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Abstract: The biogeochemical cycling of soil elements in ecosystems has changed under global
changes, including nutrients essential for plant growth. The application of biochar can improve the
utilization of soil nutrients by plants and change the stoichiometry of carbon (C), nitrogen (N), and
phosphorus (P) in plants and soil. However, the response of ecological stoichiometry in a moss crust-
soil continuum to local plant biochar addition in a desert ecosystem has not been comprehensively
explored. Here, we conducted a four-level Seriphidium terrae-albae biochar addition experiment (CK,
0 t ha−1; T1, 3.185 t ha−1; T2, 6.37 t ha−1; T3, 12.74 t ha−1) to elucidate the influence of biochar input
on C: N: P stoichiometry in moss crusts (surface) and their underlying soil (subsurface). The results
showed that biochar addition significantly affected the C, N, and P both of moss crusts and their
underlying soil (p < 0.001). Biochar addition increased soil C, N, and P concentrations, and the soil
N content showed a monthly trend in T3. The C, N, and P concentrations of moss crusts increased
with the addition levels of biochar, and the moss crust P concentrations showed an overall increasing
trend by the month. Moreover, the soil and moss crust C: P and N: P ratios both increased. There
was a significant correlation between moss crust C, N, and P and soil C and N. Additionally, nitrate
nitrogen (NO3−N), N: P, C: P, EC, pH, soil moisture content (SMC), and N have significant effects
on the C, N, and P of moss crusts in turn. This study revealed the contribution of biochar to the
nutrient cycle of desert system plants and their underlying soil from the perspective of stoichiometric
characteristics, which is a supplement to the theory of plant soil nutrition in desert ecosystems.

Keywords: local plant biochar; moss crusts; nutrient cycling; ecological stoichiometry; desert
ecosystems

1. Introduction

Carbon (C), nitrogen (N), and phosphorus (P), the three most basic elements in soil,
play crucial roles in organismic activities [1]. C is a key building block of structural sub-
stances, whereas N and P are the main limiting nutrients for the productivity of terrestrial
ecosystems [2,3]. In nutrient-deficient areas, plants need to regulate the stoichiometry of C,
N, and P in the plant-soil system to maximize the utilization of soil nutrients in confronting
the adverse environment [4]. Exploring the relationship in C, N, and P stoichiometry
between plants and soil is important for the understanding of biogeochemical cycles in
terrestrial ecosystems [5,6]. Many studies have reported the C, N, and P stoichiometry
of plants and soil, and analyzed their relations and influence factors [7,8], most studies,
however, have mainly focused on forest and steppe ecosystems, while neglecting desert
ecosystems [5,9].
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Biochar is a kind of charcoal produced by burning biomass (organic material) in a
low-oxygen environment. As its stable chemical properties contain many N, P, K and other
nutrients necessary for plant growth and development [10], biochar is commonly used as
a soil nutrient harmonizer [11]. Fertilizing biochar into soil also improves the utilization
of soil nutrients by plants by improving soil structure, water, and fertilizer conservation
capacity and microbial activities [12,13]. As a result, C, N, and P stoichiometry between
soil and plants would be changed. For example, biochar addition decreases the C: N ratio
in forest ecosystems by reducing the leaching of organic carbon and nitrogen [14]. Wood
biochar increases nitrogen retention in field settings mainly through abiotic processes [15].
In addition, previous studies showed that the physical and chemical properties of biochar
were related to its raw materials, and different types of biochar had different effects on
plants and soils [16]. However, most of these studies have taken place in terrestrial wet-
ter ecosystems, our study regarding the influence of biochar addition on C, N, and P
stoichiometry in desert ecosystems is still not clear.

Biological soil crusts (BSCs) are composed of cyanobacteria, algae, fungi, lichens,
bacteria, and mosses. As it can maintain surface stability, improve soil structure, affect soil
nutrient cycling, and create favorable conditions for soil and phytoremediation of desert
ecosystems, BSCs are considered to be an important basis for vegetation succession in
arid and semi-arid desert regions [17–19]. The desert ecosystem is more barren than other
ecosystems, plant growth is limited by nitrogen and phosphorus. The moss crusts are the
most common form of all BSC types, accounting for about 50% of the total distribution
area [20]. Due to its high ability to bind N, sequestrate C, and excite P, it is considered to
be the largest contributor to improving desert surface nutrient cycling [21,22]. The input
of exogenous nitrogen and phosphorus is beneficial to the growth of moss crusts, which
can stimulate the photosynthetic process of moss crusts and enhance C exudate, thereby
improving C: N: P stoichiometry [23]. However, most of the current studies have only
focused on the positive maintenance of moss crusts on desert ecosystem functions, while
few studies have investigated the effects of biochar addition on C: N: P stoichiometry in
moss crust and their underlying soils (moss crust-soil continuum).

To verify the effects of biochar addition on C: N: P stoichiometry in the moss crust-soil
continuum in desert ecosystems, we established a multi-level biochar addition indoor
experiment using moss crusts and Seriphidium terrae-albae from the Gurbantünggüt Desert.
The purposes of this study were: (1) to study the effects of biochar on C: N: P stoichiometry
in the moss crust-soil continuum; (2) to identify the main regulatory factors affecting C: N:
P stoichiometry in the moss crust-soil continuum. We applied local plant biochar to a desert
ecosystem to change the C, N, and P of the moss crust system, and thereby stimulate the
growth of moss crusts and other plants, which is of great significance for the improvement
of structural stability and function of the desert ecosystem. Our results can provide a
theoretical basis and data support for the application of biochar in global desert ecosystem
restoration.

2. Materials and Methods
2.1. Study Site

The study site is located at the southern margin of the Gurbantünggüt Desert in the
Xinjiang Uygur Autonomous Region, Northwest China (44◦15′–46◦50′ N, 84◦50′–91◦20′ E).
This region has a typical temperate continental arid climate with a mean annual precipita-
tion ranging from 70 to 150 mm, while the annual evaporation is greater than 2000 mm. The
mean annual temperature ranged from 6 to 10 ◦C. The climate type of the region is BWk
based on the Köppen climate classification [24]. The native vegetation is mainly composed
of sand-borne and drought-tolerant plants. The dominant plant species include Haloxylon
ammodendron, Haloxylon persicum, and some dwarf shrubs, specifically Ephedra distachys,
Calligonum mongolicum, Reaumuria soongorica, Artemisia arenaria, and Seriphidium terrae-albae.
In our study areas, moss crusts were 8–16 mm thick, biomass was 3.22–8.65 g dm2, and
coverage was 61.2–86.8% [25].
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2.2. Preparation of Biochar

According to our measurements and the references, Seriphidium terrae-albae has a
relatively high dry biomass with the above-ground dry biomass being 54.6–82.2% of the
total dry biomass in the plot. It is the most constructive species and dominant species in
the habitat, widely distributed in semi-fixed or fixed sandy areas and forms a compan-
ion community with moss crusts [26,27]. Therefore, in this paper, the dominant species
Seriphidium terrae-albae in the study area was selected as the biochar raw material. The
carbon, nitrogen, and phosphorus contents of the biochar used in the experiment were,
respectively, 71.6–82.3%, 0.92–1.17%, and 5.8–6.9 g/kg, and the pH was between 9.5–9.8.
More specifically, the dried Seriphidium terrae-albae were pyrolyzed at 400 ◦C for 2 h under
oxygen-limited conditions using vacuum tubular resistance furnace. After that, all samples
were mixed, ground, and sieved with a soil sieve to particles <2 mm in diameter.

2.3. Experimental Design

To avoid disturbance from external factors such as animal and human activity damage,
we conducted an indoor control experiment to test the influence of biochar addition on
C: N: P stoichiometry. The amount of biochar used varies depending on its application,
considering that the general biochar addition dosage range is 0–20 t ha−1, when it is used
as a soil amendment in farmland ecosystem [28–30]. Therefore, our experiment included
four biochar addition treatments: three biochar addition treatments (T1, 3.185 t ha−1; T2,
6.37 t ha−1; T3, 12.74 t ha−1) and a control (CK; 0 t ha−1). Moss crusts and soil (sandy soil)
used for experiments were obtained from an experimental field in the southern margin
of the Gurbantünggüt Desert, where long-term field experiments were conducted. To be
specific, 12 plots (1 m × 1 m) were randomly selected in April 2018 in the sites where the
moss crusts were well-developed and undisturbed. Moss crusts were collected in these
plots using a soil column sampler (PVC pipe, d = 0.2 m) and a total of 12 soil columns. Then,
all soil columns were buried separately in circular truncated cone stainless steel buckets
containing situ soil (the lower opening of PVC pipe fits exactly into the bottom of the
stainless teel buckets) and brought back to the laboratory for biochar addition experiments.
Considering that desert ecosystems are almost unaffected by human and mechanical tilling,
the biochar was uniformly spread on the surface (d = 0.2 m) of the moss crust at four levels
(CK; T1; T2 and T3) at the end of May 2018, and each level was replicated three times [31].
All experimental treatments were placed in a plant culture room, and during the experiment
the environmental conditions in plant culture room were set as follows: a day/night regime
of 14 h light (7:30 a.m.–9:30 p.m.)/10 h dark, temperature 23 ± 1 ◦C, the daylight was set at
10,000 lx, and deionized water was sprayed on each experimental treatment with a spray
bottle (twice a month on the 10th and 25th of each month, 10 mL each time, a total of 20 mL
per month) according to the rainfall (the average annual precipitation is 70–150 mm) in
the field.

2.4. Field Sampling and Measurement

The moss crusts and soil samples were collected at the end of each month during
the experiment period from June to October 2018 (Figure 1). Firstly, the moss crusts were
carefully separated from the underlying soil using a small shovel to ensure the integrity of
the moss crusts, and the sand soil from the surface of the moss crusts was gently removed
with a brush. Then, moss crust samples were placed into a numbered envelope. After that,
the subsoil (0–5 cm sandy soil) was collected where the moss crusts had been collected, and
quickly brought to the laboratory for physical and chemical analysis [32].
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Figure 1. Schematic diagram of moss crust and soil sampling.

The moss crust samples were dried for 48 h in an oven at 70 ◦C and screened by 2 mm
mesh and then ground for determination of C, N, and P concentration. Soil samples were
divided into two parts: one was used for soil moisture (SMC) determination using the
oven drying method, and the other was air-dried at room temperature, hand-picked to
remove plant and detritus, and ground to pass through a 100-mesh sieve for soil chemical
determination.

2.5. Physicochemical Analysis

Various physico-chemical parameters were determined by adopting standard methods
and all reagents used were from regular manufacturers. Total N concentration (TN) in the
moss crusts and soil samples were determined following the Kjeldahl digestion method
using a Nitrogen Analyzer System (KJELTEC 2300 AUTO SYSTEM II, Foss Tecator AB,
Höganäs, Sweden) [33]. The total P concentration (TP) of the soil and moss crust samples
was determined by the H2SO4–HClO4 digestion method and molybdenum blue method
according to the Chinese standard (NY/T 88-1988) [34]. Soil organic C analysis used the
potassium dichromate-sulfuric acid oxidation method according to the Chinese standard
(HJ 695-2014) [35], while plant C concentration was measured by the dry combustion
method using a multi N/C 2100 analyzer (Analytik, Jena, Germany). Soil pH was measured
in a 1:2.5 mixture of soil and deionized water using a digital pH meter (PHS-3C, China)
calibrated with a pH buffer of 4.01 and 6.86 pH, according to the Chinese standard (HJ 962-
2018). The content of soil ammonium nitrogen (NH4

+-N) and nitrate nitrogen (NO3
−-N)

was determined by the indophenol blue colorimetric method [36]. The determination of
each sample was repeated three times.

2.6. Statistical Analysis

A one-way analysis of variance (ANOVA) was performed to test the effect of biochar
addition on the nutrient traits (e.g., C, N, P) of the moss crusts and their underlying soils.
Duncan’s honest significant difference test was used to assess the significant differences in
the selected parameters among all of the treatments. The linear regression analysis was
used to test the relationship between C, N, and P concentrations in the moss crusts and
their underlying soils. Redundancy analysis (RDA) was used to explore the relationship
between soil physicochemical characteristics (including SMC, pH, C, N, P, C: N, C: P, and
N: P ratio, soil ammonium nitrogen and nitrate nitrogen) and moss crusts stoichiometric
characteristics (C, N, P, C: N, C: P, and N: P ratios). Structure equation modeling (SEM) was
used to explain how biochar addition influences nutrients of moss crusts and its underlying
soil through hypothetical pathways. Statistical analyses were performed using R 4.0.2
software.
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3. Results
3.1. Effect of Biochar Addition on Soil C, N, P Contents under Moss Crusts

In this study, the average soil OC, TN, and TP concentrations were 6.67 g kg−1 (range
3.93–9.54), 0.83 g kg−1 (range 0.5–1.2), and 0.36 g kg−1 (range 0.32–0.38), respectively. The
soil C: N, C: P, and N: P ratio average levels varied from 7.86 to 8.33, 12.28–25.78, and
1.56 –3.24, respectively, the mean values of C: P and N: P both increased (Table 1).

Table 1. The change of Stoichiometric Characteristic Values of Soil under different treatments, the
data is the average value of stoichiometric characteristic values from June to October under the same
treatment (mean ± SD).

Treatment C (g kg−1) N (g kg−1) P (g kg−1) C: N C: P N: P

CK 3.93 ± 0.84 d 0.5 ± 0.03 d 0.32 ± 0.022 b 7.86 ± 1.24 a 12.28 ± 1.44 d 1.56 ± 0.03 c
T1 5.69 ± 0.38 c 0.7 ± 0.02 c 0.38 ± 0.016 a 8.13 ± 0.31 a 14.97 ± 0.31 c 1.84 ± 0.04 c
T2 7.50 ± 0.52 b 0.9 ± 0.04 b 0.36 ± 0.028 ab 8.33 ± 0.21 a 20.83 ± 0.28 b 2.50 ± 0.08 b
T3 9.54 ± 0.3 a 1.2 ± 0.05 a 0.37 ± 0.022 a 7.95 ± 0.2 a 25.78 ± 0.55 a 3.24 ± 0.07 a

Notes: Different lowercase letters (a, b, c, d) indicate a significant difference (p < 0.05) between different biochar
addition treatments.

The alterations of the C, N, and P concentrations in moss crust underlying soil from
different treatments are shown in Figure 2. Our results showed that the addition of biochar
increased the soil C, N, and P concentrations and reached the maximum at T3 treatment;
moreover, the maximum value of C and N content was found in the T3 treatment in all
experimental periods (from June to October). Meanwhile, the C content in June, September,
and October and N content in all experimental periods significantly increased with the
increase of the biochar addition levels (Figure 2A,B). In contrast, the P content varied in
June, July, and October, during which P contents first increased and then decreased with
the increase of biochar addition (Figure 2C). Moreover, the soil N content showed a clear
“V” type characteristic by the month in T3 treatment.

3.2. Effect of Biochar Addition on Nutrient Traits of Moss Crusts

In this study, for treatment biochar addition, the C, N, and P concentrations of the moss
crusts varied from 16.07 to 52.79 g kg−1, 0.58–2.7 g kg−1, and 0.35–0.74 g kg−1, respectively.
Additionally, the moss crust C: N, C: P, and N: P ratio average levels varied from 19.55 to
27.71, 45.9–73.78, and 1.65–3.65, respectively, the mean values of C: N decreased (Table 2).

Biochar addition elevated the C, N, and P concentrations of the moss crusts (Figure 2).
The C, N, and P increased with the increase of biochar addition, and the highest values
were found in T3 treatment and the lowest was found in the CK. More specifically, the
moss crust C content was significantly higher than the control in all treatments (Figure 2D).
The N content continuously increased with the increase of biochar addition levels in all
experimental period. The highest N content was observed in the T3 treatment in all months
(Figure 2E). The P content showed a clear increasing trend with the increased addition of
biochar and an overall increasing trend with the month (Figure 2F).
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Figure 2. Changes of C, N, and P contents in moss crusts underlying soil (A–C) and moss crusts
(D–F) with different levels of biochar addition. The C, N, and P contents are total forms, CK:0 t ha−1;
T1: 3.185 t ha−1; T2: 6.37 t ha−1; T3: 12.74 t ha−1). Different capital letters indicate a significant
difference among five sampling months with the same treatment; different lowercase letters indicate
a significant difference among four biochar treatments in the same sampling period. Vertical bars
show the standard error (SE) (n = 3).

Table 2. The C, N, and P characteristics of the moss crusts along biochar addition gradients, the data
is the average value of stoichiometric characteristic values from June to October under the same
treatment (mean ± SD).

Treatment C (g kg−1) N (g kg−1) P (g kg−1) C: N C: P N: P

CK 16.07 ± 2.20 d 0.58 ± 0.03 d 0.35 ± 0.034 d 27.71 ± 20.36 a 45.9 ± 2.94 b 1.65 ± 0.09 c
T1 38.89 ± 2.24 c 1.5 ± 0.09 c 0.53 ± 0.021 c 25.93 ± 20.57 a 73.38 ± 2.36 a 2.83 ± 0.09 b
T2 46.48 ± 2.54 b 1.8 ± 0.08 b 0.63 ± 0.041 b 25.82 ± 6.83 a 73.78 ± 2.28 a 2.86 ± 0.09 b
T3 52.79 ± 2.08 a 2.7 ± 0.09 a 0.74 ± 0.024 a 19.55 ± 3.18 b 71.34 ± 1.69 a 3.65 ± 0.04 a

Notes: Different lowercase letters (a, b, c, d) indicate a significant difference (p < 0.05) between different biochar
addition treatments.
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3.3. Nutrients Relationship between Moss Crusts and Its Underlying Soils with Biochar Addition

Figure 3 showed the correlation analysis between the moss crust C, N, and P charac-
teristics and their underlying soils nutrients, the C, N, and P of the moss crusts and the soil
C, N, and P had a correlation under the biochar addition treatments. There were significant
linear correlations between moss crust C and soil C, moss crust C and soil N, moss crust N
and soil C, moss crust N and soil N, and moss crust P and soil C under the biochar addition
treatments (p < 0.05). There was a nonlinear correlation between moss crust C, N, P and
soil P, and moss crust P and soil N (p > 0.05).
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Figure 3. Linear regression indicating relationships between OC (C), TN (N), and TP (P) in the soil
and C, N, and P in the moss crusts under different biochar treatments. The solid blank line indicates
a significant correlation (p < 0.05). Notes: BC = moss crust C, BN = moss crust N, BP = moss crust P,
SC = soil C, SN = soil N, SP = soil P.

We took moss crust organic carbon, total nitrogen, total phosphorus, C: N, C: P, and N:
P as response variables, and soil C, N, P, C: P, C: N, N: P, Ammonium Nitrogen, Nitrate
Nitrogen, pH, EC, and SMC as environment variables. Table 3 showed that compared with
the control, biochar addition increased soil ammonium nitrogen, nitrate nitrogen, pH, EC,
and SMC. Redundancy analysis (RDA) showed that the soil properties (C, N, P, C: P, C: N,
N: P, Ammonium Nitrogen, Nitrate Nitrogen, pH, EC, and SMC) explained 90.4% of the
total variation in the moss crust C, N, P content and C: N: P stoichiometry, with axes 1 and
2 explaining 83.5% and 6.9% of the total variation, respectively. The order of their effect on
moss crusts were as follows: Nitrate Nitrogen, N: P, C: P, EC, pH, SMC, N, P, Ammonium
Nitrogen, C: N, and C. Among them, nitrate nitrogen (NO3

−-N), N: P, C: P, EC, pH, soil
moisture content (SMC), and N have significant effects on the C, N, and P of moss crusts in
turn (Figure 4, Table 4).
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Table 3. Properties of underlying soil of moss crusts.

Treatment Ammonium
Nitrogen (mg/kg)

Nitrate Nitrogen
(mg/kg) pH EC (ms/cm) SMC (%)

CK 9.49 ± 1.32 c 16.41 ± 3.58 b 7.31 ± 0.12 b 0.39 ± 0.03 c 10.69 ± 1.27 c
T1 10.30 ± 1.06 bc 21.57 ± 2.91 b 7.53 ± 0.07 b 0.58 ± 0.11 b 13.06 ± 0.96 ab
T2 13.05 ± 1.18 b 23.92 ± 4.34 ab 7.80 ± 0.09 a 0.97 ± 0.09 a 12.78 ± 0.60 ab
T3 18.84 ± 2.73 a 30.06 ± 5.69 a 7.92 ± 0.1 a 1.02 ± 0.08 a 15.37 ± 2.03 a

Notes: Different lowercase letters (a, b, c) indicate a significant difference (p < 0.05) between different biochar
addition treatments.
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Figure 4. Redundancy analysis (RDA) of the moss crusts stoichiometric characteristics and its un-
derlying soil physicochemical characteristics. In the biplot, the red lines in the figure represent the
soil physicochemical characteristics, and the blue lines represent the moss crust C: N: P stoichiom-
etry, respectively. Notes: * p < 0.05, ** p < 0.01, and *** p < 0.001, SMC = soil moisture content,
EC = electrical conductivity.

Table 4. Importance ordering and significance test of soil variables (Moss crusts).

Soil Factors Order of Importance F P

Nitrate Nitrogen 1 31.83 0.001 ***
N: P 2 22.247 0.001 ***
C: P 3 19.265 0.001 ***
EC 4 9.6353 0.001 ***
pH 5 6.8974 0.009 **

SMC 6 7.1193 0.016 *
N 7 4.5511 0.03 *
P 8 2.6575 0.09

Ammonium Nitrogen 9 2.4603 0.122
C: N 10 1.7793 0.186

C 11 0.6689 0.445
Notes: The significance test of soil environmental factors * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Structure equation model (SEMs) analysis (Chisq = 0.648, P = 0.958, GFI = 0.999,
RMSEA = 0.000) showed that biochar directly significantly affected C, N, and P both of
moss crusts and their underlying soil (p < 0.001). The addition of biochar resulted in an
interactive but non-significant (p > 0.05) effect between soil C, N, and P. Meanwhile, soil
nutrient has almost no direct effect on moss crust C, N, and P, but what is interesting is that
soil P was significantly negatively correlated with moss crust N. In addition, moss crust P
was significantly correlated with moss crust C (Figure 5).
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Figure 5. Structural equation model (SEMs) illustrating the effects of addition biochar on C, N, P of
moss crusts and its underlying soil. Adjacent numbers that are labeled in the same direction as the
arrow represents path coefficients, and the width of the arrow is in proportion to the degree of path
coefficients. Blank and red arrows indicate negative and positive relationships, two ways arrows
indicate mutual influence, continuous and dashed arrows represent the important and not important
influence relationships, respectively. Significance levels are denoted with * p < 0.05, ** p < 0.01,
and *** p < 0.001, The low chi-square (CMINDF), non-significant probability level (p > 0.05), high
goodness-of-fit index (GFI > 0.90), and low root-mean-square errors of approximation (RMSEA) listed
below the SEMs indicate that our data matches the hypothetical models. SMC = soil moisture content,
R2 values indicate the proportion of variance explained by each variable.

4. Discussion
4.1. Effect of Biochar Addition on Soil Nutrient Underlying Moss Crusts

Soil OC, TN, and TP contents are important indicators of soil nutrient status, which can
determine the cycle and balance characteristics of C, N, and P in the soil, and evaluate C, N,
and P mineralization, immobilization, and retention effects [37,38]. Previous studies have
shown that the application of biochar can enhance soil water availability, water holding
capacity, soil soluble organic carbon content, available phosphorus, total nitrogen, total
organic carbon, soil microbial biomass carbon, nitrogen, and phosphorus (SMBC, SMBN,
SMBP), soil microbial and nutrient retention and availability, which result in less fertilizer
needs and reduce nutrient leaching [39–41].

In this study, we found that the high concentration of biochar addition could efficiently
replenish soil nutrition, reduce the rate of soil nutrient release, and reduce nutrient loss [42].



Plants 2022, 11, 814 10 of 14

More specifically, the content of C and N was related to the level of biochar addition; the
more biochar added, the higher the C and N content, and the soil N showed a “V” type
characteristic by the month; this is consistent with the results of the nitrogen addition
experiment on C: N: P stoichiometry in moss crust-soil continuum [25]. It indicated that
the nutrients from biochar contributed to the increases in C and N in the soil and biochar,
which can effectively inhibit the leaching and migration of vegetation soil nitrogen [41].
Although one study found that there was no significant impact on the total soil nutrient by
biochar addition, while organic carbon was significantly increased (p = 0.009) by 23% [43].
Compared to C and N, the change of soil P content was different, the soil P content increased
first and then decreased but changed insignificantly with the addition of biochar. The
positive effects of biochar on the soil ecosystem, including both plants and microbes, being
proposed to derive either directly from nutrients within biochar itself, or indirectly from its
ability to sorb and retain nutrients [44]. On the one hand, the effect of biochar addition on
plant growth varies with type and dosage of biochar [16]. On the other hand, the community
structure is directly associated with soil chemical properties, such as C or N levels [45],
the addition of biochar increased the plant absorption of phosphorus by influencing the
rhizosphere microorganism and increased the supply of available phosphorus in soil [4,46].
Other studies also found the content of soil C, N, and P in the whole growing season were
2.65–44.4, 0.02–0.32, and 0.3–0.80 g/kg after biochar addition [47]. In this study, during the
study period, the soil C, N, and P contents were greater compared to CK, which indicated
that adding a certain amount of biochar can improve the stability and nutrients of desert
soil aggregates, enhancing life activities, which is conducive to the maintenance of soil
fertility and sustainable and healthy development [48].

4.2. Response of Moss Crust C, N, and P Content and C: N: P Stoichiometry to Biochar Addition

BSCs can enhance the nutrient circulation of surrounding vascular plants through
biological nitrogen fixation [19,49]. Based on biochar addition experiments results, our
study demonstrated that biochar addition contributed to the increases in C, N, and P in the
moss crusts. More specifically, the contents of C, N, and P in moss crusts increased with
the increase in the amount of addition, which was similar to previous research results [13].
It indicated that the appropriate concentration of biochar addition could enhance the
accumulation of N and the fixation of C, and possibly accelerate the progress of plant life
activities, resulting in the accumulation of more nutrients [50]. The reasons for this may
be the addition of biochar directly affects the microbial activity in the rhizosphere of the
moss crusts to promote the conversion of nitrogen and phosphorus, thereby increasing the
nitrogen and phosphorus content of the moss crust, and finally the C: N: P stoichiometric
ratio of the moss crust is changed, and the C content also increases [51,52]. Furthermore,
several studies have shown that biochar not only increased the K concentration in soil but
also increased the plant nutrient use efficiency of K, which is important for plant growth.
The above research results all showed that adding biochar enhances the ability of plants to
absorb nutrients [53].

Carbon is the most important element that makes up the plant body, nitrogen and
phosphorus is required for plant growth. It is widely reported that the N and P concen-
trations and N: P ratio can provide important information about nutrient limitation, an
unbalanced input of N and P will seriously affect the ecological stoichiometry, ultimately
affecting the function of the ecosystem [54]. The stoichiometry ratios of plant tissues vary
with their growth and succession stages, and furthermore, the stoichiometry ratios, to some
extent, can also reflect the rate of element absorption and utilization by plants [55]. For
example, there is a strong correlation between C and N. The C: N indicates the ability of
plants to absorb N. Studies have shown that the plant growth rate will be lower when
the C: N value in the plant is higher. Our study also showed that the C: N of moss crusts
decreased with the addition of biochar, this indicated that the higher concentration of
addition can effectively promote the growth of moss crusts, biochar addition can effectively
alleviate nitrogen limitation in desert ecosystems. In addition, biochar addition alleviates
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the negative effects on soybean productivity and water use efficiency under drought and
salinity stress, thereby affecting crop growth [56]. All this indicated that the addition of
biochar can improve the ability of moss crusts to resist adversity, promote the growth
of surrounding vascular plants, the distribution of biological soil crusts (BSCs) has been
confirmed in major desert regions of the world, the coverage of BSCs even reaches more
than 70% in some deserts [27]. BSCs have very important ecological function for desert
ecosystems, which can change the physical and chemical properties of the soil, improve
the quality of the soil under drought conditions and enhance its stability [49], and the
application of biochar is beneficial to the growth of BSCs, that is why biochar addition can
improve the desert ecosystem.

4.3. Effect of Soil Factor on Moss Crusts Stoichiometric Characteristics with Biochar Addition

The ecological stoichiometry of plant was reported to not only depend on the bio-
logical characteristics of plants, but also have a strong correlation with soil factors [7,57].
Thus, studying the soil driving factors can further understand the interaction mechanism
between plants and soil nutrients and reveal the interconnection and internal effects of
biogeochemical cycles. In this study, moss crusts and their underlying soils were considered
as an interactive system. It was found that there were significant linear correlations between
moss crust C and soil C, moss crust C and soil N, moss crust N and soil C, moss crust N
and soil N, and moss crust P and soil C under the biochar addition treatments (p < 0.05). In
addition, the effect of biochar addition on moss crust C, N, and P contents was observed
to be more significant than soil C, N, and P contents (Figure 4). One possible reason was
that the biochar stimulated plant growth and its utilization of nutrients. Moss crusts could
absorb water and nutrients and fixed C by photosynthesis to synthesize organic matter [58].
Adding biochar also facilitated moss crusts to release nutrients to the soil, which led to
further changes in the soil and plants C: N: P stoichiometric ratios. The higher the content
of C, N, P and available nutrients in the soil for plants, the stronger their growth and
anti-interference ability, and the more complex the community structure [59].

Furthermore, RDA analysis showed that soil nitrate nitrogen was the key factor
influencing the C, N, and P of moss crusts, followed by the N: P and C: P ratios, indicating
that the supplement and transformation of N and P were crucial for the growth of plants
in a barren ecosystem. Meanwhile, soil EC, pH, SMC and N also had significant effects
on the stoichiometric characteristics of moss crusts. The possible reason was that biochar
addition firstly changed soil environmental factors, such as soil pH and SMC of moss crust
inter-roots, and then affected microbial activity, enhanced carbon exudation, and promoted
the transport and transformation of nitrogen and phosphorus [22,60]. Previous studies
have verified that biochar can promote the transport and transformation of N and P, and
affect the diversity, activity, and abundance of nitrifier and denitrifier and Azotobacter in
soil nitrogen cycling processes, which are directly related to a series of microbial activities
in the nitrogen cycle [61,62]. In addition, biochar also participated in the phosphorus cycle
in the soil ecosystem, increased the supply of available phosphorus in the soil, and had
an important impact on the transformation process of soil phosphorus [63]. All of these
indicated the importance of biochar addition to the desert ecosystem.

5. Conclusions

In summary, this paper investigated the changes and stoichiometric characteristics of
C, N, and P in moss crusts and underlying soil after adding local plant biochar. It was found
that biochar addition increased moss crusts and soil C, N, and P content, and changed
the C: N: P stoichiometry in the moss crust-soil continuum. Additionally, there was a
significant correlation between moss crust C, N, and P and soil C and N. Additionally,
after adding biochar, environmental factors significantly affected the carbon, nitrogen, and
phosphorus content and stoichiometric characteristics of the moss crusts. In addition, the
presence of biochar strengthened the connection between moss crusts and their underlying
soils, enhanced organic matter decomposition and nutrient release, and stepped up the
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nutrient cycling in moss crust-soil continuum. The results of this study would be helpful to
understanding the nutrient dynamics of the moss crust-soil continuum and would provide
a new application prospect for biochar.
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