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Abstract: Malus baccata (L.) Borkh. is a widely used medical plant in Asia. Since the anti-inflammatory
mechanism of this plant is not fully understood, the aim of this study was to explore the anti-
inflammatory function and mechanism of Malus baccata (L.) Borkh. methanol extract (Mb-ME).
For in vitro experiments, nitric oxide production assay, PCR, overexpression strategy, immunoblot-
ting, luciferase reporter assay, and immunoprecipitation were employed to explore the molecular
mechanism and the target proteins of Mb-ME. For in vivo experiments, an HCl/EtOH-induced gastri-
tis mouse model was used to confirm the anti-inflammatory function. Mb-ME showed a strong ability
to inhibit the production of nitric oxide and the expression of inflammatory genes. Mb-ME decreased
NF-κB luciferase activity mediated by MyD88 and TRIF. Moreover, Mb-ME blocked the activation
of Src, Syk, p85, Akt, p50, p60, IKKα/β, and IκBα in LPS-induced RAW264.7 cells. Overexpression
and immunoprecipitation analyses suggested Syk and Src as the target enzymes of Mb-ME. In vitro
results showed that Mb-ME could alleviate gastritis and relieve the protein expression of p-Src, p-Syk,
and COX-2, as well as the gene expression of COX-2 and TNF-α. In summary, this study implied
that Mb-ME performs an anti-inflammatory role by suppressing Syk and Src in the NF-κB signaling
pathway, both in vivo and in vitro.

Keywords: Malus baccata (L.) Borkh.; anti-inflammatory; NF-κB

1. Introduction

Inflammation is a crucial immune response that protects our bodies from diverse
pathogens. When microorganisms such as Gram-negative bacteria with lipopolysaccharide
(LPS) invade a human body, an innate immune response will be initiated within a few
hours. Upon injury and infection, immune cells use pattern recognition receptors (PRRs)
to sense exogenous infectious ligands whose molecular structures are broadly shared by
pathogens and endogenous molecules that are released from dying and damaged cells [1].
Toll-like receptors (TLRs), well-characterized members of PRRs, are a membrane-bound
protein [2,3]. Possessing the Toll-interleukin receptor (TIR) domain, four adaptor proteins
are able to be recruited by TLRs: MyD88, TRIF, TIRAP, and TRAM [4,5]. The interactions be-
tween adaptor proteins and TLRs trigger transforming growth factor beta-kinase 1 (TAK1),
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leading to the activation of IKK complex-NF-κB and mitogen-activated protein kinases [6].
Consequently, extracellular signals are transduced through transcription factors, including
NF-κB, JAK-STAT, and AP-1 [7,8]. Subsequently, the translocation of transcription factors is
elicited. Ultimately, these processes lead to the elevated release of inflammatory cytokines;
chemokines; and IFNs, such as iNOS, interleukins, and TNF-α, to protect the host from
microbial infection [9–12]. Although inflammation is a vital process, uncontrolled and
excessive inflammatory responses contribute to serious illnesses, such as diabetes, can-
cer, rheumatoid arthritis, and Alzheimer’s disease [12–14]. Therefore, there is an urgent
demand to develop highly effective and safe anti-inflammatory drugs.

Malus baccata (L.) Borkh. is a common plant mainly found in China, Russia, and Korea.
It has a small edible fruit with traditional medicinal properties. Extracts of Malus baccata
exhibit considerable amounts of bioactive components, such as flavonoids; anthocyanins
of a-sitosterol and ursolic acid; and fatty acid molecules of palmitic acid, ethyl palmitate,
and linolein [15–17]. The ethanol extract from the leaves of Malus baccata has been reported
to contain inhibitors of fatty acid synthase (FAS), which can reduce body weight in vitro [18].
In addition, phenolic ingredients in the fruits of Malus baccata could significantly enhance
immunomodulation activity and protect spleen cells from radiation-caused damage by
regulating apoptosis [19]. Juices prepared from Malus baccata showed a strong inhibitory
effect on proliferation in HL-60 human leukemia cells and strong DPPH radical scavenging
activity [20]. There is little evidence that methanol extract from Malus baccata (Mb-ME)
has the potential to inhibit excessive inflammation responses, necessitating the present
study. In addition, the anti-inflammatory function and mechanism of this plant have not
been fully elucidated yet. Therefore, in this study, we aimed to explore in vitro and in vivo
anti-inflammatory activities of Mb-ME and understand its molecular action mechanism
through the verification of target protein(s).

2. Results
2.1. Effect of Mb-ME on Nitric Oxide Production

Nitric oxide is a molecule that plays a crucial role in inflammation [21]. Therefore,
we investigated nitric oxide production upon LPS stimulation. The production of nitric
oxide was downregulated by Mb-ME in a dose-dependent manner in RAW264.7 cells and
peritoneal macrophages (Figure 1A,B). Results also showed that the standard compound
L-NAME inhibited in a dose-dependent manner the secretion of nitric oxide under the
same conditions both in RAW264.7 cells and in peritoneal macrophages (Figure 1C,D)
without cytotoxicity (Figure 1F). Similarly, Mb-ME showed no obvious cytotoxicity in three
cell lines (RAW 264.7 cells, HEK293 cells, and peritoneal macrophage cells) (Figure 1E).
Finally, HPLC analysis was performed to identify the flavonoids in Mb-ME. Quercetin
and hesperidin (upper panels in Figure 1G,H), showing the same retention times (6.05 and
22.02 min, respectively) with their standard compounds (bottom panels in Figure 1G,H),
were present in Mb-ME (Figure 1G,H). The content of hesperidin is 130.13 mg/g, while the
content of quercetin is only 0.28 mg/g.

2.2. Effect of Mb-ME on the mRNA Expression of Inflammatory Genes

To assess whether the decreasing trend of nitric oxide production was modulated by
Mb-ME at the transcriptional level, the pro-inflammatory genes were investigated using
PCR in LPS-induced conditions. In Figure 2A,B, semi-quantitative RT-PCR results showed
that the expression of iNOS, IL-1β, IL-6, TNF-α, MMP9, and COX-2 was strongly stimulated
by LPS treatment, while the expression was decreased in the presence of Mb-ME in a dose-
dependent manner, especially at the concentration of 100 µg/mL. As expected, similar
results were revealed by a quantitative RT-PCR. Mb-ME significantly blocked LPS-elevated
expression levels of TNF-α, iNOS, and IL-6 (Figure 2C–E).
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Figure 1. Effects of Mb-ME on the production of nitric oxide, cell viability, and HPLC. (A–D) Cells 
were pre-incubated with Mb-ME or L-NAME for 30 min and induced by LPS for 24 h. Nitric oxide 
production was determined. (E,F) The cytotoxicity of Mb-ME and L-NAME was investigated. (G,H) 
A phytochemical fingerprinting profile of Mb-ME was obtained by HPLC analysis. The lower panels 
in (G,H) are the HPLC profiles of standard compounds quercetin and hesperidin that appeared in 
6.05 and 22.02 min, respectively. One millimole of L-NAME is 233.23 μg/mL. ## p < 0.01 and ** p < 
0.01 compared with the normal or control group. 
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were pre-incubated with Mb-ME or L-NAME for 30 min and induced by LPS for 24 h. Nitric
oxide production was determined. (E,F) The cytotoxicity of Mb-ME and L-NAME was investigated.
(G,H) A phytochemical fingerprinting profile of Mb-ME was obtained by HPLC analysis. The lower
panels in (G,H) are the HPLC profiles of standard compounds quercetin and hesperidin that appeared
in 6.05 and 22.02 min, respectively. One millimole of L-NAME is 233.23 µg/mL. ## p < 0.01 and
** p < 0.01 compared with the normal or control group.Plants 2022, 11, x FOR PEER REVIEW 5 of 17 

 

 

 

 

(A) (B) 

  

(C) (D) 

 

 

(E)  

Figure 2. Inhibitory effects of Mb-ME on the expression of inflammatory genes. (A) RAW264.7 cells 
were pre-treated with Mb-ME for 30 min and incubated with LPS for 24 h. The expression levels of 
inflammatory genes were assessed by an RT-PCR. (B) The relative intensity of (A) was measured by 
ImageJ. (C–E) The expression levels of TNF-α, iNOS, and IL-6 were detected by a quantitative PCR. 
## p < 0.01 compared with the normal group; * p < 0.05 and ** p < 0.01 compared with the normal or 
control group. 

  

Figure 2. Inhibitory effects of Mb-ME on the expression of inflammatory genes. (A) RAW264.7 cells
were pre-treated with Mb-ME for 30 min and incubated with LPS for 24 h. The expression levels of
inflammatory genes were assessed by an RT-PCR. (B) The relative intensity of (A) was measured by
ImageJ. (C–E) The expression levels of TNF-α, iNOS, and IL-6 were detected by a quantitative PCR.
## p < 0.01 compared with the normal group; * p < 0.05 and ** p < 0.01 compared with the normal or
control group.
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2.3. Effect of Mb-ME on the Translocation of Transcription Factors

Luciferase activities were measured using HEK293 cells to identify whether the inhibi-
tion of inflammation-related genes was regulated by Mb-ME through the NF-κB signaling
pathway. NF-κB-mediated luciferase activity was dramatically triggered by MyD88 and
inhibited by Mb-ME in a dose-dependent manner (Figure 3A). Meanwhile, Mb-ME sig-
nificantly (p = 0.004589) altered TRIF-stimulated luciferase activity at 100 µg/mL but not
at 50 µg/mL (Figure 3B), suggesting that the influence of Mb-ME on MyD88-mediated
NF-κB signaling pathways is stronger than its influence on TRIF-mediated NF-κB activ-
ity. To further ascertain if Mb-ME did control NF-κB activation, the expression of p50
and p65, the most common heterodimers in the NF-κB signaling pathway, was evaluated
at the protein level. Results showed that Mb-ME could largely attenuate both p50 and p65 at
15, 30, and 60 min, indicating that Mb-ME affected the NF-κB activating activity (Figure 3C,D).
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pared with non-Mb-ME-treated groups at all time points (Figure 4A,B). Nevertheless, Mb-
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Figure 3. The anti-inflammatory effect of Mb-ME on the transcription level of the NF-κB signaling
pathway. (A,B) HEK293 cells were transfected with NF-κB-Luc, MyD88, TRIF, and β-gal for 24 h
before Mb-ME treatment. (C) The effects of Mb-ME on nuclear protein levels of p50, p65, and Lamin
A/C were examined by immunoblotting. (D) The relative intensity of p50 and p65 (C) was mea-
sured by ImageJ. ## p < 0.01 compared with the normal group and ** p < 0.01 compared with the
control group.

2.4. Effect of Mb-ME in Activating the NF-κB Upstream Signaling Pathway

To confirm whether Mb-ME also modulates the upstream molecules of the NF-κB
signaling cascade, the expression of intracellular proteins in both total- and phosphor-forms
was examined at different LPS-treatment time points in the presence or absence of Mb-ME.
Phosphorylated Akt (S473) was diminished by Mb-ME after LPS induction compared
with non-Mb-ME-treated groups at all time points (Figure 4A,B). Nevertheless, Mb-ME
blocked the phosphorylation of IκBα only at 5 min. For the phosphorylation of IKKα/β,
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there was a clear inhibitory effect caused by Mb-ME except at 15 min. Since Mb-ME exerted
inhibitory effects on Akt (S473) and IκBα induced by LPS at 5 min, some earlier time points
were assessed to further evaluate the upstream molecules. The blocking trend appeared
after Mb-ME treatment at almost all time points, especially the phosphorylation of IκBα
and p85 (Figure 4B). Syk and Src are essential kinases for the initiation of signaling and
could be activated to regulate various activities. Therefore, the phosphorylation of Syk and
Src was investigated. As Figure 4B shows, Mb-ME offered a significant inhibitory effect
on phosphorylation of Src at all time points, while the pattern of Syk could be observed
only at 2 and 3 min after treating with LPS. To further determine the putative target
protein of Mb-ME, an overexpression assay of Syk and Src was conducted. In Figure 4C,D,
both Syk and Src overexpression increased the levels of phosphorylated forms of p85, Syk,
and Src, whereas these events were significantly suppressed by Mb-ME treatment. To verify
the inhibitory effect of Mb-ME on Src and Syk, immunoprecipitation was performed
to evaluate the binding activity between Src and Syk and their substrates. As seen in
Figure 4E,F, complex formation of p85 with either Src or Syk was abolished by Mb-ME,
strongly implying Src and Syk as direct targets of Mb-ME.
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to Src or Syk was examined by immunoprecipitation and immunoblotting analysis. ## p < 0.01 com-
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To assess the therapeutic function of Mb-ME in inflammatory diseases in vivo, we 

used a gastritis mouse model triggered by HCl/EtOH. Ranitidine, which is used to treat 
and prevent ulcers in the stomach and intestines, was used as a positive control. Based on 
our previous study [22–25] and in vitro activity of Mb-ME showing a concentration range 
from 0 to 100 μg/mL, we decided doses of Mb-ME and ranitidine up to 200 and 40 mg/kg, 
respectively. As shown in Figure 5A,B, Mb-ME strongly ameliorated the inflammatory 
lesion to a degree similar to that of ranitidine. The expression of COX-2 and TNF-α in 
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Figure 4. The regulatory effects of Mb-ME on NF-κB signaling. (A,B) RAW264.7 cells were pretreated
with Mb-ME, stimulated by LPS for specific time points. The phosphorylated and total forms of
interested proteins were measured by Western blot analysis. (C) HEK293 cells overexpressing HA-Src
or Myc-Syk were treated with Mb-ME for 24 h. Phospho- and total forms of interested proteins were
evaluated by immunoblotting. (D) RAW264.7 cells were induced with LPS in the presence or absence
of Mb-ME for 5 min. (Lower panels in A–D) The relative intensity of signaling proteins (A,B) and
Syk, Src or p85 (C,D) was measured by ImageJ. (E,F) The binding capacity of p-p85 to Src or Syk was
examined by immunoprecipitation and immunoblotting analysis. ## p < 0.01 compared to the normal
group and ** p < 0.01 compared with the control.

2.5. Effect of Mb-ME on In Vivo EtOH/HCl-Induced Gastritis

To assess the therapeutic function of Mb-ME in inflammatory diseases in vivo, we
used a gastritis mouse model triggered by HCl/EtOH. Ranitidine, which is used to treat
and prevent ulcers in the stomach and intestines, was used as a positive control. Based on
our previous study [22–25] and in vitro activity of Mb-ME showing a concentration range
from 0 to 100 µg/mL, we decided doses of Mb-ME and ranitidine up to 200 and 40 mg/kg,
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respectively. As shown in Figure 5A,B, Mb-ME strongly ameliorated the inflammatory
lesion to a degree similar to that of ranitidine. The expression of COX-2 and TNF-α in
stomach tissues was measured to confirm whether in vivo results were similar with in vitro
data. As expected, the expression of both COX-2 and TNF-α exhibited a decreasing trend
on Mb-ME treatment (Figure 5C). Moreover, the Western blotting results implied that
Mb-ME strongly diminishes the enhanced COX-2 level triggered by HCl/EtOH in stomach
lysates and the anti-gastritis ability of Mb-ME was almost the same as that of ranitidine
(Figure 5D). To confirm whether Mb-ME could also modulate the NF-κB in vivo condition,
the expression of p-Syk and p-Src in stomach tissues was assessed. As expected, Mb-ME
decreased the levels of both, especially the phosphorylated form of Syk (Figure 5D).
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Figure 5. In vivo effect of Mb-ME on HCl/EtOH-induced gastritis. (A,B) Mice were orally injected
with Mb-ME or ranitidine and gastritis was induced by HCl/EtOH. The mucosal erosive areas were
calculated with ImageJ. (C,D) The mRNA and protein were isolated from stomach tissues. mRNA
expression of COX-2 and TNF-α and protein levels of COX-2, p-Syk, Syk, and p-Src in gastritis
stomach samples were evaluated by a PCR and immunoblotting, respectively. ## p < 0.01 compared
to the normal group and ** p < 0.01 compared to the control.

3. Discussion

Malus baccata (L.) Borkh. is an important traditional medical plant. Several studies
have revealed its anti-obesity, anti-oxidant, and immunomodulation activities, emphasizing
its pharmacological importance [19]. However, the molecular mechanisms of this plant,
including those of its leaves and shoots, in inflammatory responses remain poorly under-
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stood. The goal of this study was to reveal the molecular mechanism of Mb-ME-mediated
anti-inflammatory activity using LPS-stimulated macrophages. Therefore, we investigated
the anti-inflammatory effect of Mb-ME using RAW264.7 cells, as well as an acute gastritis
murine model. Moreover, the target molecules of Mb-ME were explored in the NF-κB
signaling pathways.

Nitric oxide is recognized as a mediator and regulator molecule that plays several
roles in immunity and inflammation [26]. First, the production of nitric oxide was inhibited
by Mb-ME without significant cytotoxicity upon LPS-induced RAW264.7 cells and pri-
mary peritoneal macrophages (Figure 1A–F). As shown in Figure 1G,H, Mb-ME contained
quercetin and hesperidin, flavonoids famous for their anti-inflammatory and anti-oxidant
effects. The effect of Mb-ME on Src and Syk phosphorylation and nitric oxide production
might be attributed to these compounds. Further evidence is required to support this.

Inducible nitric oxide synthase (iNOS) is an enzyme that synthesizes nitric oxide [27].
Thus, the alteration of Mb-ME on mRNA expression of iNOS was investigated. As we
expected, semi-quantitative and quantitative PCR results suggest that mRNA expression of
iNOS is blocked by Mb-ME in a dose-dependent manner. Mb-ME also suppressed other
inflammatory genes, such as IL-6, MMP9, TNF-α, IL-1β, and COX-2 (Figure 2). In both
innate and adaptive immune cells, NF-κB is a central mediator that mediates cell survival,
differentiation, and activation of pro-inflammatory genes expression such as cytokines,
chemokines, and coagulation factors [28]. Our results indicate that the nuclear translocation
of p50 and p65, two subunits of NF-κB, was suppressed by Mb-ME. Moreover, Mb-ME
simultaneously inhibited the luciferase activity of NF-κB that was triggered by MyD88
and TRIF (Figure 3). Our experiment implies that Mb-ME plays a suppressive role in
nitric oxide production and pro-inflammatory genes, accomplished by blocking the nuclear
transcription and activity of NF-κB.

The nuclear transcription of NF-κB involves the activation of IκBα (inhibitors of NF-
κB), Akt, and IκB kinase (IKK) [29,30]. Moreover, phosphatidyl-inositol-3-kinase (PI3K),
Syk, and Src are upstream molecules of the NF-κB signaling pathway. Mb-ME suppressed
the phosphorylation of Akt, IKKα/β, and IκBα in LPS-stimulated macrophages at most
of the tested time points (Figure 4A). A significant reduction in IκBα at 5 min was ob-
served. In certain cytokine responses, it is believed that Src and Syk family kinases usually
act downstream of the Toll-like receptors by interacting with Src and Syk at earlier time
points. In agreement with our expectation, the phosphorylation of Src, Syk, and p85 was
enhanced by LPS stimulation while it was downregulated by Mb-ME treatment at 2, 3,
and 5 min (Figure 4B). Our hypothesis is that Mb-ME targeted Src and Syk. To verify
this, overexpression of Src and Syk was employed. Consistent with Figure 4B, the phos-
phorylation of Src and Syk and their downstream enzyme, p85, was inhibited by Mb-ME,
which implied Src and Syk as direct targets during Mb-ME-mediated anti-inflammatory
activities (Figure 4C,D). Molecular complex formation between Src/Syk and PI3K was
blocked by Mb-ME (Figure 4E,F). Moreover, an in vivo experiment confirmed that the
oral administration of Mb-ME ameliorated HCl/EtOH-induced acute gastritis (Figure 5).
In general, the anti-inflammatory activity of Mb-ME is driven by the suppression of p-Syk
and p-Src in NF-κB pathways.

4. Materials and Methods
4.1. Materials

The methanol extract of Malus baccata (L.) Borkh (Mb-ME) was obtained from the
Plant Extract Bank in the Plant Diversity Research Center (Daejeon, Korea). The RAW264.7
(murine macrophages) cells and HEK293 (human embryonic kidney) cells were purchased
from ATCC (Rockville, MD, USA). The reagents used for culturing cells were purchased
from Gibco (Grand Island, NY, USA). Lipopolysaccharide (LPS), polyethylenimine (PEI),
ranitidine, sodium carboxymethyl cellulose (Na-CMC), and other chemicals were obtained
from Sigma Chemical Co. (St. Louis, MO, USA). Phospho-specific and total antibodies
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recognizing β-actin, IκBα, p50, IKKα/β, HA, Src, p65, Syk, p85, Lamin A/C, Akt, p85,
IκBα, and Myc were purchased from Cell Signaling (Beverly, MA, USA).

4.2. Plant Information and Extraction Methods

Malus baccata (L.) Borkh. was collected from Xiao Longman National Forest Park,
Mentougou district, Beijing, China, and identified by Dr. Zhiyun Zhang at the Institute of
Botany in May 2012. A voucher specimen (accession number KRIB 0041120) of the retained
material is preserved at the herbarium of KRIBB. The leaves and shoots of Malus baccata
(19 g) were extracted with 1 L of 99.9% (v/v) methanol under repeated sonication (15 min)
and rest (2 h) for 3 days at 45 ◦C. The resultant product was filtered with non-fluorescence
cottons and concentrated by a rotary evaporator (N-1000SWD, EYELA) under reduced
pressure at 45 ◦C. Finally, a total 4.09 g of methanol extract of Malus baccata was obtained
by freeze-drying.

4.3. Cell Culture

RAW264.7 cells and HEK293 cells were cultured in RPMI1640 supplemented with
10% fetal bovine serum or DMEM supplemented with 5% fetal bovine serum, respectively.
Cells were incubated in 5% CO2 at 37 ◦C and passaged two times a week.

4.4. Drug Preparation

A stock solution (100 mg/mL) of Mb-ME solved with 100% DMSO was first diluted
with DMSO to have various concentrations of Mb-ME (25, 50, and 100 mg/mL). For prepar-
ing in vitro working concentrations (25, 50, and 100 µg/mL) of Mb-ME, a culture medium
was used for the final dilution. Mb-ME was prepared in 1% Na-CMC for the in vivo ex-
periment [31]. LPS (stock solution 1 mg/mL) was also diluted with the culture medium to
reach a working concentration (1 µg/mL).

4.5. Animals

ICR mice and C57BL/6 mice were obtained from Dae Han Bio Link (Osong, Korea) [32].
Food pellets and water were supplied ad libitum [33]. All studies were performed in
accordance with guidelines established by the Sungkyunkwan University Institutional
Animal Care and Use Committee.

4.6. Preparation of Peritoneal Macrophages

To obtain peritoneal macrophages, sterile thioglycollate broth was intraperitoneally
injected into male C57BL/6 mice and lavaged for 4 days [34]. The exudates were washed
with an RPMI medium containing 10% FBS [35]. Peritoneal macrophages were plated in
100 mm tissue culture dishes.

4.7. Nitric Oxide Production Assay

RAW264.7 cells and peritoneal macrophages were seeded into 96-well plates. The cells
were pre-treated with Mb-ME for 30 min and induced with LPS for 24 h, and 100 µL of
the supernatant was transferred to a new 96-well plate and mixed with Griess reagent.
The nitric oxide production level was calculated by measuring absorbance at 540 nm [36].

4.8. Cell Viability Assay

The cells were treated with the indicated concentration of Mb-ME or L-NAME for
24 h [37]. Then, 10 µL of MTT solution was distributed to each well. The reaction was
terminated by adding 100 µL of MTT stopping solution. The cytotoxicity of Mb-ME and
L-NAME was explored by determining the absorbance at 570 nm.

4.9. High-Performance Liquid Chromatography (HPLC)

HPLC was performed with the Jasco HPLC system including a UV-Vis detector to
identify the bioactive components of Mb-ME [15,38]. The injection volume was 10 µL,
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and the flow rate was 1.0 µL/min. Quercetin and hesperidin were employed as the
standard compounds [39]. The HPLC conditions for analyzing quercetin and hesperidin in
Mb-ME are explained in Table 1.

Table 1. HPLC conditions.

Analyzing Compound Quercetin Hesperidin

Column CAPCELL PAK C18 MG,
4.6 mm I.D. × 250 mm

CAPCELL PAK C18 MG,
4.6 mm I.D. × 250 mm

Wavelength (nm) 254 285

Mobile phase
A: 2% acetic acid in water

B: 0.5% acetic acid in water:
CAN = 50:50

Methanol: water of acetic acid
(pH 3) = 30:70

Gradient or isocratic
conditions

0: A (28%), B (72%)
20 min: B (100%)
30 min: B (100%)

40 min: 100%

Oven temperature (◦C) 35 50

4.10. Plasmid Transfection and Luciferase Reporter Assay

HEK293 cells were transfected with Syk, Src, MyD88, TRIF, or NF-κB Luc via PEI for
24 h [40]. The above cells were further treated with Mb-ME for 24 h [41]. A luciferase assay
was performed to test the effect of Mb-ME on NF-κB activity. Cells overexpressing Syk or Src
were further incubated with Mb-ME for 24 h, harvested, and subjected to immunoblotting.

4.11. mRNA Analysis by a Reverse Transcription Polymerase Chain Reaction

Following pretreatment by Mb-ME for 30 min, RAW264.7 cells were induced with
LPS for 6 h. Total RNA was isolated using TRIzol reagent. Complementary DNA was
synthesized using mRNA as the template. A reverse transcription polymerase chain
reaction (RT-PCR) and a real-time PCR were performed [42]. All the primers are listed in
Tables 2 and 3.

Table 2. Sequences of mouse primers used in the semi-quantitative RT-PCR.

Name Primer Sequence (5′ to 3′)

iNOS
Forward GTGAAGAAAACCCCTTGTGCTG
Reverse AGTTCCGAGCGTCAAAGACC

IL-1β
Forward CAGGATGAGGACATGAGCACC
Reverse CTCTGCAGACTCAAACTCCAC

IL-6
Forward GCCTTCTTGGGACTGATGCT
Reverse TGGAAATTGGGGTAGGAAGGAC

TNF-α
Forward TTGACCTCAGCCGTGAGTTG
Reverse CCTGTAGCCCACGTCGTAGC

MMP-9
Forward TCTTCCCCAAAGACCTGAAA
Reverse TGATGTTATGATGGTCCCAC

COX-2
Forward CACTACATCCTGACCCACTT
Reverse ATGCTCCTGCTTGAGTATGT

GADPH
Forward ACCACAGTCCATGCCATCAC
Reverse CCACCACCCTGTTGCTGTAG

4.12. Preparation of Total Cell and Nuclear Lysates

Experimental RAW264.7 cells and HEK293 cells were harvested and resuspended in
lysis buffer. For nuclear fractionation, RAW264.7 cells were harvested and resuspended in
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nuclear protein extraction buffer [43]. The nuclear extract and whole protein lysates were
isolated by centrifugation and stored at −80 ◦C.

Table 3. Sequences of mouse primers used in the real-time PCR.

Name Primer Sequence (5′ to 3′)

TNF-α
Forward TGCCTATGTCTCAGCCTCTT
Reverse GAGGCCATTTGGGAACTTCT

iNOS
Forward CGAAACGCTTCACTTCCAA
Reverse TGAGCCTATATTGCTGTGGCT

IL-6
Forward GTCCTTCCTACCCCAATTTCCA
Reverse TAACGCACTAGGTTTGCCGA

GADPH
Forward GGGTCCCAGCTTAGGTTCATC
Reverse TACGGCCAAATCCGTTCACA

4.13. Immunoblotting

A Bradford assay was employed to determine the protein concentration of samples.
The proteins of whole cells or nuclear lysates were then subjected to immunoblotting, as
performed previously [44]. The phosphorylated or total proteins of p85, Akt, IKKα/β, Syk,
Src, Myc, HA, COX-2, and β-actin were visualized using an ECL system [45].

4.14. Immunoprecipitation

Proteins was isolated from RAW264.7 cells treated with Mb-ME and LPS. Lysates con-
taining equal amounts of proteins were incubated with 3 µL Syk- or Src-specific antibodies
at 4 ◦C overnight. The protein complexes were mixed with 10 µL of protein A-conjugated
agarose beads for 4 h at 4 ◦C [46]. Protein complexes were washed, and the beads were
boiled. The proteins were isolated and then subjected to immunoblotting.

4.15. HCl/EtOH-Induced Gastritis

The acute gastritis model was induced with EtOH/HCl in 25 ICR mice. Fasted mice
(6 mice/group) were orally administered Mb-ME or ranitidine twice per day for 2 days [31].
One hour after the final oral administration, the mice were orally injected with 400 µL
of 60% ethanol in 150 mM HCl [47]. The mice were anesthetized and sacrificed after 1
h. The mRNA and protein were isolated from stomach tissue lysates for an RT-PCR and
immunoblotting analysis, respectively.

4.16. Statistical Analysis

Data are expressed as the mean ± the standard deviation of experiments performed
with triplicate samples for the in vitro experiments or with septuplicate samples for the
in vivo experiments. SPSS (Ver. 22) was employed to evaluate the differences between
groups. p < 0.05 was considered statistically significant.

5. Conclusions

In summary, in this study, Mb-ME reduced the production of nitric oxide; decreased the
mRNA expression of pro-inflammatory genes such as TNF-α, IL-6, and iNOS; and relieved
acute gastritis symptoms triggered by HCl/EtOH treatment. This extract also showed
the suppression of Src and Syk activities, leading to a reduction of the NF-κB activation
pathway under LPS-activated conditions, as summarized in Figure 6. Our results imply
that Mb-ME provides an anti-inflammatory effect by targeting the NF-κB signaling pathway
both in vivo and in vitro. The potential anti-inflammatory function suggests Mb-ME as an
ideal therapeutic candidate in inflammatory illness. Therefore, we will continue a more
detailed pre-clinical study against various gastritis diseases with the ethanol or water
extracts of this plant.
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Syk Spleen tyrosine kinase
TLR Toll-like receptors
TRIF TIR-domain-containing adapter-inducing interferon-β
TIRAP TIR domain containing adaptor protein
TRAM TRIF-related adaptor molecule
TNF-α Tumor necrosis factor α
TAK1 Transforming growth factor beta-kinase 1
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