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Abstract: The prevention and management of crop diseases play an important role in agricultural
production, but there are many types of crop diseases and complex causes, and their prevention
and identification add difficulties to the process. The traditional methods of identifying diseases
mostly rely on human visual and manual inspection, which requires a certain amount of expert
knowledge and experience. There are shortcomings such as strong subjectivity and low accuracy.
This paper takes the common diseases of kiwifruit as the research object. Based on deep learning and
computer vision models, and given the influence of a complex background in actual scenes on the
detection of diseases, as well as the shape and size characteristics of diseases, an innovative method
of target detection and semantic segmentation was proposed to identify diseases accurately. The
main contributions of this research are as follows: We produced the world’s first high-quality dataset
on kiwifruit. We used the target detection algorithm YOLOX, we stripped the kiwi leaves from the
natural background and removed the influencing factors existing in the complex background. Based
on the mainstream semantic segmentation networks UNet and DeepLabv3+, the experimental results
showed that the ResNet101 network achieved the most effective results in the identification of kiwi
diseases, with an accuracy rate of 96.6%. We used the training method of learning rate decay to further
improve the training effect without increasing the training cost. After experimental verification, our
two-stage disease detection algorithm had the advantages of high accuracy, strong robustness, and
wide detection range, which provided a more efficient solution for solving the problem of precise
monitoring of crop growth environment parameters.

Keywords: deep learning; computer vision; kiwifruit disease detection; smart agriculture

1. Introduction

China is the birthplace of kiwifruit, whose output ranks first in the world [1]. The
planting of genetically homogeneous varieties in a large area, resulting in some peren-
nial epidemics such as kiwifruit bacterial canker (Pseudomonas syingae pv. actinidiae) and
kiwifruit brown spot (Corynespora cassiicola), has posed a serious threat to the kiwifruit
industry. For a long time, the diagnosis of kiwifruit diseases has mostly relied on the
visual estimation of plant disease experts for identification and judgment, which is labor
intensive and difficult to keep pace with, in terms of real-time monitoring. At the same
time, agricultural producers cannot make quantitative and precise analyses and judgments
on the degree of damage of the diseases based on the actual conditions of the crops. The
research on the detection of kiwifruit leaf diseases is of great significance in agricultural
development. It can guide growers to eliminate the pathogens in the budding stage to
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minimize the loss of kiwifruit. It can also effectively reduce the use of pesticides, mak-
ing kiwifruit and other agricultural products safer. With the rise of precision agriculture,
the use of computer vision technology to detect kiwifruit leaf diseases has occupied an
important position.

Compared with traditional inspection methods, computer vision is characterized
by fast speed and multiple functions. Computer vision technology is widely used in
agriculture [2]. Sun et al. [3] used the YOLOv4 model to detect citrus representation defects
on trees by deep learning. Deng et al. [4] used a semantic segmentation method and drones
to accurately segment a paddy field. At the same time, with the increase in population
and the reduction of arable land caused by the processes of urbanization, the development
of agriculture in the direction of high quality and yield has become key. The application
of computer vision technology in the field of disease diagnosis can reduce the impact on
agriculture to a certain extent and promote the continuous development of agriculture in
the direction of high quality and high yield. Wang et al. [5] proposed the best model for rice
disease identification based on migration learning. Li et al. [6] used an improved YOLOv3
model to detect diseases on multiple leaves of rose.

It is difficult to process multiple leaves, natural scenes, and diversified diseases for
the current model of leaf disease detection. Many studies only focus on a single condition.
At the same time, many studies have been conducted on the color characteristics of the
lesions, and their texture features have not been used. Wang [7] used the machine vision
method to detect rapeseed Sclerotinia disease. The research only focused on one single
disease. Meng et al. [8] developed a lightweight CNN crop disease recognition model to
realize the recognition of multiple diseases, but the development of this research is based
on a laboratory environment.

Kiwi canker is a devastating bacterial disease that seriously threatens the production
of kiwifruit, known as the “cancer” of kiwifruit [9,10]. Its main characteristics are the
appearance of small chlorotic spots and water stains on the new leaves, which later develop
into irregular or polygonal brown spots, and there is a wider yellow halo around the
diseased spots [9]. Kiwi brown spot is a fungal disease caused by C. cassiicola [10]. It is
one of the most serious leaf diseases during the growth period of kiwifruit. It has a great
impact on yield and fresh fruit quality, and the damage is serious. Its typical symptoms
consist of brown circular to irregular target spots with obvious concentric rings appearing
on the leaves. The lesions are extended and coalesced, causing leaf necrosis and finally
defoliation [9,11]. Brown spot disease and canker disease on leaves are serious and difficult
to distinguish in the daily planting process. Therefore, fruit farmers need to detect and
intervene as soon as possible to avoid greater economic lose.

To solve the above problems, we collected a high-quality dataset of kiwi fruit leaf
diseases, including common plant diseases such as Brown Spot and Bacterial Canker.
Based on these diseases, we proposed advanced target detection combined with semantic
segmentation to realize a multi-leaf, multi-disease detection model in complex scenes [12].
We used YOLOX [13], the most advanced target detection algorithm in the world, to strip
multiple leaves from the natural scene, and place the stripped leaves into our optimized
DeepLabV3+ [14] model to accurately detect diseases, and to ensure that both texture and
color were used as features to determine the diseases. Finally, ResNet101 [15] was used to
achieve accurate recognition.

2. Materials and Methods
2.1. Experiment Field and Data Acquisition

The pictures in this study are from the Kiwi Fruit Base in Yaan, Dujiangyan, Sichuan. The
dataset was taken by a Canon EOS60D SLR camera with a resolution of 1920 × 1080 pixels,
shot by imitating the posture of inspection robot as much as possible. To increase the
robustness of the model, we also took pictures from other angles and motion poses. These
datasets were taken from March 2018 to August 2021, including disease pictures of different
leaf ages, varieties, and onset periods. This dataset marks each kiwi fruit leaf with a clearly
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visible disease, as Figure 1 shows. After stripping the leaves from the complex nature
through target detection, we marked the diseases of the leaves, mainly marking the most
similar and common brown spots and cankers. This article collected a total of 1000 images
for target detection. After stripping and screening, 2000 datasets with disease were obtained
and divided into a training set and validation set at a ratio of 7:3.

Figure 1. The original picture in the dataset.

2.2. YOLOX Background Stripping Algorithm

On the basis of the YOLO series, YOLOX has integrated the latest achievements in the
field of target detection in recent years. At the same time, it has inherited the YOLO series,
which is easy to deploy, and has made some empirical improvements to construct a new
high-performance detector. When choosing the benchmark model of YOLOX, the authors
believes that the Yolov4 [16] and Yolov5 [17] series may have some over-optimization
from the perspective of the algorithm based on the anchor frame; hence, they finally chose
Yolov3 [18] and combined it with the SPP [19] components to develop the Yolov3_spp
version with better performance. Based on this, the authors proposed the network structure
of YOLOX-Darknet53, as shown in Figure 2.

Figure 2. YOLOX network structure diagram.
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2.3. A Semantic Segmentation Algorithm Based on Axial–DeepLabv3+ Leaf Spots
2.3.1. DeepLab Series Model

Semantic segmentation refers to the classification of each pixel of an image through
computer deep learning, which realizes the separation and labeling of different types of
objects in the picture. The input picture, GroundTruth, and network output often have the
same size. The most representative semantic segmentation models are UNet, SegNet, FCN,
PSPNet, DeepLab, etc. [20–23].

DeepLab is a semantic segmentation model that has good performance on public
datasets such as VOC. Among them, the DeepLabV3+ model is the current DeepLab model
with better effectiveness. We used a variety of semantic segmentation models to conduct
experimental comparisons on the kiwi leaf dataset, including DeepLabV1, DeepLabV2,
DeepLabV3 and DeepLabV3+, and finally achieved a significant improvement in accuracy.

DeepLabV1 is an improvement of the VGG network. It tries to fuse multi-level
information by connecting to the convolutional layer after the Maxpool layer. DeepLabV2
mainly introduces atrous spatial pyramid pooling (ASPP) on the basis of DeepLabV1 to
enhance the model’s ability to recognize objects of the same category of different sizes.
On the basis of DeepLabV2, DeepLabV3 adds a hole convolution of different rates in the
back end of the model and introduces batch normalization in ASPP. DeepabV3+ adjusts
the structure of DeepLabV3 to form an encoder and decoder similar to U-net, allowing the
model to achieve better results at the edge of segmentation. The modified Xception is then
introduced to enhance the robustness of the model classifier [24]. The DeepLabV3+ model
structure is shown in Figure 3.

Figure 3. DeepLabv3+ network structure diagram, where, .., . . . are the symbol of omission.

2.3.2. Attention Mechanism in DeepLabv3+ Series Models

Axial–DeepLabV3+ introduces the Axial–Attention module in DeepLabV3+ to achieve
a better attention mechanism effect while ensuring that the parameters are within an
acceptable range [25].

Therefore, in the experiment, we introduce this module into DeepLabv3+ to increase
the model’s attention to the injury area and to ensure the accuracy of the model’s identifica-
tion.The schematic diagram of the module is shown in Figure 4.
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Figure 4. The module of axial.

2.3.3. Selection of Backbone of DeepLabV3+ Model

We tried the three classifiers, Xception and MobileNet [26], and ResNet101 proposed
by DeepLabV3+ and compared the models in consideration of the amount and accuracy of
the model parameters in order to determine the optimal classifier to improve the injury
recognition accuracy of classification.

The Backbone selection process also plays the role of accurate rate comparison with the
direct image classification algorithm to reflect the performance of the semantic segmentation
model for the classification of plant leaf injuries, and at the same time exploring the best
plant leaf injury recognition and classification method.

2.3.4. Attempt and Optimization of Dice Loss and Focal Loss Function

Choosing a suitable loss function is conducive to the improvement of the accuracy of
the model. The experiment compares two loss functions: Focal Loss and Dice Loss.

(1) Focal loss: In the classification process, the background class is often easy to classify
but difficult to classify different types of injuries. Therefore, the classification difficulty
varies [27], which is suitable for optimization through Focal Loss. When the number of
negative samples is large, it accounts for most of the total loss, and most of them are easy
to classify, such that the optimization direction of the model is not as expected, and we can
control the shared weight and control of loss by positive and negative samples. The weights
of easy-to-classify and difficult-to-classify samples are used to optimize the loss function.
After optimization, the loss function is as follows, where pt represents the predicted value
of the model, and γ and ∂t are two factors based on the standard cross entropy loss function:

FL(pt) = −∂t(1− pt)γ log(pt) (1)

(2) Dice Loss: It is observed that there is a large gap between the background and the
ratio of injuries, which applies the loss function optimization through Dice Loss [28]. Dice
Loss can be defined as follows, where |A ∩ B| represent the number of common elements
of A and B. |A| and |B| represent the number of elements in each collection:

Dice =
2|A ∩ B|
|A|+|B| (2)

It can increase the impact of leaf injury area on the loss function, thereby increasing
the accuracy, robustness and applicability of the model.

2.3.5. Learning Rate Decay

In order to prevent the learning rate from being too large, in which condition it will
oscillate back and forth when it converges to the global best point, the learning rate should
be continuously reduced as the epochs grow. In addition, the learning step size of the
convergence gradient should be reduced in order to achieve more stable and accurate
training results.
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Commonly used learning rate decay strategies include exponential_decay, natural
exp decay, cosine decay, etc. We used noisy linear cosine decay, which is often used in
reinforcement learning and in semantic segmentation model training to study its role in the
field of computer vision [29].

Noisy_linear_cosine_decay adds noise to the decay process on the basis of linear cosine
decay, which increases the randomness and possibility of finding the optimal value of lr to
some extent. It is also an improvement on cosine decay, and its calculation formula is as
follows, where ξt stands for random noise factor, and ld and cd stand for factors controlling
the gradual decline of learning rate. Equation (2) represents noisy linear decay. lnew, linit,
and lmin stand for learning rate of this epoch, learning rate of the beginning, and minimum
learning rate, respectively. Tmax stands for the maximum epoch.

ξt ∼ N
(

0, 1/(1 + t)0.55
)

(3)

(ld + ξt) × cd + 0.001 (4)

lnew = lmin + (linit − lmin)× (1 + cos(
epoch
Tmax

π)) (5)

2.3.6. Implementation and Evaluation Index

Based on the above analysis, we innovatively proposed a two-stage leaf disease
recognition algorithm. The algorithm flow-chart is as Figure 5 follows.

Figure 5. Overall processing flow of the network.

The training of the model was completed using Windows 10 operating system and
Pytorch framework. The CPU model of the test equipment was Intel®Core™ i9_10900K
CPU@3.70 GHz, the GPU model was GeForce RTX 5000 16 G, and the software envi-
ronment was CUDA 10.1, CUDNN 7.6, Python3.7. All experiments were trained with
default parameters.

This paper introduced Precision (P), namely precision rate, recall rate (Recall, R), and
Mean Average Precision (mAP) to evaluate the performance of the kiwi defect detection
model. The expressions of P and R are as follows:

P =
TP

(TP + FP)
(6)

R =
TP

(TP + FN)
(7)

Among them, TP (true positive), FP (false positives), and FN (false negatives) respec-
tively represent positive samples with correct classification, negative samples with incorrect
classification, and positive samples with incorrect classification.
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AP is the average accuracy rate, which is the integral of the P index to the R index, that
is, the area under the PR curve; mAP is the mean average accuracy, which means taking the
average value of AP of each category. They are defined as follows:

AP =
∫ 1

0
P(R)dR (8)

mAP =
1
|QR| ∑

q=QR

AP(q) (9)

3. Results
3.1. Experimental Results

YOLOX is used to separate the pictures from the natural scenes such that subsequent
models can accurately identify diseases.

mAP is used to measure the quality of the defect detection model. The higher the value,
the higher the average detection accuracy of the model and the better the performance of
the model for blade recognition. The mAP of training and the loss of a valid dataset are in
the figures below.

As can be seen from the Figures 6 and 7, YOLOX’s mAP of leaf detection reaches
95%, from which we believe that YOLOX has been accurately removed from the complex
natural environment. In order to prove the effectiveness and robustness of the model, we
introduced 100 pictures of natural images of leaves that did not participate in the training.
Then, we manually counted the effective leaves in the pictures, detected them by the model
and plotted the difference between the predicted values and the real values, which showed
that the missed detection rate was 0.02. The comparison is shown Figure 8.

Figure 6. The mAP of training.
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Figure 7. The loss of a valid dataset.

Figure 8. The difference between predict values and real values.

After obtaining the stripped leaves, we carried out the precise segmentation of diseases
and conducted experiments and improvements on the UNet and DeepLab series of net-
works. The actual training process of our improved DeepLab model and the original model
is compared as Figure 9 follows: the left is the original model, and the right is the improved
model. The volatility and loss values were reduced, indicating that the improvement is
more effective.

Figure 9. Comparison of loss before and after improvement. (a) Loss of DeepLabv3+. (b) Loss of
our DeepLabv3+.
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It can be seen from the training loss graph analysis that the improved model converges
faster with less oscillation on each epoch and with better effectiveness.

Figure 10 shows after the segmentation, where the first behavior in the picture is
based on the original model and the second behavior is based on the improved model.
The segmentation accuracy of the picture is higher, indicating that the newly selected loss
function can handle the loss more effectively and achieve a better segmentation effect.

Figure 10. Comparison of performance.

3.2. Analysis

During the segmentation process, we compared the combination of multiple network
structures and training methods and obtained the following Table 1 experimental results.

Table 1. U-net series model comparison.

Method
Loss Function

Learning Rate Decay Test Accuracy
Dice Loss Focal Loss Cross Entropy Loss

UNet
√

0.951

Attention UNet
√

0.950

UNet++
√

0.953

UNet++
√

0.952

UNet++
√

0.953

UNet++
√

Cosine Decay 0.954

UNet++
√ Noisy linear cosine

decay 0.956

Where
√

means we used this strategy, blank means we don’t used.

After the innovation experiment of the U-Net series models, we followed up with the
DeepLab model test to ensure the credibility of the experimental results. In the process of
the experiment, we mainly compared the improvement of the model training accuracy by
different training methods. As Table 2 shows:
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Table 2. Comparison of training skills of DeepLab series models.

Method
Loss Function

Learning Rate Decay Test Accuracy
Dice Loss Focal Loss Cross Entropy Loss

DeepLabV1
√

0.943

DeepLabV2
√

0.951

DeepLabV3
√

0.955

DeepLabV3+
√

0.956

DeepLabV3+
√

0.957

DeepLabV3+
√

0.956

DeepLabV3+
√ Noisy linear cosine

decay 0.959

Where
√

means we used this strategy, blank means we don’t used.

We selected the last group of training strategies, and based on this, we improved
the deep labv3+ model and obtained the following experimental comparison results. As
Table 3 shows:

Table 3. Comparison of DeepLabv3 + model optimization.

Base Model
Backbone Attention

Gates
Test

AccuracyXception MobileNet ResNet101

DeepLabV3+
√

0.954

DeepLabV3+
√

0.959

DeepLabV3+
√

0.961

DeepLabV3+
√ √

0.966
Where

√
means we used this strategy, blank means we don’t used.

After the experiments and model comparisons, we finally determined that the training
methods of DeepLabV3+ and ResNet + Focal Loss + cosine_decay were the models with
the highest accuracy. In addition, the combination of UNet++ and Focal Loss can reach
good accuracy performance while reducing the number of parameters.

We determined that the final segmentation model was DeepLabV3 along with Focal
Loss, attention gates, and noisy linear cosine decay + ResNet101, with final recognition
accuracy reaching 96.6%. Compared with the original deeplabv3 + network with an
accuracy of 95.6%, the accuracy improved by 1.0%.

4. Discussions

This article explored a method to detect kiwifruit leaf diseases. To realize the need to
detect kiwifruit diseases from complex natural scenes, we used the YOLOX model for more
in-depth research. To accurately detect diseases, we used DeepLabv3+ to cut the disease
parts off the leaves. Finally, a high-precision classifier was used to identify the diseases.
The feasibility of this method is as follows.

(1) In terms of data, we tried to imitate the perspective and posture of the detection
robot as much as possible; hence, our algorithm had strong practicability. After the in-
vestigation, we found that the brown spot and bacterial canker of the kiwifruit had high
incidence and infectiousness. Therefore, to solve the urgent need of fruit farmers, we used
only the brown spot and canker training models to speed up the research progress.

(2) In terms of the model generalization ability, we collected pictures of different
species, onset periods, and leaf ages. At the same time, YOLOX adopted mosaic and mixup
data enhancement strategies, effectively improving the model’s generalization ability and
robustness strategy.
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(3) In DeepLabv3+ model optimization, we introduced the axial–attention module
to gain better experimental results, but the number of parameters increased, which was
derived from the higher resolution pictures in the case of a relatively low injury rate. Its
position tended to be close to the center of the page. For pictures with a relatively large
amounts of injuries, attention gates made it easier to identify injuries and made the model
perform better on the test set data. Thus, we think this was an effective innovation. In our
experiment, it was difficult to distinguish certain classes, and Focal Loss had better perfor-
mance and more accurate segmentation. In this experiment, Focal Loss performed better.

(4) In the model training method, we introduced the noisy linear cosine decay method
for training and improved the training effect as much as possible without increasing the
training cost.

In summary, we achieved two stages to strip the leaves from the complex scene,
and then accurately cut the diseased spots, and finally, we accurately identified the dis-
eased spots through the classifier. Therefore, we believe that this research provides better
quality for the natural scene identification of diseases. The strategy is an exploration of
great significance.

5. Conclusions and Future Work

To realize the detection of leaf diseases of kiwifruit based on natural scenes, this
paper proposed a two-stage detection method. Using YOLOX to strip the leaves from the
complex natural scenes, we could detect the leaves with an accuracy of up to 95%. Then,
we optimized the mainstream semantic segmentation network DeepLabv3+ to accurately
cut the lesions. Furthermore, we introduced the axial–attention module to shield some
interference information and leveraged Focal Loss as our loss function to accurately segment
the lesions. Finally, the ResNet classifier was used to identify lesions, and the accuracy plus
1.0% was compared with the original DeepLabv3+ model, which had better robustness and
which proved the effectiveness of the model.

This paper mainly proposed a segmentation high-precision detection algorithm for
leaf diseases. However, there are still problems regarding fewer diseases and slower
identification. In the future, we will add more diseases and lack-of-element data for
training. In addition, the algorithm proposed in this paper had good performance, but
the detection speed had difficulty meeting the requirements of real-time identification
of kiwifruit leaf disease. Follow-up research can reduce the complexity of the model by
pruning the network, achieving parallel speed and accuracy, and using it as soon as possible
in the field of agricultural disease control.
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