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Abstract: Understanding the genetic structure adopted by natural populations and its relation to
environmental adaptation is critical for the success of restoration programs. We evaluated the ge-
netic structure and temporal environmental niche dynamics of blue grama (Bouteloua gracilis) in
48 populations. The genetic evaluation was performed through amplified fragment length poly-
morphism (AFLP) molecular markers. The maximum entropy method was used to model the past,
present, and future environmental niches of the three clusters derived from the genetic analysis.
The environmental niches of the three genetic clusters showed dynamic overlaps and isolations
during the last interglacial and glacial maximum. The paleoclimatic events, which occurred during
those periods, may have reinforced genetic exchange among populations and affected their genetic
structure. Genetic clusters also presented different environmental niches in the present. Thus, they
can be considered as three distinct ecotypes and restoration programs must be carried out using
local germplasm from each environmental niche to increase their chance of success. Based on the
environmental niches of the genetic clusters, changes are expected in the near and mid-century
future. Therefore, climate change must be considered for species conservation management and
future restoration programs.

Keywords: environmental niche modeling; genetic diversity; MaxEnt; molecular markers; restoration

1. Introduction

The assessment of genetic structures provides insights into genetic differences within
species occurring in response to environmental adaptation pressures. Knowledge about the
genetic structure allows researchers to quantify the number of genotypes within species and
determine their geographical distribution. This information may be useful for modeling
the migration patterns shown by different genotypes through time. It may also be useful to
determine the interactions that may have influenced the adaptative genetic differentiation
within species [1].

Environmental niche models are statistical and mathematical models used to infer and
predict the geographic distribution of species [2]. Although modeling at the genotype level
is not infrequent, most environmental niche models (ENMs) have been conducted at the
species level, assuming all of the populations exhibit the same environmental adaptation.
However, genotypes within species often exhibit local adaptation and distinct responses to
environmental conditions [3,4]. Therefore, the incorporation of genetic structure informa-
tion into ENMs may improve the accuracy of the niche predictions [5–7].
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Several recent studies have incorporated genetic structure information into environ-
mental niche modeling to obtain accurate predictions and support genetic conservation
strategies [8–13]. This approach is known as genetically informed environmental niche
models (gENMs) [6]. Such models may help to increase the probability of the success of
restoration programs, since they allow the identification of suitable areas for the species
genotypes [14,15]. Thus, knowledge about the genetic structure and gENMs are important
to design strategies for the conservation and utilization of native germplasm.

One of the species most utilized for grasslands restoration in North America is blue
grama (Bouteloua gracilis (Kunth) Lag. ex Griffiths). This grass has been widely used due to
its proven adaptability to a wide range of environmental conditions and its high forage
quality [16,17]. In the past years, several breeding programs have been performed to
select outstanding genotypes of this species that may be employed to restore degraded
grasslands [17–20]. These selection programs have mainly focused on agronomic traits,
such as high biomass production, while the genetic structures and environmental niches of
the selected genotypes have not been considered as selection factors.

The maximum entropy method has been widely used to estimate the environmental
niches of grass species [21,22]. This method is available in the MaxEnt model, which is
a presence-only algorithm used to infer species distribution through an environmental
niche modeling approach [23]. MaxEnt has several advantages, such as the possibility
of obtaining a high level of certainty using limited records of presence [24]. This model
has been used at the species level to identify suitable areas for the distribution and use of
blue grama in Mexico and the United States [25,26]. Hence, it may serve for modeling the
environmental niche of the blue grama genotypes.

This study addressed the following questions: first, do the blue grama populations
from northern Mexico have a special genetic structure pattern that can be split into genet-
ically distinct clusters? Second, did the paleoclimatic events of the last interglacial and
glacial maximum affect the gene exchange and the genetic structure of the blue grama
populations? Third, do the genetic clusters have different present environmental niches?
Fourth, will future climate change differentially affect the environmental niches of blue
grama genetic clusters?

2. Results
2.1. Genetic Structure

The AFLP primer combinations generated 186 fragments and 67.7% of these fragments
were polymorphic. Results from the STRUCTURE analysis indicated that K = 3 was the
number of genetic clusters with the strongest support, since it obtained the highest L(K)
and ∆K values (Figure 1).

The genetic structure of the blue grama populations may have been generated by an
evolutionary adaptation to the environmental conditions prevailing in Chihuahua, since
an association among the ecoregions of the state and the genetic clustering pattern was
found (chi-square = 29.2; p < 0.0001). The populations belonging to Cluster I are located in
the semi-arid (42.1%) and arid (57.9%) regions of the state. Populations from Cluster II are
located in the semi-arid (73.3%) and mild (26.7%) regions, while most of the populations
(92.9%) integrating Cluster III are from the arid region (Figure 2).

The AMOVA revealed significant differences among the genetic clusters (p < 0.0001).
Such differences only explained 16.6% of the total genetic variation and the majority of it
(83.3%) exists within clusters. Accordingly, results from the AFLP analysis suggested a
gene flow (Nm) value of 1.25 and an Fst of 0.167. These values indicate there is a relatively
high genetic exchange and a low differentiation among genetic clusters. In addition, the
diversity statistics showed that Cluster III exhibited the highest (p < 0.05) genetic diversity
compared to the other genetic clusters (Table 1).
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Figure 1. Genetic structure of 48 blue grama (Bouteloua gracilis) populations from Chihuahua, Mex-
ico, inferred from AFLP data and STRUCTURE analysis. (A) Mean log-likelihood (L(K)) and (B) 
Evanno’s delta K (ΔK) values. K values tested were from 1 to 10. (C) Bar plots representing the 
estimated membership probability (y-axis) of a population to belong to a specific cluster (indicated 
by specific color). 
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text, split into three clusters by AFLP based STRUCTURE analysis. 
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Figure 1. Genetic structure of 48 blue grama (Bouteloua gracilis) populations from Chihuahua, Mexico,
inferred from AFLP data and STRUCTURE analysis. (A) Mean log-likelihood (L(K)) and (B) Evanno’s
delta K (∆K) values. K values tested were from 1 to 10. (C) Bar plots representing the estimated mem-
bership probability (y-axis) of a population to belong to a specific cluster (indicated by specific color).
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Figure 2. Genetic structure of 48 blue grama (Bouteloua gracilis) populations in a geographical context,
split into three clusters by AFLP based STRUCTURE analysis.
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Table 1. Genetic diversity parameters within three population clusters of blue grama (Bouteloua
gracilis).

Genetic
Cluster

Percentage of
Polymorphic

Loci

Average Number
of Alleles per

Locus

Average Effective
Number of

Alleles per Locus
I He

Cluster I 63.4 1.59 b 1.38 b 0.333 b 0.223 b

Cluster II 66.6 1.61 b 1.37 b 0.337 b 0.224 b

Cluster III 73.1 1.67 a 1.45 a 0.389 a 0.261 a

Average 67.4 1.62 1.40 0.353 0.236
Different letters indicate significant differences among clusters (p < 0.05; Wilcoxon with Bonferroni´s correction);
I = Shannon information index; He = Nei’s genetic diversity.

2.2. Environmental Niche of the Genetic Clusters

The MaxEnt model was used to predict the potential distribution of the three genetic
clusters. A total of 19 sampling locations for Cluster I, 15 for Cluster II, and 14 for Cluster
III were used for the environmental niche modeling, corresponding to the number of
populations grouped in each genetic cluster. The AUC values were 0.83 ± 0.09, 0.85 ± 0.09,
and 0.91 ± 0.06 for clusters I, II, and III, respectively. In addition, the three models obtained
values higher than 0.5 in the null models. The mean diurnal range, mean temperature of
the driest quarter, mean temperature of the warmest quarter, precipitation seasonality, and
precipitation of the driest quarter were variables of great contribution in the ENMs of the
genetic clusters (Table 2).

Table 2. Percent contribution of seven bioclimatic variables to the environmental niche models for
three genetic clusters of blue grama (Bouteloua gracilis).

ID Variable
Cluster

I II III

Bio2 Mean diurnal range 1.4 18.1 2.3
Bio4 Temperature seasonality 2.0 11.5 0
Bio9 Mean temperature of the driest quarter 2.0 0.0 57.7

Bio10 Mean temperature of the warmest quarter 35.2 45.0 4.7
Bio11 Mean temperature of the coldest quarter 0.6 0.0 1.9
Bio15 Precipitation seasonality 44.0 25.4 8.4
Bio17 Precipitation of the driest quarter 14.7 0.0 25

The ENMs revealed quite different potential distribution ranges among the three
genetic clusters in the past, present, and future scenarios (Figure 3). The areas with the
highest probability of distribution (>0.75) of the three genetic clusters were quantified
for a more accurate comparison of their probable distribution range. The surface with a
high probability of habitat suitability (>0.75) of the three clusters varied over the different
periods. Compared to the present ENM, the surface with a high probability of habitat
suitability for Cluster I was smaller during the LIG and is expected to be smaller in the mid-
century future. In contrast, Clusters I and II had a bigger surface with a high probability
of habitat suitability during the LIG and LGM, and this surface is expected to be broader
compared to the present ENM (Table 3). The statistic for niche overlaps revealed significant
(p < 0.05) differences among the present ENMs of the three clusters (Table 4). The degree
of niche overlapping among genetic clusters was similar in the past and present models.
Nevertheless, the niche overlapping of Cluster III with the rest of the clusters is expected to
be lower in the future.
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Table 3. Suitable areas for three genetic clusters of blue grama (Bouteloua gracilis) in past, present, and
future scenarios based on MaxEnt environmental niche models.

Environmental Niche Model

Genetic Cluster

TotalCluster I
(km−2)

Cluster II
(km−2)

Cluster III
(km−2)

Last inter-glacial
(120,000–140,000 years ago) 13,257.3 22,962.2 14,789.5 53,009.00

Last glacial maximum
(21,000 years ago) 18,506.70 22,887.1 17,668.4 54,062.2

Present prediction (1970–2000) 15,659.7 16,961.8 8107.6 40,729.2
Near future (2021–2040) 10,449.1 22,152.78 7968.9 40,570.7
Mid-century (2041–2060) 12,145.8 21,361.1 17,888.8 51,395.7

Surface areas with a probability of habitat suitability > 0.75.

Table 4. Niche identity statistics for three genetic clusters of blue grama (Bouteloua gracilis) in past,
present, and future scenarios based on MaxEnt environmental niche models.

Environmental Niche Model
Cluster I vs. II Cluster I vs. III Cluster II vs. III

SD WI SD WI SD WI

Last inter-glacial
(120,000–140,000 years ago) 0.47 * 0.73 * 0.44 * 0.73 * 0.18 * 0.39 *

Last glacial maximum
(21,000 years ago) 0.43 * 0.68 * 0.48 * 0.76 * 0.17 * 0.35 *

Present prediction (1970–2000) 0.43 * 0.68 * 0.42 * 0.69 * 0.18 * 0.33 *
Near future (2021–2040) 0.41 * 0.61 * 0.47 * 0.72 * 0.30 * 0.47 *
Mid-century (2041–2060) 0.43 * 0.72 * 0.24 * 0.51 * 0.13 * 0.25 *

SD = Schoener’s [27] and WI = Warren’s [28] statistic for niche overlap among clusters. Niche overlap, measured as
Schoener’s D and Warren’s I, ranges from zero (no overlap) to one (niche models identical). * indicates significant
differences (p < 0.05) among the environmental niches of the clusters.

Figure 4 shows the areas with a probability of habitat suitability greater than 75% for
the distribution of the three genetic clusters at the present time. The areas with a high
probability of habitat suitability (>0.75) varied among genetic clusters, and each genetic
cluster occupied a different geographic range. The surface with a probability >75% for
the distribution of Cluster I is mainly located in the central and southern part of the state,
corresponding to the semi-arid region. Regarding Cluster II, the surface with a probability
>75% is mainly distributed in the southwestern part of the state, close to the Sierra Madre
Occidental. Finally, the surface with a probability >75% for Cluster III is distributed from
the central to the eastern part of the state, mainly in the arid region (Figure 4).
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Figure 4. Areas with a probability of habitat suitability greater than 75% for the distribution of three
genetic clusters of blue grama (Bouteloua gracilis) based on historical (1970–2000) bioclimatic variables,
as derived from environmental niche models in MaxEnt.

Figure 5 shows the response curves of some of the variables with the greatest contribu-
tions in the present ENMs of the genetic clusters. The curves revealed that the maximum
probability of habitat suitability for Cluster I is in locations with mean temperatures in the
warmest quarter close to 23 ◦C. The maximum probability of habitat suitability for Cluster
II occurs close to 13 ◦C, while Cluster III reaches the highest probability of habitat suitability
close to 31 ◦C. Regarding the precipitation in the driest quarter, the maximum probabilities
of occurrence were found at 18, 58, and 8 mm, for Clusters I, II, and III, respectively.
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3. Discussion
3.1. Genetic Structure

According to the results of the genetic analysis, the blue grama populations of northern
Mexico exhibit a genetic structure that can be split into three genetic clusters. Genetic
structures in blue grama populations were previously reported by Tso et al. [29]; these
researchers evaluated 44 populations and 5 cultivars of blue grama from the southwestern
United States through cpDNA analysis and AFLP markers. They concluded that the blue
grama populations from the Colorado Plateau exhibit a genetic structure that may partially
be explained by the local environmental variability. This agrees with the findings of the
present study, since an association between the environmental conditions of the state and
the genetic clustering pattern was found.

Evolutionary processes, such as environmental adaptation, gene flow, habitat fragmen-
tation, and population isolation determine a population’s genetic structure. Accordingly,
the reason for the divergence among genetic clusters might be adaptation to the different
ecoregions of the state, since an association between the ecoregions of the state and the
genetic clustering pattern was found. The populations from Cluster I are located in the
central part of the state, in the transition zone between the semi-arid and the arid regions,
while populations from Cluster II are located in the mild and semi-arid regions. Finally,
populations belonging to Cluster III are mainly located in the arid region. Therefore, pop-
ulations from Cluster III are better adapted to areas with lower precipitation and higher
temperatures than the populations from Clusters I and II. Meanwhile, populations from
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Cluster II may be better adapted to lower temperatures than the other clusters. These
results agree with previous studies, which found that adaptation to arid environments can
produce genetic divergences among lineages in plants [30–32].

The AMOVA partitioning of the genetic variation revealed there is a high level of
genetic diversity within clusters, since a quite high partition (83.3%) of the variation exists
within clusters. This suggests the possibility of selecting outstanding populations from
each cluster, instead of only selecting them from all the populations evaluated.

Furthermore, the high level of diversity within clusters observed in this study agrees
with patterns of genetic diversity found in other grass species. For example, Xiong et al. [33]
analyzed the genetic diversity of the grass Psathyrostachys junceain and found that most
of the variation (87.6%) occurred within populations. Similar results were found by
Wu et al. [34], who reported that the genetic differences among populations of Elymus
tangutorum explained 26.1% of the global variation. Likewise, Tso et al. [29] found that
approximately 13% of variation was attributed to genetic differences among blue grama
populations.

The low level of genetic differentiation among clusters suggests a high genetic ex-
change exists among the blue grama populations. Accordingly, the Nm among genetic
clusters was 1.25, which can be considered high compared with those obtained for other
grasses. For instance, Zhang et al. [31] found an Nm value of 0.95 among ten populations
of the grass Festuca ovina. Similarly, Coppi et al. [35] reported an Nm of 0.49 among Phrag-
mites australis populations. Furthermore, the Fst obtained in this study (0.167) revealed a
relatively low differentiation among genetic clusters. Mitchell et al. [36] obtained an Fst of
0.02 among 85 Australian populations of Microlaena stipoides. In the study by Tso et al. [29],
Fst values of 0.15 to 0.22 for 44 populations and 5 cultivars of blue grama were reported.

Cluster III obtained the highest values (p < 0.05) for all the diversity statistics evaluated.
Populations integrated into this cluster are mainly distributed throughout the arid region,
suggesting blue grama populations from dry habitats tend to have a high genetic diversity.
This agrees with previous studies, which concluded that populations from adverse environ-
ments tend to have a high genetic diversity [37,38]. Accordingly, Zhao et al. [39] found that
Stipa krylovii populations from drier environments tend to have a high genetic diversity
as an evolutionary mechanism of adaptation to drought stress. Furthermore, previous
research has reported a relationship between genetic diversity and environmental variables
in grass species. For example, Zhang et al. [31] reported that Nei’s genetic diversity index
correlates with the mean annual temperature (r = 0.56) and mean annual precipitation
(r = −0.60). Similar results were also described by Zhang et al. [40] for Dactylis glomerata.

Cluster I, II, and III obtained I values of 1.38, 1.37, and 1.45, respectively. These values
indicate a moderate level of genetic diversity within the clusters compared to those obtained
in other studies. Wanjala et al. [41] obtained I values from 0.12 to 0.34 from an analysis of
281 cultivars of Pennisetum purpureum. Likewise, Todd et al. [42] analyzed 56 accessions of
Panicum virgatum and reported an I of 0.317.

3.2. Environmental Niche Modeling

The incorporation of genetic structure information into the environmental niche mod-
eling allowed us to obtain preliminary evidence of niche specialization among blue grama
populations in northern Mexico. Past ENMs allowed researchers to recreate geographic
distributions and revealed ancestral niche overlaps, which may have reinforced gene ex-
change between genetic clusters. They also revealed important patterns of genetic diversity
and divergence related to environmental adaptation. Therefore, past ENMs with genetic
structure information provided insight into the evolutionary processes, which have shaped
the patterns of genetic diversity in blue grama. Such evolutionary processes included gene
flow, environmental adaptation, habitat fragmentation, migration, and population isolation.
These important patterns in the adaptative history of the species would be ignored by
models at the species level.
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Past ENMs revealed dynamic differences and overlaps among the niches of the genetic
clusters during the LIG and LGM periods. During the LIG, the suitable areas for the
distribution of Cluster II and III were 6000 and 6681 km2 respectively higher, than those in
the present. However, the potential distribution of Cluster II increased in the mild region,
while the potential distribution of Cluster III increased in the arid region. In North America,
the climate was drier during the late LIG [43]. This was a consequence of the lower global ice
volume, which produced higher sea levels, CO2 concentrations, and surface temperatures
than the Holocene [44–47]. Therefore, Cluster III may be better adapted to drought and
high temperatures than Clusters I and II, because its potential distribution increased to the
arid region, showing better adaptability to the LIG warm and dry conditions. The niche
overlaps among genetic clusters were higher during the LIG than in the present. Niche
overlaps during the LIG may have reinforced gene exchange between genetic clusters and
influenced the low genetic differentiation between them. This is consistent with earlier
findings, which related genetic structure with paleoclimatic patterns [1,48].

During the LGM, Clusters I and III showed higher surface areas with a probability of
habitat suitability >75% than during the LIG, while Cluster II showed a similar potential
distribution. The niche overlapping between Clusters I and II was lower during the LGM
than during the LIG. Meanwhile, the niche overlaps between Clusters I and III increased.
These changes may have affected the gene flow among genetic clusters and their genetic
structure. However, the three clusters showed higher surface areas with a probability of
habitat suitability >75% during the LGM compared to the present potential distribution.
The increase in the environmental niches of the blue grama genetic clusters is in agreement
with the lower temperature and higher precipitation experienced during the LGM. The
LGM was a glacial period characterized by a global cooling as a consequence of a reduction
of the atmospheric CO2 and sea level [49,50]. The northern hemisphere faced a strong
cooling, and northern Mexico was notoriously wetter than today due to increased rainfall
events during the winter season [51,52].

In contrast, the present ENMs resulted in quite different geographical patterns among
the three clusters. Clusters I and II have larger surface areas with a probability of habitat
suitability >75% (7552 and 8854 km2, respectively) compared to Cluster III. This suggests
that populations from Clusters I and II are adapted to a broader range of environmental
conditions than Cluster III. Furthermore, the differences among the environmental niches
of the three genetic clusters indicate they are three ecologically distinct units and can be
considered as distinct ecotypes.

Given they are three distinct ecotypes, restoration programs with blue grama should
be performed using local germplasms from the environmental niche of each cluster. This is
consistent with previous studies, which indicate that the use of local germplasm may help
to preserve the genetic diversity and increase the probability of the success of restoration
programs [53,54]. However, most of the restoration projects with blue grama in Mexico
have been performed using seed imported from the USA, which may be a factor limiting
the establishment of this species. For this reason, several breeding programs have been
performed to select outstanding genotypes of this species, which may be employed to
restore degraded grasslands [17–20]. Nevertheless, these selection programs have been
mainly focused on agronomic traits, such as high biomass production, while the genetic
structures and environmental niches of the selected genotypes have not been considered as
selection factors. Results from this study provide insight into the adaptability of blue grama
populations in northern Mexico and highlight the potential of performing selection based on
environmental adaptability. This information may be useful for future breeding programs.

Regarding the future scenarios, climate change will affect the suitable areas for the
distribution of the genetic clusters. Future ENMs projected a broader surface area with
a probability of habitat suitability >75% for Cluster I in the mid-century. Meanwhile,
Cluster II will show a similar surface area and Cluster I will cover a smaller area. The
increase in the potential distribution ranges of Cluster I would be associated with the
severe droughts projected for North America in the mid-century as a consequence of
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anthropogenic drying [55,56]. Thus, populations from Cluster I appear to be more resistant
to anthropogenic drying, since their potential distribution will increase towards the mid-
century. In addition, climate change will modify the niche overlapping among the genetic
clusters. The niche of Cluster III will experience the greatest changes by the mid-century.
This may affect the genetic exchange among clusters and the genetic diversity of the blue
grama populations from northern Mexico.

4. Materials and Methods
4.1. Population Sampling

In this study, 48 natural populations were analyzed (Supplementary Materials Table S1;
Figure 6). Populations were distributed across 29 municipalities of the state of Chihuahua,
Mexico. Chihuahua borders the Mexican states of Durango, Coahuila de Zaragoza, Sonora,
and Sinaloa. It also borders the North American states of Texas, New Mexico, and Arizona.
This state is located in the geographic coordinates ranging from 31.78 to 25.55 N latitude
and from −103.30 to −109.07 W longitude. It has a surface area of 247.4 km2, which
represents 12.6% of the Mexican territory.
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The state of Chihuahua was selected as the study area since it is representative of
the species distribution in northern Mexico from both, the geographic and climatic per-
spectives. Sampling was performed in the temperate, arid, and semi-arid regions of the
State. Populations were collected at least 20 km separated from each other, with the aim
of gathering the greatest genetic diversity possible. The coordinates of each sampled site
were recorded using a GPS Garmin eTrex 10, which exhibits a mean error value of 2.1 m.
Fresh leaves from three plants were collected from each of the 48 populations and used for
the genetic structure analysis. Collected leaves were stored in coolers and transported to
the laboratory. Only three plants per population were analyzed, with the aim of assessing
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the greatest number of populations possible. To avoid sampling clones from rhizomes, the
samples were taken from plants located at least 5.0 m apart. Sample sites were identified
with a continuous number (N1, N2, N3, etc.) as they were collected. The plants from each
population were also identified with a number from 1 to 3 (plant 1, plant 2, and plant 3).

4.2. Genetic Structure Analysis

The DNA extraction was carried out according to the method of Doyle and Doyle [57].
DNA from the three sampled plants from each population was bulked for the analysis.
The genetic structure of the blue grama populations was evaluated based on the amplified
fragment length polymorphisms (AFLP) approach, following Vos et al. [58]. The genomic
DNA was digested using the restriction enzymes EcoRI and MseI, and ligated with EcoRI
and MseI adapters. After the ligation restrictions, the resulting DNA was pre-amplified by
adding an extra nucleotide (EcoRI + A and MseI + A). The pre-amplification products were
used for the selective amplification, which involved the use of the following fluorescent-
labeled primer combinations: MseI + CTG-EcoRI + AAG; MseI + CTG-EcoRI + ACT; MseI
+ CAG-EcoRI + AGG; MseI + CAG-EcoRI + AAC. The following amplification profile was
applied for the polymerase chain reaction (PCR): 1 cycle of 30 s at 94 ◦C, 30 s at 65 ◦C, and
1 min at 72 ◦C; 12 cycles of 94 ◦C for 30 s, 65 ◦C for 30 s (with decrements of 0.78 ◦C at each
cycle), and 72 ◦C for 1 min; and 23 cycles of 94 ◦C for 30 s, 56.8 ◦C for 1 min, and 72 ◦C
for 1 min. The selective amplification products (2 µL) were mixed with 8 µL of formamide
and 1 µL of LIZ 500 GeneScan (Applied Biosystems, Foster City, CA, USA) size standard.
Primers fluorescently labeled at different wavelengths (700 nm and 800 nm) were added.
The separation and selection of the amplified fragments were fulfilled on a DNA analyzer,
LI-COR Model 4200. Finally, the presence or absence of the AFLP fragments was scored as
“1” (presence of fragment) and “0” (absence of fragment) and transformed into a binary
matrix for further analysis (Supplementary Materials Table S1).

The genetic structure was inferred using the model-based Bayesian clustering method,
and implemented in the STRUCTURE software, ver. 2.3.4 [59,60]. This analysis was
carried out using an admixed model with correlated allele frequencies for a range of
possible genetic clusters (K) from 1 to 10. For each K, 30 independent replicates were
conducted. A burn-in period of 10,000 and a run length of 100,000 Markov Chain Monte
Carlo (MCMC) replications were implemented for each replicate. The optimal number of
population genetic clusters was estimated based on the mean log-likelihood (L(K)) and
the delta K (∆K) statistics, using the Structure Harvester (http://taylor0.biology.ucla.edu/
structureHarvester/, accessed on 6 January 2022) [61,62]. The relationship between the
clustering patterns of the populations and the regions of the State was analyzed through a
chi-square test of independence (α = 0.05).

An analysis of molecular variance (AMOVA) was performed to determine the ge-
netic differentiation within and among the genetic clusters resulting from the STRUC-
TURE analysis [63]. This analysis was carried out based on PhiPT (analog of FST) us-
ing GenAIEx, ver. 6 [64]. Gene flow (Nm) among genetic clusters was calculated as
Nm = (0.25 (1 − FST)/(FST)) [65].

For each genetic cluster, the diversity indices percentage of polymorphic loci, average
of alleles per locus, average effective number of alleles per locus, Shannon information
index (I), and Nei’s genetic diversity (He) were estimated using the software GenAIEx,
ver. 6 [64]. The diversity indices among clusters were compared by using the Wilcoxon test
with Bonferroni´s correction (α = 0.05).

4.3. Environmental Niche Modeling

The ecological niche modeling approach was applied to quantify the temporal eco-
logical differentiation among the clusters derived from the genetic analysis. The past,
present, and future suitable areas for the distribution of the genetic clusters were pre-
dicted based on the maximum entropy method using MaxEnt, ver. 3.4.4 [24,66]. The
coordinates of the populations integrated into each genetic cluster were used as input

http://taylor0.biology.ucla.edu/structureHarvester/
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for the ecological niche modeling. Initially, the 19 bioclimatic variables from the World-
clim database (https://www.worldclim.org) were obtained to perform the modeling [67].
Then, Pearson’s correlation test was applied to identify and exclude highly correlated vari-
ables (coefficient > 0.8). Only seven bioclimatic variables showed a degree of collinearity
(Pearson’s correlation coefficient) lower than 0.8 in absolute values (positive or negative
correlation). Only these seven variables were included in the models and they were: mean
diurnal range (Bio2), temperature seasonality (Bio4), mean temperature of the driest quar-
ter (Bio9), mean temperature of the warmest quarter (Bio10), mean temperature of the
coldest quarter (Bio11), precipitation seasonality (Bio15), and precipitation of the driest
quarter (Bio17).

The environmental niche models from the past were projected based on paleoclimatic
data of the Last Interglacial (LIG; 120,000–140,000 years before present) and the Last Glacial
Maximum (LGM; 22,000 years before present). The LIG bioclimatic layers were utilized at
2.5 arc-min resolution [50]. The LGM projections were performed using the Community
Climate System Model (CCSM4) scaled down to a 30 arc-seconds resolution [68]. For the
present potential distributions, bioclimatic grids derived from climatic data for the period
1970–2000 were utilized at 30 arc-seconds resolution.

The environmental niche models were also projected to future scenarios to assess how
climate change will affect the potential distributions of the genetic clusters. The future
bioclimatic variables with a 2.5 arc-minutes resolution were obtained from the MIROC-ES2L
climatic model [69] for two periods: near future (2021–2040) and mid-century (2041–2060).
The Representative Concentration Pathway (RCP) 4.5 was used as the expected climate
change scenario, since it is a moderate emission scenario [70].

The models were constructed with a maximum number of interactions of 5000 and
10,000 background pseudo-absence points. The output format used was Cloglog. Most
of the Maxent features were configurated as standard. Models were constructed by using
50 replicate runs, and the bootstrap method was set as the replicated run type. The models
were built with 75% of sampling points, and the remaining 25% were randomly selected
as test data. Fifty replicate runs were used to obtain a consensus model prediction and to
calculate the area under the receiver operating curve (AUC) [71]. The model’s performance
was evaluated based on the AUC and null models [72]. Models with AUC values greater
than 0.75 were considered reliable while models with AUC values higher than 0.5 were
considered null [73]. MaxEnt outputs were converted into geographic maps in ArcMap
ver. 10.3 (ESRI, CA). The maps show the potential distribution range of the genetic cluster
based on an index of suitability between 0 and 1, where 0 indicates that the environmental
conditions are unsuitable and 1 indicates adequate conditions. The obtained environmental
niches represent the modeled statistical association between the genetic structure and the
environmental adaptation of the blue grama populations.

The niche identity test was performed to evaluate whether the genetic clusters would
occupy different niches in the geographical space in the past, present, and future scenarios.
The degree of niche overlapping existing between a pair of genetic clusters was quantified
using the identity statistics Schoener’s D (SD) [27] and Warren’s I (WI) [28]. The SD and
WI ranged from 0 to 1, where 0 indicates null overlap and 1 total overlap. To determine
significance for the niche identity test, we ran 100 permutations in which sample labels were
randomized to generate a null distribution of the identity statistics. If the empirical value
of the statistics SD and WI fell below the 95% confidence interval of the null distribution,
we considered the niches of the two clusters to be significantly different. The niche identity
test was conducted through the ENM Tools available in the R software, ver. 4.0.4.

5. Conclusions

The combination of genetic structure analysis and environmental niche modeling
allowed us to quantify the major genetic lineages within blue grama populations from
northern Mexico and predict their potential distribution over different periods. The blue
grama populations analyzed in this study exhibit a special genetic structure pattern, and

https://www.worldclim.org
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can be split into three distinct genetic clusters. The genetic structures of these lineages can
be partially explained by the past paleoclimatic events of the LIG and LGM periods. The
environmental niches of the three genetic clusters showed dynamic overlaps and isolations
during the LIG and LGM, which may have affected the gene exchange among populations.
Therefore, environmental adaptation may have contributed to shaping the genetic structure
of the blue gamma populations during the history of the species.

Under the present scenario, each genetic cluster exhibits a different environmental
niche. Hence, they can be considered as three genetically and ecologically distinct units,
which means they are different ecotypes with different utilization potentials. Thus, restora-
tion programs with blue grama in northern Mexico should be performed by using local
germplasms from the environmental niche of each cluster.

According to the projections of future environmental niches, climate change will
modify the suitable areas for the distribution of two of the genetic clusters. The potential
distributions of Clusters I and III will be broader in the middle of the century, which
suggests these populations are more resistant than populations from Cluster I to the
anthropogenic drying projected as a consequence of climate change. Thus, climate change
must be considered in species conservation management and future restoration programs.
Finally, the high genetic diversity found within each cluster represents an opportunity to
select outstanding germplasms, which may be used in future restoration programs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11050684/s1, Table S1: Coordinates of the geographic location and AFLP binary data of
the 48 blue grama (Bouteloua gracilis) populations.
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