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Abstract: Photosynthesis is the defining function of most autotrophic organisms. In the plantae
kingdom, chloroplasts host this function and ensure growth. However, these organelles are very
sensitive to stressful conditions and the photosynthetic process can cause photooxidative damage
if not perfectly regulated. In addition, their function is energivorous in terms of both chemical
energy and nutrients. To coordinate chloroplast activity with the cell’s need, continuous signaling is
required: from chloroplasts to cytoplasm and from nucleus to chloroplasts. In this opinion article,
several mechanisms that ensure this communication are reported and the many clues that point to an
important role of the Target of Rapamycin (TOR) kinase in the coordination between the eukaryotic
and prokaryotic sides of plants are highlighted.
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1. Why Plants Need to Regulate Chloroplasts Activity

Green is the color that everybody associates with the plant kingdom but, only recently,
Arp et al., explained the dominance of this color in photosynthetic organisms [1]. According
to their model, the best wavelengths to absorb are in the red and blue portion of the
spectrum, reflecting part of the more intense green, as chlorophylls do. It appears that
the photosynthetic machinery evolved not for maximum light harvesting but rather for
maximum efficiency, avoiding photooxidation [1].

In the plantae kingdom, chlorophylls are found in the antennae complexes in the
thylakoid membranes in chloroplasts. In antennae, light harvesting complexes (LHCI
and LHCII) concentrate light energy on the photosystems (PSI and PSII). In addition,
plastoquinone and the cytochrome b6f participate in the photosynthetic electron transport
chain (PETC). All of these elements ensure electron flow between the photosystems that
are physically separated, PSII complex being mostly in the stacked grana domains of
the thylakoid and PSI in the unstacked lamellar regions [2]. It is critical to energetically
couple the two photosystems to achieve the reduction of nicotinamide adenine dinucleotide
phosphate (NADP+) to NADPH and subsequent carbon dioxide (CO2) fixation (carbon
assimilation) [3].

In addition, the light source is not constant and varies greatly, from 0 photon flux
density (PFD) up to 2000 PFD, with a diurnal rhythm and seasonal variation. It may also
be very fast due to shading [4]. Several processes enable the management of electron
fluxes in the PETC to keep the photosystems coupled, such as cyclic electron flow and
non-photochemical quenching (NPQ). Under the term of NPQ, several processes have been
grouped and divided between processes that do not lead to thermal energy dissipation,
such as chloroplast movement (qM) and state transition (qT), and processes that lead to
thermal-energy dissipation, such as PsbS-dependent quenching (qE), photo-inhibitory
quenching (qI), Zeaxanthin-dependent quenching (qZ), and sustained quenching (qH) [5].

Although light capture is finely tuned, light can be absorbed in excess to its use in
photosynthesis [6,7]. This excess light condition does not require high light intensities,
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being dependent on the availability of energy sinks [4,8]. Indeed, NPQ is already active at
low PFDs and a leaf energy balance model calculated that only the minority of absorbed
light is used for CO2 fixation and sugar production [7]. Altered electron flow between
photosystems, e.g., related to a lack of water, the ubiquitous electron donor, or slowed
metabolism causing a lack of energy sinks, such as CO2 fixation, can put the plant in a
state of excessive light, even at low PFD [9]. This is the case with stressful conditions, such
as drought and cold, which lead to the excessive energy pressure on photosystems and
subsequent generation of reactive oxygen species (ROS) [10,11]. PSII is very sensitive to
ROS, especially singlet oxygen, which is generated very early under stress conditions, and
photodamage and repair of D1 constitute a photoprotective mechanism in itself to protect
PSI [12,13].

Sometimes, carbon assimilation may be necessary even if the conditions make pho-
tosynthesis dangerous, and plants, unable to escape the sustained ROS production, may
suffer photooxidative stress and cell death [8,14]. In particular, when ROS accumulate,
they can react with and damage many biomolecules (carotenoids, nucleic acids, amino
acids, lipids, and possibly sucrose) [13,15]. In addition to direct toxicity, some oxidative
by-products of lipids, such as reactive carbonyl species (RCS), are toxic to the cell and can
induce plant cell death [16,17].

At the same time, ROS also play a signaling role and communicate the photosynthetic
state to the plant cell by taking part in the operational retrograde signaling [18,19]. Hydro-
gen peroxide (H2O2) has been reported to move directly from the chloroplasts to the nucleus
and chloroplasts are often associated with the nucleus under stress conditions [18,20]. Sin-
glet Oxygen can directly oxidize the proteins Executer 1 (EX1) and Executer 2 (EX2) and
the equilibrium between the two oxidation modulates retrograde signaling [21,22].

In addition, oxidative by-products of biomolecules also elicit nuclear responses.
Among these, β-cyclocitral is a very early indicator of PSII damage and, pretreatment
with this volatile molecule induces a photoprotective state in plants [23,24]. β-cyclocitral,
RCS, and molecules such as 3′-phosphoadenosine-5′-phosphate (PAP) and methylerythritol
cyclodiphosphate (MeCPP) trigger a nuclear response to reduce photooxidation [25–27]. In
particular, the link between ROS production and apocarotenoid generation at PSII and RCS
is so close that these molecules share the same catabolic/detoxifying enzymes [19,28].

Even when environmental conditions are optimal, due to the much higher con-
centration of oxygen (O2, 21%) than CO2 (0.4%) in the atmosphere, the Ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco) catalyzes one O2 every three CO2 molecules
in the photorespiration process [29]. The recycling of the photorespiration product 2-
phosphoglycerate (2-PG) back to 3-PG is a wasteful process due to the consumption of
stromal ATP and the generation of H2O2 [30,31].

In addition to the dangerous production of ROS, chloroplast function is energivorous in
terms of both chemical energy, consuming most of the ATP and nutrients it produces during
photosynthesis [7,32]. Indeed, Rubisco is by far the most abundant protein on Earth [33].
Thus, modulating chloroplast activity is not only necessary to avoid photooxidation but
also essential to save and remobilize important nutrients.

2. Mechanisms Regulating Chloroplasts Activity

Although millions of years have passed since the inclusion of chloroplasts in the
eukaryotic cell, they remain rather independent organelles that require continuous sig-
naling to be coordinated with the needs of the organism. In addition to the examples
of retrograde signaling mentioned above, biogenetic retrograde signaling based on the
tetrapyrrole/genomes uncoupled (GUN) mechanism has been recently reviewed [34].

At the same time, a very strong transfer of genes from the organelle to the nucleus,
leaving about 5% of the original genome, has allowed an improvement in energy efficiency
at the price of a strong dependence on the nuclear genome [35]. More than 90% of the pro-
teins in the chloroplast are encoded in the nucleus, and the most characteristic chloroplast
functions, such as photosynthesis and carbon fixation, require close coordination between
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the chloroplasts and nucleus [36]. Clear examples are antenna complexes, in which cores
encoded in the chloroplast are surrounded by LHCs encoded in the nucleus, and the large
Rubisco subunit (LSU) encoded in the chloroplast, which is a holoenzyme (8 LSU and
8 SSU) with the small Rubisco subunits encoded in the nucleus (SSU) [37].

Nuclear-encoded chloroplast genes (NECGs) are transcribed in the nucleus by the
canonical RNA polymerase II, then the mRNA is transported from the nucleus to the
cytosol and translated by the ribosomes [38].

This mechanism allows a first level of control of chloroplast activity by the plant cell
(the so called “anterograde signaling”) based on the regulation of transcription and transla-
tion of NECGs. This level of control can be achieved through cis-acting enhancer elements
associated with photosynthesis, such as the Light Response Elements (LRE), including GT
elements, G-Box elements, I-Box elements, Gap-Box elements, AT-rich elements, GC-rich
elements, and L-Box elements [39]. However, although several LREs and their binding
proteins have been identified, no single element has been shown to confer light reactivity,
suggesting that a complex combination of cis-acting sequences is required to confer the
correct photo-reactivity to promoters [40].

An enormous role in the control of nuclear transcription by light is played by phy-
tochromes, cryptochromes, and phytochrome interacting factors (PIF) [41–44]. Photore-
ceptors are involved in all major functions of plant biology and, while they were initially
described as chloroplast biogenic factors, several works are now demonstrating their in-
volvement in the response to stress conditions [45–47]. In addition, photoreceptors can also
alter promoter selection by RNA polymerase in the nucleus to modify the N-terminus of
proteins and their subcellular localization [48].

Pre-proteins synthetized in the cytosol can be finally imported into the chloroplast
through recognition of an N’-terminal Chloroplast Targeting Peptide (CTP) via the Tic and
Toc translocon complexes, discussed below [49,50].

Among these proteins are the regulators of organelle gene expression (ROGEs), which
can directly alter transcription in the chloroplast. The first is the nuclear-encoded plastidial
RNA-polymerase (NEP), which ensures plastidial transcription together with the plastidial-
encoded polymerase (PEP) [51]. However, most plastidial transcription units are preceded
by multiple promoters, allowing transcription by PEP as well as NEP [52]. Six sigma
transcription factors are present in Arabidopsis thaliana, all encoded in the nuclear genome
and can confer promoter selectivity, thus altering plastidial transcription [53,54].

The signaling of the unusual nucleotide guanosine-3,5-(bis)diphosphate (ppGpp) is
also of interest, which may act as a proliferation brake in prokaryotes and whose biosyn-
thetic pathway, mediated by RelA-SpoT homologue (RSH) proteins, has been remobilized
to the nucleus [55,56]. Thus, although ppGpp is only metabolized in the chloroplast, both
the synthetases and hydrolases that allow fine control of ppGpp homeostasis must be
imported [57,58]. This is particularly important under stress conditions, such as nitrogen
deprivation or virus infection, where ppGpp accumulation plays an important role [59–61].

In addition, several nuclear-encoded proteins are involved in the chloroplastic RNA
processing. Examples are pentatricopeptide (PPR) RNA-binding proteins, which, con-
tributes to the stability and editing of specific RNAs in the chloroplast, CRS1–YhbY (CRM)
domain, and plant organelle RNA recognition (PORR) domain proteins [62–64].

3. Chloroplastic Import: A Dynamic Gatekeeper of Coordination?

Plants must achieve flawless coordination between chloroplast and nuclear functions
to avoid photooxidation and optimize nutrient economy. A key step in this process is
the regulation of chloroplast import, especially under stress conditions, which induces
extensive changes in the plastidial proteome [50]. Most of the chloroplast proteins are
synthesized in the cytosol as pre-proteins, still possessing the CTP, and must pass through
the chloroplast double membrane to reach their functional destination.

Cytosolic chaperones bind to the pre-proteins, facilitate their navigation to the or-
ganelle, and maintain an unfolded conformation suitable for import [65]. Hsp90 together



Plants 2022, 11, 803 4 of 11

with Hsp70-Hsp90-organizing protein (Hop) and the immunophilin FK506-binding protein
73 (FKBP73) has been proposed to transport pre-proteins to the outer envelope membrane
(OEM) [66]. Alternatively, HSP70 with chaperones 14-3-3 has also been implicated in the
delivery of phosphorylated pre-proteins to the translocation complexes, where they are
dephosphorylated prior to the import [67,68].

The import of pre-proteins into the chloroplast is mainly controlled by two multi-
protein complexes, the translocon at the outer chloroplast membrane (TOC) and the translo-
con at the inner chloroplast membrane (TIC) [69]. In particular, at the level of the TOC
complex, Toc33 and Toc159, on the cytosolic side, are involved in the substrate recognition
while Toc75 constitutes the pre-proteins entry channel.

Importantly, chloroplast import responds to developmental cues and stress conditions,
and its own components may be targeted for degradation by the proteasome or oxidated
by ROS [70–72]. In response to developmental or environmental cues, the suppressor of
ppi1 locus 1 (SP1) promotes the degradation of TOC complexes, thereby suppressing the
import of plastidial pre-protein. The sensitivity (and increased H2O2 accumulation) of sp1
mutant lines to stress conditions and the resistance of the SP1 overexpressors suggest that
chloroplast gate closure, through TOC complex degradation, is a key mechanism to reduce
energy pressure on the photosynthetic chain and to cope with stressful environmental
conditions [73].

A direct consequence of deregulation of chloroplast import is an increase in the
presence of pre-proteins in the cytosol. To avoid overcrowding, chloroplast-targeted pre-
proteins can be marked for ubiquitin–proteasome (UPS)-mediated degradation, which is
another process in the cytosolic control of chloroplast function [74]. This process involves
the HSP70 isoform Hsc70-4, which interacts with the Targeting Peptide of pre-proteins,
recruiting them to the C-terminus of Hsc70-interacting protein (CHIP) E3 ligase for ubiqui-
tination and degradation by the 26S Proteasome [75]. In addition, the ubiquitin proteasome
system has also been implicated in the regulation of Golden2-like 1 transcription factor
(GLK1), which promotes chloroplast activity and biogenesis and is degraded by the protea-
some in response to chloroplast stress, probably through GUN1 retrograde signaling [76].

Finally, when a stress stimulus arrives, there is only a short window of time to modify
and import nuclear-encoded proteins into the chloroplast before the gate closes. Protein
phosphorylation is a very fast reaction occurring on a time scale of seconds to minutes,
which has been observed in the regulation of TOC import capacity and of SSU import
into the chloroplast [77–81]. Indeed, Serine/threonine/tyrosine (STY) protein kinases have
been proposed to phosphorylate the SSU CTP to regulate the import of the related pre-
protein [67]. Interestingly, the amino acid isoleucine can bind to the ACT domain of STY
kinases and module their activity, establishing a link between nutrient availability and SSU
import into the chloroplast [79]. In addition, purple acid phosphatase 2 (PAP2) activity has
been shown to be required for chloroplast import [78,79,81].

4. Nutrients/Metabolites Exchange as Signaling

Although highly dependent on nuclear regulation, chloroplasts are highly compart-
mentalized organelles in the plant cell. Not only are they separated from the cytosol by
a double membrane system (outer and inner membrane), but they also have an internal
membrane system, the thylakoids, which allows photosynthetic reactions.

Like proteins that require an import system to enter the chloroplast, nutrients, solutes,
and metabolites move between the cytosol and the organelles via a very rich set of channels
and transporters [82].

Maintaining optimal ion concentrations within the chloroplast is critical for pH reg-
ulation, chloroplast volume, thylakoid staking, and proper photosynthetic reactions [83].
Therefore, sodium, potassium, chloride, calcium, and magnesium as well as iron, man-
ganese, and copper must be imported into the chloroplast [83,84].

At the same time, the most intuitive metabolite flux from the chloroplast is the efflux
of phosphorylated carbohydrates and reducing equivalents (dihydroxyacetone phosphate
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and malate), but chloroplasts are also unique sites for the biosynthesis of fatty acids and
nine amino acids [7,31,85,86]. In addition to the many substrate-specific transporters of the
inner envelope, the outer envelope is enriched in five proteins with transport functions:
OE Porins (OEP 16, 21, 24, and 37) and an ATP-binding cassette (ABC) transporter, which
show different degrees of specificity towards substrates [82,87,88]. Thus, metabolite flux
appears to be tightly controlled and may consequently constitute signaling. Indeed, triose
phosphate efflux has been implicated in the very fast signaling of excessive light (less than
1 min), the phosphate/trioso phosphate translocator (tpt) mutant being fully deregulated in
the response of four Apetala2/Ethylene responsive factor (AP2/ERF) marker genes [85]. More
importantly, glucose and glutamine can be exported from the chloroplast to the cytosol.

Sugar and nitrate sensing is primitive and involves proteins that have often been
conserved during evolution [86]. Indeed, many players are involved in these primordial
pathways, such as the Nitrate transporter 1 (NRT1) transporter for nitrate and the sucrose
efflux transporter (SWEET) proteins and the Hexokinase (HXK1) for sugars. Their intricate
pathways have recently been reviewed [86]. At the same time, the TOR kinase and sucrose
non-fermenting 1 (SNF1)-related kinase 1 (SnRK1) are recognized as key regulators of
eukaryotic nutrient sensing [86].

5. Mutual Regulation of TOR and Chloroplast Activity

In eukaryotes, two kinase complexes have been shown to play a fundamental and
conserved role in nutrient signaling: SnRK1 and TOR.

TOR associates with other proteins to form the TORC1 complex in plants. The main
components are the TOR kinase, regulatory-associated protein of mammalian TOR (Raptor),
and lethal with SEC13 protein 8 (LST8). TORC1 promotes cell growth in response to nutrient
availability and integrates nitrogen and carbon signals.

Nitrates (NO3−), ammonium (NH4+), and Glutamine all induce TOR activity although
amino acids generated by plant-specific pathways (Glutamine, Cysteine, and Glycine) have
the greatest activation potency [87,88]. In particular, these nitrogen sources activate the
small GTPase Rho-related proteins (ROP2) that bind and activate TOR [87,89].

SnRK1 is a multi-protein complex that includes a kinase α subunit and two regulatory
β and βγ subunits [90]. Its activity is induced by energy deprivation and repressed by
sugars, including glucose 6-phosphate and trehalose 6-phosphate in plants. Among other
activities, SnRK1 can interact with and phosphorylate RAPTOR1B in vivo and in vitro,
inhibiting TOR activity [91–93].

In addition, stress and ABA activate SnRK2 and enhance the activity of SnRK1, which
phosphorylates RAPTOR and inhibits TOR activity [94,95]. ABA is a phytohormone
common to several stress responses, which is also rapidly accumulated under excessive
light, due to the induction of the 9-cis epoxycarotenoid dioxygenase (NCED), the first
dedicated step in the chloroplastic biosynthesis of ABA [96,97].

Finally, chloroplasts have a very strong control over plant growth through TOR
regulation, especially in light of the recent demonstration that photosynthetic carbon
assimilation has a direct impact on TOR activity in Chlamydomonas reinhardtii [98].

On the other hand, TOR can also influence chloroplast activity. It has been known
for several years that suppression of TOR activity in Arabidopsis reduces greening and
expansion of cotyledon, photosynthesis, chlorophyll biosynthesis, light reactions, and
CO2 fixation [99]. A decrease in electron transport rate and chlorophyll concentration, an
increase in NPQ, and alterations in antennae distribution between photosystems were also
observed in C. reinhardtii after TOR inhibition [100].

How can TOR influence the amount of chlorophyll and regulate chlorophyll fluores-
cence and NPQ? One possibility is through chlorophagy. TOR is a well-known repressor of
autophagy in plants [93,101,102]. Indeed, the autophagy related proteins ATG101, ATG1a,
ATG1b, ATG1c, and ATG13 have been found in the interactome of TORC1 in Arabidop-
sis, and ATG1 and ATG13 have been proposed as direct phospho-target of TOR [103].
Chlorophagy and Rubisco containing bodies, two chloroplast recycling pathways, are
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ATG-dependent processes. However, so far there is no evidence that TOR directly affects
these pathways [104–106].

Alternatively, TOR could regulate the transcription and the translation of important
nuclear-encoded elements in the chlorophyll biosynthetic pathway and for PETC. Indeed,
repression of photosynthesis-associated genes, involved in chlorophyll biosynthesis, light
reactions, and CO2 fixation was observed in experiments that inhibited TOR activity for
24 h [99,107]. Is there a role for TOR in GLK regulation and retrograde signaling?

In an integrated transcriptomic and proteomic approach, it was observed that TOR
inhibition by Torin2 represses the translation of several (20 to 30%) chloroplastic mRNAs,
in less than 2 h, with a corresponding decrease in chlorophyll levels [108].

At the same time, a short inactivation of TOR (2 h of Torin2) does not affect the
expression of photosynthesis-associated nuclear genes, in contrast to prolonged inhibition
of TOR activity, which strongly represses the expression of photosynthesis-associated
nuclear genes (PhANGs) [99,108]. Interestingly, the authors suggest that TOR inactivation
first represses translation in the chloroplast and that this secondarily leads to repression of
PhANG expression via retrograde signaling [108,109]. In line with this hypothesis, GLK1
expression was slightly repressed in their analyses, suggesting that repression of PhANGs
would follow.

Finally, TOR has also been implicated in the regulation of translation of nuclear-
encoded mRNA in response to light required for cotyledon opening, through phosphoryla-
tion of ribosome protein 6 (RPS6), in a pathway dependent on phytochrome, constitutive
photomorphogenesis 1 (COP1), and auxin [110].

6. Conclusions and Open Questions

Coordination between the chloroplast and the nucleus must be impeccable to avoid
photooxidation, and several checkpoint mechanisms are present in plants. Continuous
retrograde signaling communicates photosynthetic status to the cell and elicits a measured
response from the nucleus. The products of chloroplast activity may be central to the
coordination of chloroplast function and plant growth converging on the TOR kinase. Yet
the mechanism(s) by which TOR controls chloroplast activity, as well as the influence
of retrograde signals on TOR itself, remain major unanswered scientific questions. A
schematic summary of the reciprocal regulation between TOR and chloroplast activity can
be found in Figure 1.
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the activity of the TOR complex (TORC1) through the production of sugars (glucose and trehalose
6-phosphate), through the release of amino acids in the remobilization of carbon and nitrogen (glu-
tamine) and through the biosynthesis of phytohormones (ABA). On the contrary, TORC1 activity
influences different aspects of chloroplast physiology (translation, photosynthetic efficiency, chloro-
phyll concentration) by still unknown mechanisms, which might involve the transcriptional and
translation control of NECGs (including PhANGs) and the regulation by phosphorylation of ATG1
and ATG13, involved in autophagy and probably in chlorophagy.
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