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Abstract: As a result of energy consumption and human activities, a large amount of carbon dioxide
emissions has led to global warming, which seriously affects the growth and development of plants.
Vegetables are an indispensable part of people’s diet. In the plant kingdom, a variety of vegetables
are highly sensitive to climate change. For them, an increase of just a few degrees above their
optimum temperature threshold can result in a loss of yield and quality. Emerging strategies such as
practice management and breeding varieties in response to above-optimal temperatures are critical
for abiotic stress resistance of vegetable crops. In this study, the function and application of multiple
strategies, including breeding improvement, epigenetic modification directed generation of alleles,
gene editing techniques, and accumulation of mutations in multigenerational adaptation to abiotic
stress, were discussed in vegetable crops. It is believed to be meaningful for plants to build plasticity
under high temperature stress, thus generating more genetic structures for heat resistant traits in
vegetable products.

Keywords: global warming; vegetables; gene editing; breeding; epigenetic modification; plant plasticity

1. Introduction

Climate change is a natural process caused by both internal and external factors, in
which the continuous change of atmospheric composition largely affects the efficiency
of land use. Moreover, climate change and its interaction with intensive agricultural
management may lead to nitrogen losses, which in turn constrains environmental and
human health at local, regional and global scales [1]. Global warming is a typical example
of climate change, which has a profound impact on agricultural production. Scientists
suggest that limiting global warming to 1.5 ◦C could reduce the risk of 2 ◦C warming
by half for plants and animals, and by about 66% for insects [2,3], indicating that plants
are highly sensitive to changes in ambient temperature. Hence, climate change poses
challenges to practice management. In practice management, understanding how crops
respond to climate change is critical to prevent damage from temperature change. Plants
responding to high temperature stress depend on the degree of overtemperature, duration,
plant genotypes, and other co-existing environmental conditions. Heat generally impairs
photosynthetic activity, germination, and reproduction and yield [4], while the complicated
transcriptional regulatory network, post-translational regulation of the transcription factors,
epigenetic mechanisms, and non-coding RNAs are involved in high temperature induced
responses and stress memory [5].

High temperature stress is a main limiting factor of the yield of vegetables grown
in greenhouses in summer [6]. In fact, the sensitivity of plants to temperature increases
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is much higher than laboratory data shows [7] and may even be around 1 ◦C [8], greatly
increasing the complexity and difficulty of planning and adjusting strategies to prevent
crop yield loss. Vegetable products are an important part of the human diet, and many
of them are temperature-dependent. For example, high temperatures can lead to early
flowering of non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [9] and a significant
reduction in flower number and seed production per plant [10]. Moreover, it affects the
leaf pigmentation and quality of Brassica oleracea L. [11], the yield of potato [12], as well as
fruit setting rate in Solanum lycopersicum [13].

Vegetables are essential to global food supply and sensitive to heat stress. Higher than
optimal growing temperatures, no matter day or night, can significantly affect crop yields,
making heat stress a major challenge for horticultural crop production. For these reasons,
how to cope with high temperature stress in vegetable production has been a hot topic of
scientific research in recent years.

2. Emerging Strategies in Vegetable Practice Management
2.1. Genetic Breeding Resource

In breeding, abundant diversity of genetic resources is of great significance for biologi-
cal evolution to cope with abiotic stress [14–17]. Cappetta et al. evaluated the phenotypic
characteristics of quantitative and qualitative traits by applying heat stress treatment to
self-crossing F4 segregated populations of heat tolerant tomato varieties, and predicted
several potential loci that may be involved in high temperature response by calculating the
effect of a single nucleotide polymorphism (SNP)-dependent variation and combining with
quantitative trait locus (QTL) analysis. This, to some extent, reveals a genome-selective
(GS)-dependent approach that can control interactions between plants and high tempera-
tures [13]. Lu and colleagues then found that after exposure to extreme heat and moderate
warming, mutation rates of single-nucleotide variations (SNVs) and small indoles were
increased in Arabidopsis thaliana multigenerational accumulation plants, which is associated
with changes in epigenetic modifications, such as DNA methylation levels [18]. These
studies and advances provide insights and guidance on genetic and epigenetic structures
as well as correlations between different biological traits (i.e., yield and growth-dependent
biomass) under high temperature stress. The optimized genetic prediction model is plausi-
ble as a valuable strategy to accelerate the development of heat tolerance in tomato fruits
with high yield and soluble solids content [13], which is superposed with the potential
impact of epigenetic improvement of breeding resources to further enrich vegetable food
traits through the crop practice management [19,20].

In recent decades, in order to overcome the defects caused by extreme temperature on
yield and quality of vegetable products, a large number of studies have been carried out,
such as the application of plant hormones [21–23] and the use of grafting to change root-
stocks [24]. In potatoes, gibberellin may be involved in thermal sprouting and dormancy
release caused by heat shock in summer; thermal sprouting and postharvest sprouting
share common target genes and similar gene expression patterns [25], showing the ir-
resistibility of high temperature induced quality loss of potatoes. Although the quality
and performance of vegetables in high temperatures summer environment have been
partially improved, further attempts of genetic breeding should be made to cultivate more
heat-resistant vegetables.

2.2. Gene Editing Technology

Gene regulatory networks are central to the understanding of all biological processes,
including those that determine important crop traits such as yield, quality, and resistance
to biological and abiotic stresses, which are sensitive to high temperature stimuli [8]. The
application of gene editing techniques to promote germplasm improvement has been
demonstrated in some crops [26–28]. Clustered regularly interspaced short palindromic
repeats (CRISPR)/ CRISPR-associated protein (Cas) technology in genome editing includes
prime editing [29], base editing [30], tissue-specific editing [31], epigenome editing [32],
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and inducible genome editing [33], which can be used as the strategies to obtain resistant
varieties that can tolerate high-temperature stress [34]. For instance, by CRISPR/Cas9-
based gene editing, TaMBF1c was confirmed to have a positive role in heat response in
wheat [35], suggesting that the overexpression of homolog genes of MBF1c in vegetable
crops could be considered as a method for the selection of resistant varieties. In plants,
the expression of most heat shock proteins (HSPs) is transcriptionally regulated by heat
shock transcription factors (HSFs) in response to higher temperatures, thus to minimize
the damages caused by heat stress (HS) [36]. Hence, CRISPR/ CAS9 can facilitate the
study on redundancy function of HSPs or HSFs genes by the simultaneous alteration of
multiple genes [37]. The efficient establishment of tomato transformation system mediated
by Agrobacterium tumefaciens also promoted the superiority of gene editing technology to be
well reflected in tomato [38–40]. Through meta quantitative trait loci (MQTL) analysis and
screening, several QTL associated with heat tolerance traits (e.g., pollen viability, number
of pollens, number of flowers, style protrusions, style lengths) were identified [41], hinting
that these QTLs could be targeted to perform genomic selection and breeding techniques
including genome editing and molecular breeding to improve heat tolerance in tomato
plants and fruits. As the system of transgenic technology has been gradually established in
many other vegetable varieties [42,43], using CRISPR/cas9 technology to develop genetic
resources (e.g. knocking out the corresponding genomic regions of non-coding RNAs
targeting HSFs) and enhance the plasticity of vegetable varieties under high temperature
stress has become a feasible method of molecular breeding in agricultural practice.

2.3. Interference by Epigenetic Modifications

Under the changeable growth environment, plant cells have developed complicated
gene regulatory networks [5,44], including transcriptional level regulation involving multi-
ple transcription factors [45] and post-transcriptional modification [46]. DNA mutations in
the Arabidopsis genome were isolated after multiple generations of high temperature expo-
sure and DNA methylation was found to play a role in the mutation process at high temper-
atures. Moreover, natural antisense transcripts (NATs) NAT398b/c inhibit microRNA398
biogenesis and reduce plant thermal tolerance via a regulatory loop mechanism [47]. These
results suggest that evolution-based environmental changes may be altered by epigenetic
modifications that affect the plant genome and epigenome. Post-transcriptional modifi-
cation of genes can be achieved by affecting chromatin structure, histone modification,
DNA methylation, histone variation and non-coding RNA, demonstrating the complexity
of gene regulation mechanisms [48]. However, there are few reports on the specific mech-
anisms of histone variation and chromatin structure in response to mild hypothermia in
plants, and similar regulatory mechanisms are still unclear in horticultural crops such as
tomato. Epigenetic modification enriches the diversity of genetic information in vegetable
crops [19]. The evolution of heat-induced SNPs accumulation is dynamically regulated
by DNA methylation [18], suggesting that epigenetic modification and environmentally
induced SNP-dependent genetic selection should be considered synergistically [13].

2.4. Possible Opening Avenues

In addition to breeding techniques and epigenetic modification dependent epialleles
that have been used to improve tolerance to high temperature stress, several new ap-
proaches have been developed recently to promote biological evolution and adaptation
to high temperature stress, such as beneficial interactions between microorganisms and
plant hosts, and single spectral dependent light regulation. The aboveground structure of
plants is very important for the yield and shelf life of horticultural products [19]. Different
wavelengths of light have different effects on plants. For example, red light can trans-
form biologically inactive photochrome Pr into biologically active photochrome Pfr, thus
achieving maximum absorbance under far-infrared (FR) light, while blue light can activate
the activities of cryptochrome and phototropin, thus accumulating the excited states of
photosynthetic pigments [49].The phytochrome B (phyB) photoreceptors participate in
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temperature perception through its temperature-dependent conversion, specifically, the
reversal from the active Pfr state to the inactive Pr state, and the bioactive Pfr form of
phyB is converted to its inactive Pr form at high ambient temperatures [50–52]. On the
other hand, blue light inhibits heat-mediated hypocotyl elongation through cryptochrome
(CRY1) [53]. These studies suggest that photoreceptors are involved in high temperature
induced thermomorphogenesis in plants, which is critical to the vegetative stage, flowering
and reproductive development. With the revelation of the function of specific spectral and
the application of light-emitting diodes (LEDs) in horticultural facilities [54], spectrum-
dependent heat stress resistance should also be considered in practical management.

Higher ambient temperatures can promote communication between viruses and in-
fected hosts, thus affecting plant growth and agricultural productivity [55]. More generally,
the high temperatures and humidity of the surrounding environment can induce bacterial
disease in the roots of plants, which greatly reduces production. Cucumber fusarium wilt
caused by Fusarium oxysporum occurred frequently in greenhouses with increasing tem-
perature in summer. High temperature is conducive to virus transmission and systematic
infection in cucumber plants [56], so it is necessary to prevent biohazards caused by high
temperature. DNA methylation regulates the root microbiome, and exudates released by
plant roots recruit beneficial microorganisms to promote growth and immunity in plants
such as Arabidopsis and tomato [57]. This indicates that plants can improve their defense
against pathogens via the interaction between microorganisms and roots [58,59], which
can also constrain the damage to vegetable yield caused by rising ground temperature to a
certain extent (Figure 1).

Figure 1. Schematic model showing that genetic and epigenetic dependent regulations/adaptations
in molding the plasticity of vegetable plants responding to high temperature stress. The figure is
created with bioRender.com with a few modifications.

3. Discussion

Developing tomato varieties that produce higher yields at higher temperatures is a
valuable strategy to combat global warming. To this end, a coordinated combination of
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multiple strategies, including breeding improvement [60,61], epigenetic modification di-
rected generation of epialleles [62], gene editing techniques [30], and cumulative mutations
of multiple generations adapted to abiotic stress [18], is likely to shape the plasticity of
vegetable plants under heat stress, which can produce more heat resistant genetic structure
in vegetable products in future.

A comprehensive understanding of the molecular mechanisms that determine the
relationships between important agronomic traits will help further promote breeding
techniques and research to shape tomato plasticity under high temperature stress [13]. The
frequent occurrence of global temperature extremes has also greatly upset the balance of
carbon dioxide metabolism. Temperature changes are caused by diurnal and seasonal
variations as well as an increase in global average temperature due to climate change [8]. In
addition, vegetables and their products are grown for long-term consumption. In that case,
some vegetable crops are grown in seasons that are not suitable for them. Among the growth
conditions, high temperature easily leads to the failure of fruit setting, early flowering and
senescence of leaf-vegetables, as well as promoting the growth of branches and leaves [13].
However, high temperatures are reported to have a positive effect on flavor, as broccoli
harvested during the hot summer months tastes good [60]. Even if this observation is
broad and conservative in other vegetable crops, how to balance yield and quality still
needs to be considered. In addition, a small increase in nighttime temperature destroys the
tight temporal coordination between internal molecular events and the environment, thus
reducing grain yield and quality [63], suggesting that an appropriate diurnal temperature
difference is conducive to the normal growth and development of plants. This facilitates the
accumulation of nutrients and the reduction of respiratory expenditure. Increased nighttime
temperature leads to loss of product yield and quality, which is consistent with the concept
that diurnal temperature difference determines the quality of many vegetables, such as
the accumulation of carotenoids, sugars, antioxidants and ascorbic acid in vegetables and
fruits [64]. This indicates that the negative effects of nighttime high temperatures also need
to be taken seriously.

Although short-term regulation can be easily achieved in management practice through
spectral dependent regulations and rhizosphere microbial interactions, genetic and epige-
netic regulatory/adaptive capacities of vegetable species should be fully developed. This is
because, previous studies have shown that when deciding on a global scale plant biomass
and crop yield response to global warming, species and genotype-based intrinsic factors
(evolutionary history) play a more important role than the external factors, including
the experimental process and environmental conditions such as temperature, light, and
their interaction with plant hormones [16,60]. As a response to current global warming,
the maximum potential abundance of northern plant species is constantly changing [65],
suggesting that interspecific differences directly contribute to the effects of global warm-
ing. Above all, a variety of strategies including breeding improvement methods, enriched
breeding materials, epigenetic modification directed generation of epi-alleles, gene editing
techniques and multigenerational adaption to abiotic stresses with accumulated mutations,
can be applied for deciphering the response of consumer-demanded vegetable traits at
different temperatures and facilitating the exploration of new cultivars and/or varieties
adapted to climate change. As schematically shown in Figure 1, we present our under-
standing and considerations on how to improve the response of vegetable plants to high
ambient warming by exploring the genetic and epigenetic regulatory/adaptive regulations
of vegetable species.
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