, plants that accumulate salts over a threshold cellular concentration also
develop RNS. This causes induction of NO accumulation through an altered pathway of
nitrite reduction. Alternatively, NO may originate from the PA biosynthetic pool where
arginine decarboxylase (ADC) becomes crucial in an autocatalytic pathway with oxygen
(O2) and NADP(H) [7]. In other ways, excluding a few algal species, there is still dispute
on the existence of any principal oxidative NO synthesizing enzyme/synthase (NOE/S) in
crop species [8]. For the non-enzymatic path of NO synthesis, a few less frequent residues
like S-nitrosoglutathione (GSNO) and hyponitrous acid (H2N2O2) deliver NO under water-
deficit, as reported in some crops [9]. Furthermore, both NO and ROS (like H2O2) residues
are thought to complement subsequent changes in redox homeostasis as plants progress
through water and salinity stress. In some cases, use of sodium nitroprusside (SNP) in
high doses has been shown to induce cyanide toxicity in tissues [10]. For those cases, a
systematic and local response equivalent to cyanide sensitivity becomes a bottleneck for
realizing satisfactory effects from SNP.

On the other hand, the implication of NO in stress recovery is also mediated through
induction of other growth regulators where ABA is frequently observed, and even more
so under osmotic and salinity stress [11]. In these cases, dehydration-induced NO sig-
naling often matches the rise in ABA and its related biosynthetic and metabolic genes
like 9-cis-epoxycarotenoid dioxygenase (NCED) [12]. This leads to an increase in stromal pH
of the illuminated chloroplast and release of ABA when plants are primed with NO. A
cytosolic increase in Ca2+ flux with a low H+ gradient over the chloroplast membrane is
another impact of NO-governed stomatal regulation of water loss [13]. In more detail,
S-nitrosylation is the key to initiating stomatal regulation with ABA over accumulation
triggered by respiratory burst oxidase homolog (Rboh)-dependent ROS and NO generation
by nitrite reductase activity. Therefore, this advocates for ROS and NO activity either in
complementary or supplementary mode to maximize the turgor pressure of guard cells
through ABA signaling. Within a few years, exogenous application of NO showed sig-
nificant ameliorating roles in crop species [14]. However, NO application is based on the
mitigation of oxidative damage in crops where ABA signaling pathways are predominant.
In a combinational study with ABA, a NO donor, giving a direct release of NO, and a NO
scavenger were used to validate ABA-induced antioxidation paths covering antioxidative
enzymes in forage legumes [15]. NO and ABA interactions also become pertinent in cellular
antioxidation paths where reduced glutathione (GSH) binds with NO, forming GSNO.
This is hydrolyzed by GSNO reductase to release NO, which restarts the cycle, leading
to overexpression of the antioxidative cascade by superoxide dismutase (SOD) and glu-
tathione reductase (GR) activity. ABA biosynthesis was realized in a parallel manner with
overexpression of the NCED gene in guard cells with exogenous H2O2 and NO application
on maize leaves [16]. Therefore, because of the importance of NO and ABA in signaling
following downstream reactions, it is worth considering how these two could be sensed in
the wider network of plant adaption to stress conditions.
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Rice is especially vulnerable to salinity and impeded growth of plant genotypes has
been shown, causing a bottleneck in satisfactory yield. Under salinity, rice is affected
primarily by dehydration/water deficit stress and secondarily by specific ion effects with
Na+ accumulation [17]. Expectedly for the former, rice plants may relieve the water deficits
by osmoregulation, where ABA involvement in the hydro-active path is the prerequisite.
Therefore, from the above-mentioned elucidation, it is anticipated that NO-mediated ABA
function may occur under salinity stress. With this view, we used two rice cultivars, one
with special traits with sub1A quantitative trait locus (QTL) (cv. Swarna Sub1) and another
non sub1A bearing (cv. Swarna) one. In lowland rice ecosystems, submergence and drought
appear simultaneously in a single crop cycle. However, sub1A, an ethylene-responsive
factor (ERF), in a few rice accessions, can reduce biosynthesis as well as gibberellic acid
responsiveness under water regime quiescence strategies [18]. These aim for a regulated or
economic utilization of carbohydrate reserves to limit aerobic energy-yielding metabolism
following suppression of plant growth. sub1A, an ERF transcription factor found in limited
rice accessions, dampens ethylene production and gibberellic acid responsiveness during
submergence, economizing carbohydrate reserves and significantly prolonging endurance.
sub1A QTL possessing factor, which is also amenable to tolerance of dehydration stress,
is expressed in a few rice genotypes under submergence and even de-submergence pe-
riods [19]. Furthermore, sub1A, which is an ERF, comprehends its effect under salinity
by sharing a common signaling path with ABA. However, there are very few reports on
whether sub1A QTL in rice might also be involved with NO independently or dependently
under salinity or dehydration stress. Herein, we describe the impact of SNP (a NO donor)
and ABA on the independent application or pretreatment for 24 h duration followed by 200
mM sodium chloride (NaCl)-mediated salinity stress for 72 h on 7-day-old seedlings of a
sub1A possessing rice cultivar (cv. Swarna Sub1) and a non sub1A rice cultivar (cv. Swarna).
This study elucidates additional insights on the underlying mechanism of the effect of NO
and ABA on stress metabolites, spatial ROS distribution, antioxidants, polymorphism in
antioxidative expression, organic acid metabolism, etc., conferring the salinity responses.

2. Materials and Methods
2.1. Establishment of Seedlings and Treatments

Healthy and viable seeds of rice (Oryza sativa L.) genotypes viz. cv. Swarna (submer-
gence sensitive) and Swarna Sub1 (submergence tolerant) were germinated following the
standard methodology. Initially, seeds were surface sterilized by dipping in 0.01% (w/v)
mercuric chloride solution with gentle agitation for a brief period followed by repeated
washing under tap water. Seeds were transferred to sterile deionized water for 5 days until
they sprouted under the controlled condition of 37 ◦C, 80% relative humidity. Following
sprouting, 7–10-day-old seedlings of each cultivar were divided into two groups, of which
one group was primed with 1 mM of SNP as [SNP (+)] and 10 µM of ABA as [ABA (+)]
in a solution of 1

4 strength of liquid nutrient media [20] for 24 h separately [21]. Another
group (without priming of SNP or ABA) was considered as the control [SNP/ABA (−)].
Thereafter, one set of each group of seedlings was subjected to 200 mM NaCl stress [SS (+)]
in the same media for 72 h along with nutrient medium and another set remained without
any salinity stress and was considered as [SS (−)]. The experiment was conducted with
three replicates per treatment. Finally, all seedlings of [SS (+)] and [SS (−)] were rescued,
washed, sampled, frozen in liquid nitrogen, and transferred to cold storage (−80 ◦C) for
further biochemical assays.

2.2. Quantification of NO, ABA, and Total PAs

For the determination of NO, plant samples were homogenized in 50 mM acetic
acid (pH 3.6), followed by centrifugation at 10,000× g at 4 ◦C for 15 min. Thereafter, the
supernatant was decolorized with charcoal, mixed with Griess reagent and the absorbance
was taken at 540 nm as suggested by Nahar et al. [22]. ABA quantification was done by high
performance liquid chromatography (HPLC). At first, fresh samples were homogenized in
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80% methanol and centrifuged at 5000× g at 4 ◦C for 30 min. The supernatant was filtered
through a 200 µM membrane filter and injected into the HPLC column (4.6 × 250 mm, C18)
coupled with reverse phase using 60% acetonitrile with 0.1% acetic acid as solvent. The
flow rate was maintained at 10 µL min−1 and the retention time of ABA was standardized
at about 5.3 min. Finally, ABA content in the samples was determined from the peak
areas against the ABA standard [23]. Separation and quantification of total PA content
was done by thin layer chromatography (TLC) as suggested by Young and Galston [24].
Samples were extracted in 5% (v/v) perchloric acid (HClO4) and centrifuged at 12,000× g
for 15 min at 4 ◦C. Thereafter, the extracts were separated on a TLC plate (Whatman LK6D)
in a solvent system of cyclohexane/ethylacetate (5:4, v/v) along with standards of PAs. For
quantification of PAs, bands were scraped into ethylacetate and the fluorescence was read
at 500 nm (excitation) and 350 nm (emission) with the help of a spectrofluorometer.

2.3. Determination of Water Status and Metallic Ions

Determination of relative water content (RWC) was done on the basis of fresh, dry and
turgid weight of the leaves [25]. Determination of osmotic potential was done based on the
gravimetric method and calculated according to Khalid et al. [26]. The determination of Na+

and K+ was done on the basis of tri-acid mixture (HNO3:H2SO4:HClO4, 3:3:1) digestion as
suggested by Buschmann et al. [27].

2.4. Determination of Alanine, Gamma-Aminobutyric Acid and Glycine Betaine

Determination of compatible solutes such as alanine (ALA), gamma-aminobutyric
acid (GABA), and glycine betaine (GB) was done according to the following methods
with slight modification. For determination of alanine content, the plant extract was
separated with a silica gel chromatogram (Mark) on solvent with butanol: acetic acid:
water (1:1:1) against standards with alanine. The eluted amino acid was measured with
1% acid ninhydrin solution reagent reading absorbance at 570 nm [28]. For GABA, the
plant sample was extracted in 10% aqueous extract and the soup was centrifuged at 10,000
rpm, 4 ◦C, 15 min. The soup was concentrated with di ethyl ether, allowed to evaporate
and reduction of NADP to NADPH at 340 nm was read and determined by using the
content with 1-amnio butyric acid as standard [29]. For glycine betaine content, lyophilized
samples were acidified with 2N sulfuric acid, followed by heating at 60 ◦C overnight. The
supernatant was collected after centrifugation, and diluted with acid. The collected pool
was reacted with KI-I2 solution to precipitate crystal, dissolved with 1,2 di chloroethane,
and absorbance was read at 600 nm against standard pure betaine salt [30].

2.5. Determination of Carbohydrate Status and Their Polymorphisms

For the assay of NADP-ME, fresh leaf samples were homogenized into a 3 mL ex-
traction buffer consisting of 100 mM Tris-hydrochloric acid (Tris-HCl) (pH 7.3), 10 mM
magnesium chloride (MgCl2), 10 mM ethylenediaminetetraacetic acid (EDTA), 2 mM
dipotassium phosphate (K2HPO4), 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1 mM
β-mercaptoethanol (β-ME) following centrifugation at 12,000× g, 15 min, 4 ◦C. The pro-
tein from the extract was partially purified by 80% ammonium sulfate precipitation at
4 ◦C. Then, 0.1 mL of protein extract was added to 1 mL of reaction buffer containing
60 mM Tris-HCl (pH 8.0), 10 mM EDTA, 10 mM MgCl2 and 1 mM NADP-sodium salt.
Finally, the content was determined by reading the absorbance at 340 nm as suggested
by Ghannoum et al. [31]. The in-gel analysis through non SDS-PAGE (polyacrylamide gel
electrophoresis) and its densitometric scanning of the enzyme were done according to
Takeuchi et al. [32]. Plant tissue was extracted with 80% (v/v) ethanol under boiling, and
concentrated with a rotary evaporator (Rotavapor R-300, Buchi). The solution was alkaline
with KOH and adjusted to pH 5.5 by Na-acetate buffer. From the aliquot, sucrose content
was determined according to Anur et al. [33]. For cytosolic and wall-bound invertase, plant
samples were extracted with extraction buffer containing 100 mM Tris-HCl (pH 4.8), 10 mM
MgCl2, 0.1% bovine serum albumin (BSA), 0.1 mM dithiothreitol (DTT) and 0.1 mM PMSF
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following centrifugation at 12,000× g at 4 ◦C for 15 min. The pellet was re-extracted with
the same extraction buffer to 5 mM NaCl. Finally, the enzyme extracts were incubated with
200 mM sucrose and 20 mM sodium citrate buffer (pH 3.8) for 30 min at room temperature,
and the activities of both soluble as well as wall-bound invertase (EC 3.2.1.26) were deter-
mined by reading the absorbance at 510 nm [34]. The in-gel and its densitometric analysis
of invertase activity (wall-bound and soluble) were done as suggested by Ranwala and
Miller [35].

2.6. Assay of NADP(H) Oxidase and Its Polymorphism

To determine the NADP(H) oxidase (NOX) activity (EC 1.6.3.1), plant samples were
homogenized with 50 mM potassium phosphate buffer (pH 6.5) containing 1% (w/v)
polyvinylpyrrolidone (PVP), 0.2 mM EDTA, 5 mM ascorbate, 0.1% (v/v) triton, 0.1% (w/v)
DTT, 1% (w/v) leupeptine, 0.1% (w/v) BSA and subsequently, centrifuged at 10,000× g,
4 ◦C, 20 min, and the supernatant was then extracted with 80% (w/v) ammonium sulfate
precipitation following purification through 65 mM phosphate buffer (pH 7.8), 0.1% (w/v)
BSA, and 0.1% (w/v) sodium dodecyl sulfate (SDS). An aliquot of enzyme extract was
then added in an assay mixture of sodium acetate buffer (pH 7.5), 0.1 mM DTT, 0.1 mM
p-coumaric acid, 0.05 mM NADP(H), and 5 mM manganese chloride (MnCl2), and then
the absorbance was read at 340 nm [36]. For the polymorphism through in-gel analysis,
the extracted enzyme was run on a 10% non SDS-PAGE at 10 mV/lane in 10 mM Tris-HCl
buffer (pH 6.8), followed by washing the gel in phosphate buffer (pH 4.6) and incubating
it in the dark at room temperature for 1 h. The solution consisted of 50 mM Tris-HCl,
(pH 7.4), 0.2 mM nitroblue tetrazolium (NBT), 0.1 mM MgCl2, 1 mM calcium chloride
(CaCl2) and 0.2 mM NADPH. After that, photographs of the gel were taken in Gel Doc
instrument with high resolution following densitometric analysis (Gel Analyzer software
(Version-19.1)) [37].

2.7. Histochemical Detection and Content of ROS Generation

Analysis of O2
•− and H2O2 generation both in vivo and in vitro was done according

to Dunand et al. [38]. Fresh leaves and roots samples were incubated overnight with 50 mM
phosphate buffer containing 6 mM NBT salt (pH 4.8) and 5 mM 3,3′-diaminobenzidine
(DAB) solution, respectively, for the histochemical detection of O2

•− and H2O2. Thereafter,
the distribution of dark blue patches (for O2

•−) and brown spots (for H2O2) on leaves and
roots were captured by a digital camera (De-winter, India). For determination of O2

•−

generation, plant samples were extracted with 65 mM phosphate buffer (pH 6.8), followed
by centrifugation at 8000× g for 30 min at 4 ◦C. An aliquot of the supernatant with 65 mM
phosphate buffer (pH 6.8) and 10 mM hydroxylamine was incubated at room temperature
for 45 min, followed by addition of 10 mM sulfanilamide and 7 mM α-napthyl amine,
and the absorbance was recorded at 530 nm and plotted using NO2

− as standard. For
the determination of H2O2 accumulation, plant tissues were homogenized with 3 mL of
1% (w/v) tricarboxylic acid (TCA) solution, followed by centrifugation at 10,000× g for
15 min at 4 ◦C. An aliquot of the supernatant was incubated with 0.5 mM potassium iodide
and 10 mM phosphate buffer (pH 7.0) for 30 min. The absorbance was read at 390 nm and
plotted using H2O2 as standard.

2.8. Assay of Antioxidative Enzymes and Their Polymorphisms

An assay of the antioxidative enzymes, APX (EC: 1.11.1.11) and GST (EC: 2.5.1.18),
both in vivo and in vitro, was done according to Khatun et al. [39]. For APX activity,
samples were homogenized in 50 mM phosphate buffer (pH 7.0) containing 1 mM EDTA,
1% (w/v) PVP, and 1 mM ascorbic acid following centrifugation at 15,000× g, 15 min, 4 ◦C.
Thereafter, the enzyme activity was determined spectrophotometrically at 290 nm after the
oxidation of ascorbate to dehydroascorbate. For GST activity, samples were homogenized
in Tris-HCL buffer (pH 7.4) following centrifugation at 13,000× g, 15 min, 4 ◦C. An aliquot
of the supernatant was reacted with 0.20 M potassium phosphate (pH 6.5), 0.1 mM DTT,
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20 mM GSH, 0.10 M 1-chloro-2,4-dinitrobenzene (CDNB), and 0.01 M dimethyl sulfoxide
(DMSO) following incubation for 5 min at 37 ◦C and the absorbance was read at 340 nm. For
the polymorphic analysis of APX and GST through in-gel analysis, the extracted enzyme
was run on a 10% non SDS-PAGE at 10 mV/lane in 50 mM Tris-HCl buffer (pH 6.8) and
detection of isoforms was done in respective staining buffer. After that, photographs of
the gel were taken in Gel Doc instrument with high resolution following densitometric
analysis (Gel Analyzer software (Version-19.1)).

2.9. Statistical Analysis

All the data were initially subjected to student’s t-test by SPSS software (IBM, Armonk,
New York, NY, USA). The principal component analysis (PCA) and correlation matrix were
done using Origin2020b software (Origin Lab, Northampton, MA USA).

3. Result
3.1. Accumulation of Released NO (from SNP) and ABA Content

Salt stress can alter the biosynthesis of NO and ABA in a discriminatory manner after
priming with [SNP/ABA (−)] (Figure 1a,b). Thus, irrespective of rice cultivar, the plants
reduced accumulation of NO by 55 % and 45% for cv Swarna and Swarna Sub1 under salt
stress [SS (+)] over non-salt stress [SS (-)] when no priming was done (Figure 1a). This trend
was reverted when SNP (+) and ABA (+) were exogenously applied regardless of the rice
cultivar. Thus, ABA (+) showed maximally retrieved NO accumulation by 2.1 fold in cv
Swarna Sub1 than cv Swarna for 0.8 fold. In contrast, for ABA, the trend of accumulation
was quite distinct with a rise irrespective of priming or non-priming by ABA/SNP. Thus,
the maximum rise in ABA was observed by 4.2 and 3.5 fold in cv Swarna and cv Swarna
Sub1 under ABA (+), which was the same as the non-priming set. SNP(+) had the same
trend for ABA accumulation, where cv Swarna and Swarna Sub1 recorded 1.9 and 1.4
fold higher content respectively. Apparently, on the varietal basis, cv. Swarna Sub1 scored
maximum values of NO and for ABA it was cv. Swarna Sub1, regardless of the type of
priming agent.
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Figure 1. Changes in nitric oxide (a) and abscisic acid (b) contents in two rice genotypes (cv. Swarna
and Swarna Sub1) under salinity stress [SS (+)] and non-salinity stress [SS (−)] for 72 h with [SNP (+)
or ABA (+)] or without [SNP/ABA (−)] priming for 24 h. Data are presented in bars with mean ± SE
(n = 3) from independent experimental sets and the significant values are represented as * (p ≤ 0.05),
** (p ≤ 0.01) and *** (p ≤ 0.001) by student’s t-test to denote the significant difference between SS (−)
and SS (+) of SNP/ABA (−) as well as SNP (+) and ABA (+) of each rice genotype.

3.2. Total PA Bioaccumulation as a Function of SNP and ABA Priming

The total amount of PA was isolated from plant tissues of rice cultivars subjected to
salinity as well as SNP and ABA priming, which were separated on TLC chromatogram
and densitometric scanning and made to detect the relative abundance (Figure 2a,b). Under
SS (+) with no exogenous priming, plants responded in a down-regulatory manner for total
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PA content irrespective of cultivar. SNP (+) and ABA (+) recovered an average of 16% and
31% PA content, respectively, under SS (+) against SS (−), irrespective of the rice cultivar
(Figure 2c). Therefore, PAs are considered to have significant roles in salinity tolerance,
however, they should not be considered as a contributing factor through NO and ABA
moderation as observed in the present experiment.
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Figure 2. Separation and distribution of polyamines (Put- Putrescine, Spd- Spermidine, Spm- Sper-
mine) from plant extract through thin-layer paper chromatography (a), its densitometric analysis
(b) and quantification (c) in two rice genotypes (cv. Swarna and Swarna Sub1) under salinity stress
[SS (+)] and non-salinity stress [SS (−)] for 72 h with [SNP (+) or ABA (+)] or without [SNP/ABA (−)]
priming for 24 h. Data are presented in bars with mean ± SE (n = 3) from independent experimental
sets and the significant values are represented as * (p ≤ 0.05), ** (p ≤ 0.01) and *** (p ≤ 0.001) by
student’s t-test to denote the significant difference between SS (−) and SS (+) of SNP/ABA (−) as
well as SNP (+) and ABA (+) of each rice genotype.

3.3. Regulation of Water Status and Variation in Ionic Concentration under Salinity

Under salinity with no priming, the RWC and OP of seedlings were reduced by 70%
and 62%, respectively, irrespective of rice cultivar (Figure 3a,b). On the other hand, plants
could retrieve RWC on average by 9% and 82%, respectively, with SNP (+) and ABA (+),
irrespective of rice cultivar. The same trend was also noticed for OP, where the values
were 33% and 105%, respectively. Thus, ABA (+) appeared promising in maintaining the
water status in rice seedlings but SNP improved water status in all conditions regardless of
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stress, and therefore could also be another promising agent in osmotic conservation. It was
observed that cv. Swarna Sub1 was better at responding to osmotic activities induced by
salinity [SS (+)] since it maintained a higher value of RWC through both NO and ABA. The
increase in Na+/K+ in non-primed plants was 46% under stress, whereas, it was 45% and
26% with SNP (+) and ABA (+), respectively, irrespective of cultivar (Figure 3c).
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Figure 3. Changes in relative water content (a), osmotic potential (b) and Na+/K+ (c) in two rice
genotypes (cv. Swarna and Swarna Sub1) under salinity stress [SS (+)] and non-salinity stress [SS (−)]
for 72 h with [SNP (+) or ABA (+)] or without [SNP/ABA (−)] priming for 24 h. Data are presented
in bars with mean ± SE (n = 3) from independent experimental sets and the significant values are
represented as * (p ≤ 0.05), ** (p ≤ 0.01) and *** (p ≤ 0.001) by student’s t-test to denote the significant
difference between SS (−) and SS (+) of SNP/ABA (−) as well as SNP (+) and ABA (+) of each
rice genotype.

3.4. Variable Responses of ALA, GABA and GB

The result showed that the concentration of compatible solutes (ALA, GABA, and
GB) and their concentrations were regulated by salinity (Figure 4a–c). Plants failed to lose
their osmotic turgidity as recorded by subdued concentration for ALA (58%), GABA (31%),
and GB (9%) with SNP/ABA (−) under SS (+) for cv. Swarna. For cv. Swarna Sub1, the
subdued concentrations were 25%, 28%, and 4%, respectively. On exposure to SNP and
ABA, [SNP (+) and ABA (+)] plants retrieved those metabolites irrespective of rice cultivars;
however, the maximum was seen in cv. Swarna Sub1. On a comparative basis, ALA and
GABA contributed more (by 17% and 71%, and 38% and 156% increase) under SS (+) with
SNP (+) and ABA (+), respectively, regardless of cultivar. GB was promising only with
ABA (+), rather than SNP (+), for both cultivars.
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Figure 4. Changes in alanine (a), gamma aminobutyric acid (b) and glycine betaine (c) contents in
two rice genotypes (cv. Swarna and Swarna Sub1) under salinity stress [SS (+)] and non-salinity stress
[SS (−)] for 72 h with [SNP (+) or ABA (+)] or without [SNP/ABA (−)] priming for 24 h. Data are
presented in bars with mean ± SE (n = 3) from independent experimental sets and the significant
values are represented as * (p ≤ 0.05), ** (p ≤ 0.01) and *** (p ≤ 0.001) by student’s t-test to denote the
significant difference between SS (−) and SS (+) of SNP/ABA (−), as well as SNP (+) and ABA (+) of
each rice genotype.

3.5. NADP-ME, Sucrose, and Related Metabolizing Enzymes

NADP-ME, which represents an alternative CO2 source through decarboxylation
reaction, was more pronounced in cv. Swarna Sub1 than cv. Swarna both in primed and
non-primed plants. On account of SNP (+), the activity promisingly increased by 86%
only in cv. Swarna Sub1 under SS (+) against SS (−) (Figure 5a). However, with ABA
(+), the activity promisingly increased for both cv. Swarna and Swarna Sub1 and the
values were 121% and 186%, respectively. This might suggest that both chemical primings
had their respective effects on cv. Swarna Sub1 by gaining carboxylation through the
decarboxylation pathway, which may compensate for the loss of photosynthetic activity
under saline stress. On account of photosynthetic carbon acquisition, sucrose and its major
metabolizing enzymes including invertase (wall-bound and cytosolic) were considered
from rice seedlings under SS (+) with SNP (+) and ABA (+) thereon. A steady decline of
sucrose concentration of the tissues of plants by 62% and 60% under SS (+) with SNP/ABA
(−) in cv. Swarna and Swarna Sub1, respectively, was recorded (Figure 5b). However, the
content promisingly increased in cv. Swarna Sub1 with both chemical elicitors. Moreover,
major sucrose metabolizing enzymes isolated and purified from the cell wall and cytosol
also followed an almost down-regulatory trend for both cultivars in non-primed plants
(Figure 5c,d). Meanwhile, with SNP (+) and ABA (+), the activities were retrieved by 170%
and 69%, respectively, on average of enzyme sources, irrespective of cultivar.
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Figure 5. Changes in NADP-ME activity (a), sucrose content (b), wall-bound invertase activity
(c) and cytosolic invertase activity (d) in two rice genotypes (cv. Swarna and Swarna Sub1) under
salinity stress [SS (+)] and non-salinity stress [SS (−)] for 72 h with [SNP (+) or ABA (+)] or without
[SNP/ABA (−)] priming for 24 h. Data are presented in bars with mean ± SE (n = 3) from indepen-
dent experimental sets and the significant values are represented as * (p ≤ 0.05), ** (p ≤ 0.01) and
*** (p ≤ 0.001) by student’s t-test to denote the significant difference between SS (−) and SS (+) of
SNP/ABA (−) as well as SNP (+) and ABA (+) of each rice genotype.

3.6. Variations in Polymorphic Expression of NADP-ME and Related Metabolizing Enzymes

On isozymic polymorphic expression for NADP-ME, a single but distinct band fea-
tured with more expression under SS (+) with chemical priming for both the cultivars
(Figure 6a). The densitometric images also showed the variation of polypeptide concentra-
tions as resolved through native gel, which clearly suggested the involvement of chemical
signaling (SNP and ABA) for decarboxylation (Figure 6b). However, maximum intensities
of polypeptide through a single band were scored with ABA (+) rather than SNP (+). The
polymorphic expression profile and its densitometric analysis of invertase as a protein
isolated from apoplastic (cell wall) and symplastic (cytosolic) fraction revealed hardly any
variation (Figure 6c–f). However, the intensity of the bands from the polymorphic protein
was denser in the case of ABA (+) than SNP (+) in both cultivars. Furthermore, the impact
of salinity stress ensured a better tolerance for respective cultivars from both differentially
cited invertase enzymes in the plants.

3.7. Variation in Path of ROS Generation and Its Polymorphism

For estimation of oxidative status, rice seedlings from salinity treatment were com-
pared with variants of ROS like O2

•− and H2O2 and their biosynthetic pathways. Thus,
NOX activity showed a steady increase under SS (+) proportionally by 75% and 45% in cv.
Swarna and cv. Swarna Sub1, respectively, in non-primed plants (Figure 7a). This was also
supported by the band intensities and their densitometric analysis (Figure 7b,c). Therefore,
the path of ROS generation may be the key factor for reactions of rice seedlings to the
salinity when compared to control.
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Figure 7. Changes in NADP(H) oxidase activity (a) and its polymorphic expression profile and
densitometric analysis ((b) and (c), respectively) in two rice genotypes (cv. Swarna and Swarna Sub1)
under salinity stress [SS (+)] and non-salinity stress [SS (−)] for 72 h with [SNP (+) or ABA (+)] or
without [SNP/ABA (−)] priming for 24 h. Data are presented in bars with mean ± SE (n = 3) from
independent experimental sets and the significant values are represented as * (p ≤ 0.05), ** (p ≤ 0.01)
and *** (p ≤ 0.001) by student’s t-test to denote the significant difference between SS (−) and SS (+) of
SNP/ABA (−) as well as SNP (+) and ABA (+) of each rice genotype. Loading plot: HK-heat killed.
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3.8. Variation in ROS Content and Its Histochemistry

The products of NOX such as O2
•− showed a similar trend, increased by 167% and

140% for those cultivars, respectively (Figure 8a). H2O2, another ROS, showed the same
trend under SS (+) in non-primed plants (Figure 8b). On average, the subdued values of
both O2

•− and H2O2 were 30% and 28% with SNP (+), and 64% and 80% with ABA (+),
irrespective of cultivar. Moreover, the control of oxidative stress was more pronounced
for cv. Swarna Sub1 for both the ROS generating pathway and its variants under SS (+)
than cv. Swarna. Distribution of ROS when observed histochemically in leaves and roots
showed more accumulation under SS (+) with SNP/ABA (−) (Figure 8c). The pattern of
ROS accumulation was mainly at the leaf margin, extending towards the center for O2

•−

and H2O2, which were diffuse and scant in the case of roots under SS (+). However, cv.
Swarna Sub1 recorded a more reduced accumulation of O2

•− and H2O2 with both SNP (+)
and ABA (+), which was also comparable for cv. Swarna but at a smaller magnitude.
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3.9. Activities of APX and GST

On average, APX activity showed a declining trend (19% decrease) regardless of rice
cultivar. SNP (+) and ABA (+) rice seedlings showed increased activity by 45 and 123%,
respectively, irrespective of the cultivar (Figure 9a). Plants sequestered metallic ion in
the form of Na+ during the experiment, which was sequestered into the vacuole by GST
activity. In this way, the rice cultivars increased GST activity irrespective of cultivar by 55%
under SS (+) with SNP/ABA (−) (Figure 9b). SNP (+) and ABA (+) caused up-regulation
by 57% and 288% respectively, irrespective of cultivar. On a comparative basis, cv. Swarna
Sub1 experienced a better response to both SNP (+) and ABA (+) in sequestering the Na+

compared to the other one.
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Figure 9. Changes in ascorbate peroxidase (a) and glutathione S-transferase (b) activity in two rice
genotypes (cv. Swarna and Swarna Sub1) under salinity stress [SS (+)] and non-salinity stress [SS (−)]
for 72 h with [SNP (+) or ABA (+)] or without [SNP/ABA (−)] priming for 24 h. Data are presented
in bars with mean ± SE (n = 3) from independent experimental sets and the significant values are
represented as * (p ≤ 0.05), ** (p ≤ 0.01) and *** (p ≤ 0.001) by student’s t-test to denote the significant
difference between SS (−) and SS (+) of SNP/ABA (−) as well as SNP (+) and ABA (+) of each
rice genotype.

3.10. Variation in Polymorphic Expression Profile of APX and GST

The same trend as the in vitro analysis was followed in the polymorphic expression
profile of APX activity and its densitometric analysis (Figure 10a,b). However, the expres-
sion profile in polymorphic forms and densitometric scanning of GST recorded no variation
between the cultivars but intensities of bands were distinct under SS (+) in non-primed
plants (Figure 10c,d). A better concentration of polypeptide was observed under SS (+)
with both SNP (+) and ABA (+).
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Figure 10. Changes in polymorphisms of ascorbate peroxidase and glutathione S-transferase ((a,c),
respectively) and their densitometric analysis ((b,d), respectively) in two rice genotypes (cv. Swarna
and Swarna Sub1) under salinity stress [SS (+)] and non-salinity stress [SS (−)] for 72 h with [SNP (+)
or ABA (+)] or without [SNP/ABA (−)] priming for 24 h. Loading plot: HK- heat killed.

3.11. Statistical Interpretation through PCA and Correlation Study

The biplot of PCA was represented by its two main components PC1 and PC2 (Fig-
ure 11). PC1 and PC2 scored 84% and 10% of the total variability, respectively. Thus, the
total cumulative variance of these components accounted for about 94%. Under the salinity
stress condition and irrespective of chemical elicitors, PC1 demonstrated a positive correla-
tion with NO, ABA, ALA, GABA, NADP-ME, APX, GST, Na+/K+, sucrose, wall-bound,
and cytosolic invertase activity. On the other hand, another component, PC2, represented
the positive correlation only with O2

•−, H2O2, and GB.
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invertase activity, NOX—NADP(H) oxidase activity, O2

•−—superoxide generation, H2O2—hydrogen
peroxide accumulation, APX—ascorbate peroxidase activity, GST—glutathione S-transferase activity.

From the correlation analysis, it was revealed that content of NO and ABA were
correlated positively (r = +0.42) (Figure 12). Moreover, total PA content also showed a
positive correlation with both the NO (r = +0.50) and ABA (r = +0.54) content. Regarding
the water status attributes like RWC and OP, a positive correlation (r = +0.86) between them was
found. ALA, GABA and GB also showed a positive correlation among them. The same trend
was followed for wall bound and cellular invertase (r = +0.78) and O2
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Loading plot: NO—nitric oxide content, ABA—abscisic acid content, PAs—total polyamines content,
RWC—relative water content, OP—osmotic potential, Na+/K+—ratio of Na+and K+, Alanine—
alanine content, GABA—gamma aminobutyric acid content, GB—glycine betaine content, NADP-
ME—NADP-malic enzyme activity, Sucrose—sucrose content, WI−wall-bound invertase activity,
CI—cytosolic invertase activity, NOX—NADP(H) oxidase activity, O2

•−—superoxide generation,
H2O2—hydrogen peroxide accumulation, APX—ascorbate peroxidase activity, GST—glutathione
S-transferase activity, * p ≤ 0.05, ** p ≤ 0.01.
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4. Discussion

For a long time, an economic, biocompatible, and efficient control measure against
salinity toxicity has been in practice in rice culture. sub1A, the prime factor exercised
in rice cultivar in the present experiment, can augment ABA sensitivity when overex-
pressed, as reported earlier [40]. This also paradoxically induces dehydration upon the
post-submergence period with leaf desiccation through significant ABA biosynthesis. Ex-
ogenously applied ABA has already proved to be variably useful for practical use in the
recovery of salinity and water stresses with rice cultivars. The usefulness of SNP and ABA
recorded a distinct variation through the functioning of sub1A QTL; however, differentially
in cv. Swarna and Swarna Sub1 (Supplementary Figure S1). sub1A response elements in
selective waterlogged rice genotypes have been shown to share compatibility with ABA
responsiveness. In fact, this is more prudent when rice genotypes are faced with excess salt
accumulation-related toxicity. Under abiotic stress, NO benefit rice with regards to sub1A
sensitivity, albeit differentially. However, it has not been dispensed, particularly, under
salt-induced dehydration. sub1A QTL basically coordinates ET metabolism, particularly,
anoxic sensing of O2 sharing NO and ABA signaling as usual under water deficit. Therefore,
RNS and ABA may be prudent for the assessment of cellular and physiological responses
as described in the present experiment.

4.1. ABA and SNP Priming Influence Salinity Tolerance Variably

The effects of different residues on modification of plant responses are dependent
on the nature of the chemical compound, reactivity, compatibility to cellular processes,
distribution, etc. Those organic residues, if adjusted to the cellular environment after the
application, become biocompatible and could modify the perception of stress signaling
from the environment or/and alter the stress responses in plant cells. Likewise, PAs
and ABA are ubiquitously present in plants and widely offered for stress tolerance in
different physiological perspectives [41]. In contrast, NO is less abundant in the cellular
environment and the imbalances of nitrate metabolism are mainly the primary source for
signaling. However, PAs and ABA are mostly biocompatible in regards to their salinity
tolerance and have a common function with osmotic compatible solutes to maintain cellular
turgidity. However, ABA is more related to the influence on stomatal physiology and has
an important role in K+ uptake and development of other compatible solutes (proline,
sucrose). PAs however are more related to mechanical shielding of the membrane and other
cellular organelles due to electrostatic binding of their positively charged NH2 groups to
other negatively charged residues of cells. Therefore, plants’ tolerance through PAs, as
expected from other cases, was also satisfied irrespective of rice cultivar in this experiment
of over-production of content under salinity. NO and ABA may directly or indirectly
influence the biosynthesis of PAs either by regulating any of the rate-limiting genes (S-
adenosine methionine decarboxylase, etc.) or limitation of PA catabolism [42]. In rice,
particularly under salinity, ABA-mediated tolerance has also been well documented in
the overexpression of the S-adenosylmethionine decarboxylase (SAM-DC) gene, but with
variability in tolerant and susceptible cultivars. PA catabolism, with its oxidation into H2O2,
is another pathway of tolerance, and, in particular, downstream signaling for antioxidation
is important [43]. ABA, despite its anti-dehydration nature, still strongly regulates PAs
regardless of water and salinity stress. Few genes are synchronized in their expression
for the regulation of PAs and their turnover. For PA degradation by amino-oxidase, well-
functioning ABA and NO control has been reported in plants. Therefore, the accumulation
and depletion in a significantly higher mode in cv. Swarna Sub1 might be more due to
catabolism of PAs compared to other cultivars under salinity.

4.2. NO and ABA May Maintain the Osmotic Balance in Plants under Salinity

As compared to control plants, cv. Swarna Sub1 was more tolerant to salinity stress
than others in this experiment. Salinity is minimized by retaliation water relation parame-
ters like water potential, root hydraulic conductivity, relative water content, and membrane
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permeability [44]. cv. Swarna Sub1 has better impacts with NO and ABA through RWC
and tissue osmotic potential. In rice, sub1A QTL, by adopting an ET-mediated quiescence
strategy, maximizes the RWC to ensure adequate water absorption following tissue hydra-
tion [45]. In rice cultivars possessing the sub1A trait, sensing hypoxia is also realized under
the condition of soil-O2-tension in salinity and similar recovery through a hydro active
mechanism through ABA signaling is operative. Overproduction of ABA under salinity in
the root and distribution through water conduits causes depolarization of the membrane,
which is responsible for the opening of ion channels [46]. The latter may compensate for the
influx of K+, which becomes more deficient under salinity stress and thereby, stabilizes the
water relation [47]. In contrast, NO is more affiliated with rescuing the membrane integrity
by minimizing the peroxidation reaction as well as inducing antioxidative activities under
salinity stress. The impact of NO on stomatal regulation is well documented with the
alteration of ROS metabolism on water stress with reference to ion efflux [48]. However, at
the root level, the sensitivity of NO under NaCl stress shares both ABA-dependent and
independent routes; however, a differentially expressed cascade of genes for tolerance
has been proposed in rice roots [49]. The results were verified from a strong correlation
with NO-primed seedlings irrespective of cv. Swarna and cv. Swarna Sub1 in the recovery
of water status compared to non-primed stressed plants. This finding strongly suggests
that exogenous application of NO ameliorates NaCl sensitivity through retention of tissue
hydration, bearing conformity with wheat [50], cucumber [51], and Chinese cabbage [52]
under stress.

4.3. SNP and ABA Regulate Compatible Solutes, Metallic Ion, Photosynthetic Decarboxylation,
and Sucrose Metabolism under Salinity

Under salinity, compatible solutes are typically required for maintaining the osmotic
balance due to Na+ accumulated osmotic perturbances. In the present experiment, cv.
Swarna Sub1 experienced a steadier increase in ALA, GABA, and GB compared to cv.
Swarna. Compatible solutes with differential accumulation in tolerant and sensitive
genotypes ensure the osmotic turgidity, ion homeostasis, membrane ion integrity, and
antioxidation [53]. NO and ABA might regain depleted hydration under salinity with
overproduction of ALA, GABA, and GB variably in cv. Swarna and Swarna Sub1. Un-
der inundation, sub1A QTL also showed responsiveness in overexpressed synthesis of
osmolytes like proline in support to plants’ growth. The improved synthesis of protein,
functioning of enzymes, fortification of membrane native structure, and antioxidation
support growth [54]. Therefore, identification of possible paths in sub1A QTL bearing
rice genotypes would be effective against salinity stress through receptiveness to NO. A
similar increase in GB and GABA strengthened the osmotic performances under salinity,
withholding K+ balance against Na+ with exogenous administration of NO and ABA under
salinity [55], heat [56], and chilling [57] stress. In rice and other crops, both NO and ABA
have successfully been shown to retrieve photosynthetic assimilation. This is based on mod-
ulation of carbon reduction metabolism as well as efficiency of photosynthetic light through
fluorescence characteristics. The latter maintains integrity in the chloroplast membrane
and thereby its energy transduction through photosystems. Decarboxylation with organic
acids by the enzymatic system is the most important, where NADP-ME has importantly
been studied under salinity stress [58]. Likewise, the activity of NADP-ME in the present
experiment is expected to have some relief on rice cultivars under salinity with induction
of NO and ABA priming. Under salinity-induced water stress, decarboxylation on malic
acid by NADP-ME releases CO2 with H+ establishing in the stroma with higher pH. This
favors more transportation of Mg2+ from the cytosol, favoring the activity of Calvin cycle
enzymes, but this is exclusively for the C4 system. Non-photosynthetic NADP-ME in rice
also contributes a reducing equivalent (NADPH + H+). This is mostly required for lipids,
secondary metabolites, and oxidative pentose phosphate pathways biosynthetic pools [59].
ABA induces the malate/OH transporter and thereby increases the accessibility for malate
accumulation. In rice under salinity, malate metabolism undergoes anaplerotic reactions
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where released CO2 might be involved in the biosynthesis of compatible solutes and other
intermediates. Interestingly, both the rice cultivars herein favored sustained NADP-ME
activity more with ABA than NO. NO, with its ample possibility, could be involved in
the reversal of oxidative damage, sustaining enzyme integrity. Under salinity, plants are
otherwise more sensitive to ET- and glucose-induced suppressed photosynthesis. Excess
glucose accumulation would be key to the feedback inhibition for the carboxylase reaction,
where NO acts as reliever [60]. On that basis, sub1A QTL in Swarna Sub1 with ET sensing
activity might be better in the sustenance of NADP-ME by NO priming than cv. Swarna
under salinity.

On the other side, NO and ABA, as identified key modulators, dependently/independently
influence the starch–sucrose interrelationship under salinity stress in plants [61]. Sucrose
metabolism happens to be an adaptive measure through carbon allocation against salinity
and alkalinity with a continued flux of sucrose hydrolysis into reducing sugars. The
activity of invertase over sucrose into simpler sugars is utilized mostly for glycolytic paths
in support of growth and maintenance of respiration. The latter is effective for tissue
viability, particularly when photosynthetic carbon fixation is restricted [62]. ABA exerts its
effect on the upregulation of invertase activity in active photosynthesizing tissues when
stomata are closed under salinity. Under this condition, the reducing sugars, under the
activity of cell wall-bound invertase, replenish glycolytic flux and its sustenance [63]. On
the other hand, translocation of sucrose for maintenance of the source sink continuum is
important under salinity as a selective feature for sustained photosynthetic activities in
rice [64]. cv. Swarna Sub1 was observed to perform sucrose metabolism better through
more leniency to NO and ABA than the other cultivar. Out of two metallic ions (Na+

and K+), plants are more sensitive to loss of K+ than the other one. Under salinity stress,
the primary feature recorded in plants is dehydration through loss of turgidity of tissues.
Undoubtedly, K+ accumulation by roots and its distribution through conductive tissues to
other plant parts is influenced by membrane functions. K+ uptake under salinity in plant
roots is mostly mediated by the high K+ transporter (HKT1, HKT2) and secondarily by ion
pumps (H+/ATPase). In an earlier experiment, we found increased activity of H+/ATPase
following metal accumulation over the membrane, but this was under metalloid stress.
Thus, the overexpression of H+/ATPase activity and a higher ratio of K+ intrusion to Na+

by both NO and ABA is interesting in the present experiment. This is because rice seedlings
were shown to recover from salinity-induced detrimental effects (mostly retrieving the
osmotic turgidity) by priming of SNP and ABA.

4.4. NO and ABA Independently Moderate the Oxidative Stress under Salinity

NO sensitivity significantly varies with crop species, duration of stress revelation,
presence of other elicitors, tissue specificity, etc. In rice, root sensitizes more than shoot
with NO sensitization and accumulation through nitrite reductase activity [65]. Chemical
conversion of NO to other ROS-like peroxides is featured in rice roots under NH4

+/NO3
−

supplementation. Therefore, a simultaneous increase in the cellular concentration of
NO and ROS would indicate dependency of oxidative stress through common possible
pathways with NOX, a xanthin-like oxidase [66]. This is well depicted in the present
experiment with a significant up-regulation of wall-bound NOX activity under salinity. In
rice particularly, anaerobic or O2 deficiency probes a redox signaling through both NO
and ROS through induction of VII ET responsive factor (ERF). An ERF has been shown
to be compatible with water stress tolerance through the quiescence strategy by ethylene
metabolism [67]. Moreover, NO signaling is also reflected in rice due to moderation of
ethylene responses. Therefore, a prediction for the occupation of sub1A QTL, an ERF in
favor of NO sensitivity in plants for altering the responses is expected to be prudent, and,
under salinity where roots also sense hypoxia due to depleted soil, O2 tension may equally
promote ROS generation through usual apoplastic/symplastic pathways. Therefore, cv.
Swarna Sub1 with its over-expressed NOX activity may facilitate ROS generation for its
oxidative degeneration of cellular residues. Support of NO in reducing the derivatives
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of ROS directly or/and inducing antioxidant generation for quenching of ROS energy
are equally important. The distribution of tissue-specific ROS accumulation irrespective
of cultivar but with differential tolerance could imply NO sensitivity of those cultivars
in a differential manner. On a comparative basis, the ABA could exceed responses for
NOX activity more than NO and thereby raise the chances for more oxidative stress but
it is rescued by existing antioxidation paths [68]. An equal possibility for both NO and
ABA-induced antioxidation, particularly at the level of leaves and roots for O2

•− and H2O2,
was revealed by histochemical detection but without significant variation between cultivars.
Meanwhile, H2O2 rather than O2

•− has a more beneficial role in rice plants under salinity,
which might possibly establish a pathway for better tolerance in cv. Swarna Sub1.

4.5. Enzymatic Alleviation of Salinity: Antioxidation and Ion Sequestration

For metal exclusion, enzyme-mediated detoxification by a few special families of
multi-functional proteins is evident for salinity detoxification. Glutathione S-transferases
(GST) are exploited through the developmental process of plants when exposed to diverse
toxic residues like metals, metalloids, and xenobiotics. GST, which is widely distributed in
tissues, undergoes GSH-mediated electrophilic reactions with compounds and is converted
into a more solubilized form [69]. Under salinity, different groups of GST render the
conjugation of Na+ and allied cations and transfer them into extracellular or vacuolar
spaces. GSTs have also been reported to be induced under abiotic stresses, even under the
influences of allelopathic compounds [70]. In most cases, the Na+ and heavy metal-induced
lipid peroxides, hydroperoxide and epoxide, are detoxicated along with auxin homeostasis
cysteine turn-over, and senescence regulation [71]. Thus, in the present experiment, cv.
Swarna Sub1 showed much up-regulated activities of GST and undoubtedly scored better
indices for Na+ detoxification even with NO and ABA. ABA has also been reported in plants
to co-induce GST along with osmotic homeostasis in serving dual tolerance against salinity-
induced damages. In contrast, NO has not been shown to induce GST activity in earlier
studies but a few cases reported transformation of reduced sulfur into simpler non-thiol
residues. However, rice roots exposed to NO also alter the membrane permeability to sulfur
uptake and downstream metabolic reduction into residues like cysteine [72]. In the course
of enzymatic antioxidation, a class of peroxidases is attributed by APX with ascorbic acid
as the electron donor to lysis of H2O2. Ascorbate-mediated peroxidase activity against ROS
happens to be a key path in different subcellular compartments [73]. A significant variation
also exists in plant species in APX activity and its trend through different stressors according
to genotypic potential. The expression of APX encoding genes is differentially modulated
by several abiotic stresses, mostly depending on duration, intensity, elicitation/induction
factors, plant ages, etc. In general, plants register an upregulation in activity as a major
H2O2 detoxifying protein ascorbate-glutathione cycle [74]. Evidence is more pronounced
where both NO- and ABA-mediated induction of APX is more common in different crop
species [75]. APX is more active mostly in chloroplasts where immediate scavenging of
H2O2 becomes indispensable in sustaining the normal photosynthetic activity. Therefore,
photosynthesis with suppressed status under salinity may identify an electron donor for
peroxidase reaction as ascorbate, and thereby, it appears as a major antioxidant. In the
present experiment, the modification of APX activities and its major cytosolic isoforms
might symbolize an overexpressed antioxidation under both NO and ABA. However, ABA
was more aggressive in governing APX regulation than NO irrespective of rice cultivar in
this experiment.

5. Conclusions

From the present experiment, it is clearly evident that rice cultivars had equal chances
to react in a differential manner to SNP and ABA interference. The physiological and
cellular responses were more pronounced in regards to variability irrespective of which rice
cultivar was exposed to salinity. The upregulated manner of sugar and sucrose hydrolysis
supported plant tolerance initially under salinity. NO and ABA had distinct effects on
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these, suggesting a possible path of plants’ sensitivity to exogenous elicitation. Thus, the
performance of ABA in osmotic maintenance might be complementary to NO in the same
manner. This probably conceives the idea of an ABA independent/dependent NO route
to secure the respective responses under salinity (Figure 13). Plants showed significant
moderation of polyamines under both NO and ABA supplementation. Polyamines had
reduced activity of peroxidation reactions on the membrane by regulation through O2

•−

and H2O2. NO and ABA had their effects on apoplastic sugar metabolizing enzymes to
secure stable photosynthetic flux. However, at the gene level, regulation of ABA induced
distinct polymorphisms in enzymatic polypeptides in a better manner than NO. Therefore,
polymorphism induction by both NO and ABA might be promising in the biomarking con-
cept under salinity, but varied through cultivars. Additionally, decarboxylation reactions
might support CO2 enrichment for plants through NADP-ME activity in acquisition of
carbon for stress tolerance. This would be a basis for the formulation of NO/ABA-mediated
salinity tolerance responses in rice where both oxidative stress and sugar metabolism are
the prominent keys. From the focus of cultivar-specific responses, sub1A QTL seems to
be the usual operative in ET modulation with ABA influencing different characters. In
contrast, the non sub1A possessing rice cultivar responded less to ABA under the identical
saline conditions. NO would otherwise be more differentiating in a manner contiguous
with ABA, which may be suggestive that a complementary action of salinity tolerance was
aided by ABA. Therefore, NO and ABA would be realistic in priming applications to secure
salinity tolerance in rice culture. To the best of our knowledge, this study might realize the
affectivity of NO and ABA at the metabolomics level, which in turn enriches the existing
understanding of the cellular mechanism of salinity tolerance in rice.
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