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Abstract: Summer savory (Satureja hortensis L.) is a medicinal and aromatic plant of the Lamiaceae family,
a source of valuable secondary metabolites (monoterpenoids, rosmarinic acid, flavonoids). For this paper,
flavonoid accumulation in an aseptic culture of summer savory was determined by using a colorimetric
method. The organ specificity of flavonoid accumulation in aseptic plants was revealed: In leaves
(8.35 ± 0.17 mg/g FW), flower buds (7.55 ± 0.29 mg/g FW), and calyx (5.27 ± 0.28 mg/g FW),
flavonoids accumulated in significantly higher amounts than in stems (1.50 ± 0.22 mg/g FW) and
corolla (0.78 ± 0.12 mg/g FW). We found that primary callus tissue formed from cotyledon and
hypocotyl explants retains the ability to synthesize flavonoids at deficient levels (0.50 ± 0.09 mg/g FW
and 0.44 ± 0.11 mg/g FW, respectively), that remained stable throughout six subcultures. Placing the
callus tissue in monochrome lighting conditions with blue, green, and red light-emitting diode (LED)
lamps leads to morphological changes in the tissue and decreased flavonoid accumulation compared
to fluorescent lamps.

Keywords: Satureja hortensis; in vitro culture; callus; flavonoids; light-emitting diodes; spectral
light composition

1. Introduction

Plants remain an indispensable raw material for the light and food industry, and
a source of many valuable bioactive molecules/pharmacophores for humans [1,2]. The
market for herbal medicines is rapidly growing; more than a quarter of all pharmaceuticals
in industrialized countries are of herbal origin. According to a BBC report, the herbal
medicines market will grow from $29.4 billion in 2017 to about $39.6 billion by 2022, with
an annual growth rate of 6.1% [3]. However, technologies for industrial production of
valuable medicinal molecules or substances based on plant cell and tissue cultures are not
as widespread as the production of economically beneficial metabolites and cell biomass
for the cosmetics and food industry; despite the fact that the need for these technologies
increases from year to year [4]. The development of such biotechnological processes is based
on extensive knowledge of plant physiology and biochemistry under in vitro conditions,
molecular biology, and bioengineering. Thus, expanding the knowledge base for the
characteristics of in vitro cultivation of medicinal, aromatic, and valuable agricultural
plants, especially their cell cultures, contributes to the development of this industry sector
and is an urgent task to research [4].

Summer savory (Satureja hortensis L.) is a herbaceous essential oil plant of the mint
family (Lamiaceae). It is used in the traditional medicine of the Middle East, evidence-based
medicine, cosmetology, and the food industry as condiments. Summer savory extracts and
essential oils have a wide range of biological activities—antimicrobial, antiviral, antioxidant,
fungicidal, antinociceptive, antitumor, hypoglycemic, hyperlipidemic, inhibition of amyloid
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beta protein aggregation, etc. [5]. The main components of the phytochemical profile are the
monoterpenoids of the p-menthane group (thymol, carvacrol, p-cymene, and γ-terpinen); in
addition, the aerial parts of plants are rich in flavonoids and contain rosmarinic acid [5,6].

Studies have revealed some biological activities associated with the accumulation of
flavonoids and phenylpropanoids of summer savory. Mchedlishvili et al. (2005) found that
the flavonoid fraction of S. hortensis lowers serum cholesterol levels in rabbits [7]. Accumula-
tion of phenolic compounds (flavonoids and rosmarinic acid) determines the hypoglycemic
activity of extracts; studies of local plant populations were conducted in Georgia; as a result,
the drug Saturin was developed [6]. The capsule contains an aqueous extract and fine leaf
powder. The drug is registered with the Ministry of Labour, Health and Social Welfare
of Georgia as a drug for the treatment of diabetes mellitus type 2 [6,8]. Summer savory
is actively used in traditional (for the Middle East) and evidence-based medicine. This
was the reason for studying its qualitative and quantitative flavonoid content by research
teams from different countries like Georgia, Serbia, Romania, Turkey, Finland, Greece, and
Russia [6–17]. However, there are no data on the flavonoid accumulation in the aseptic
culture of summer savory.

Light is an essential abiotic elicitor that affects many physiological processes in the
plant, determining growth and development features [18]. Thus, changes in plant mor-
phology and increased production of secondary metabolites in response to the use of
different spectrum light sources have been studied in several species [19–23]. The response
to different lighting regimes is often caused due to the fact that flavonoid biosynthesis
occurs via the phenylpropanoid pathway and is regulated by numerous enzymes (pheny-
lalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and
flavonol synthase (FLS) genes, etc.), whose activity is both directly and indirectly induced
by lighting parameters like spectral composition and intensity [24,25]. Cultivation under
monochromatic light sources makes it possible to reveal the influence of one part or another
of the spectrum on the course of flavonoid biosynthesis. Thus, cultivation under blue LEDs
(460–470 nm) resulted in increased flavonoid accumulation in several species compared to
other monochrome light modes (green, red, and yellow) in Anoectochilus roxburghii (Wall.)
Lindl. [26], Pisum sativum L. [27], and Glycine max L. Merr. plantlets [28]. The combination of
blue and red light also led to an increase in flavonoid accumulation in Anoectochilus roxburghii
due to the activation of CHI and FLS genes expression [29].

Thus, tissue and cell culture of S. hortensis, which has retained the ability to synthesize
valuable secondary metabolites characterized by intact plants, can be a raw material for the
food industry in producing functional food additives and medicines. All of the above became
the reason for our interest in studying summer savory aseptic cultures and the peculiarities of
accumulation of biologically active secondary metabolites (flavonoids) in them.

2. Results and Discussion
2.1. Flavonoid Accumulation in Aseptic Plants

In vitro cultivation of S. hortensis aseptic plants. Aseptic plantlets of S. hortensis were
cultivated into test tubes for 30 days; by the end of the initial culture, the plants reached a
height of 6.5–7.5 cm and formed 3–5 pairs of true leaves (Figure 1a). Initial culture plants
were divided into segments of 2–3 nodes and transplanted for further cultivation. By the
end of the 1st subculture, the plants reached a height of 11–13 cm, formed 7–9 nodes and
3–5 lateral shoots. Plants of the 1st subculture developed from segments containing one or
two nodes of the upper, middle, or lower parts of the initial culture plants, and after 30 days
of cultivation reached a height of 15–20 cm, formed 6–9 nodes and 2–6 lateral shoots, the
root system was actively developing. Most plants formed flower buds at the end of the
2nd subculture (Figure 1b) regardless of the segment origin at cutting (nodes of the upper,
middle, or lower part of the mother plant). Flowering in plants of the 3rd subculture began
after an average of 10 days of cultivation, and by the end of the subculture period, most
plants were in the phase of mass flowering (Figure 1c,d). In contrast to Pistelli et al., 2013,
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we cultivated aseptic plants of summer savory on MS medium without auxins, since root
formation was active and the addition of auxins was not necessary (Figure 1a,d) [30].
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Flavonoid content in S. hortensis aseptic plants. The total flavonoid content in different
organs was measured during three subcultures to study the characteristics of flavonoid
accumulation in S. hortensis aseptic plants (Table 1).

Thus, in leaves of aseptic plants, the flavonoid content was 24 times higher than
in stems at the end of the initial culture. By the end of the 2nd subculture, it increased
insignificantly in leaves, while in stems, it increased almost fivefold; high flavonoids in
flower buds were also noted. At the end of the 3rd subculture, there was a significant
flavonoid decrease in leaves (by 16%) and an insignificant increase in stems (by 5%); in the
corolla, the flavonoid content did not differ significantly from that in stems. In the calyx, it
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was noticeably inferior to the content in leaves (by 25%) and significantly superior to the
content in stems and corolla (by 70% and 85%, respectively).

Table 1. Total flavonoid content in various parts of S. hortensis aseptic plants.

Plant Material Subculture Total Flavonoid Content,
mg/g FW

Leaf 0 8.17 ± 1.07
Stem 0 0.34 ± 0.04
Leaf 1 8.20 ± 0.78
Stem 1 0.93 ± 0.15
Leaf 2 8.35 ± 0.17
Stem 2 1.50 ± 0.22

Flower bud 2 7.55 ± 0.29
Leaf 3 7.02 ± 0.90
Stem 3 1.58 ± 0.76

Corolla 3 0.78 ± 0.12
Calyx 3 5.27 ± 0.28

The total flavonoid content in flower buds of the 2nd subculture plants is higher
in comparison to the content in stems. This can be explained by the accumulation of
flavonoids in the photosynthetic part of the flower–calyx, and not in the forming corolla.
Thus, the flavonoid accumulation in S. hortensis aseptic plants occurs mainly in leaves,
flower buds, and calyx; much less is accumulated in stems and corolla of the flower. The
flavonoid contents in leaves did not change during cultivation in three subcultures. The
organ-specific flavonoid accumulation we observed in S. hortensis aseptic plants has been
noted by many researchers for several species [31,32].

The study of the flavonoid accumulation in aseptic culture of summer savory has not been
previously carried out, however, there is data on the flavonoid content in plants grown under
in vivo conditions. According to Masković et al., 2017, the flavonoid content in S. hortensis,
depending on the extraction method, can vary from 5.23 ± 0.76 to 28.42 ± 0.29 mg/g of
dry extract in routine equivalent [13]. Summer savory growing in Georgia accumulated
1.6–1.7% of flavonoids and phenolcarboxylic acids in air-dry leaves and flowers collected
during budding and flowering [6].

2.2. Flavonoid Accumulation in Callus Tissue

Induction and cultivation of S. hortensis callus tissue. Two types of explants—cotyledon
leaves and hypocotyls—were cultured on an MS medium with the addition of 1 mg/L BAP
to obtain primary callus. The callus formed a light green color with small yellow areas,
heterogeneous in density; looser and denser areas could be distinguished; shoot and root
organogenesis took place actively (Figure 2).
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After 2–3 weeks of explant cultivation, meristematic foci were formed on the callus
tissue sites, and small shoots of normal morphology, hyperhydric teratomas, and roots
were formed due to organogenesis.

Flavonoid content in callus tissue of S. hortensis. The total flavonoid content in the primary
callus after 30 days of cultivation (initial culture) was significantly lower than in the leaves
and flower buds of aseptic plants: in callus from cotyledon 0.50 ± 0.09 mg/g FW; in
callus on hypocotyl explants 0.44 ± 0.11 mg/g FW. This may be due to the need for cell
differentiation for flavonoid biosynthesis [31–33]. In favor of this hypothesis, the flavonoid
content in regenerants (the shoots of normal morphology and hyperhydric teratomas were
analyzed together) formed on the primary callus was 1.26 ± 0.21 mg/g FW.

The type of explant (cotyledon or hypocotyl) did not affect the flavonoid accumulation
in the primary callus formed on it. Therefore, cotyledon leaves and hypocotyls can be used
as explants to obtain callus culture for flavonoid synthesis.

The callus formed on hypocotyl explants was chosen for further experimentation
because visually, the growth of this kind of callus tissue was more active than in cotyledon
explants. Primary callus tissue areas were cultured for six subcultures. The callus appear-
ance and consistency changed insignificantly; the tissue remained green with light yellow
areas; the callus consistency was quite dense, easily to split into smaller aggregates; no
organogenesis was observed (Figure 3).
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Figure 3. Changes in the appearance of S. hortensis callus tissue over six subcultures: (a) 1st subculture,
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The data on changes in contents of total flavonoids in the callus tissue over six subcul-
tures are shown in Figure 4.

Having analyzed the data of Figure 4, we can draw the following conclusions. The
flavonoid accumulation in callus tissue is much lower than in aseptic plants. This trend
is typical for the primary callus tissues of some species, especially in the absence of elici-
tation [31]. Throughout six subcultures, there were no significant deviations in flavonoid
accumulation from the primary callus (content did not exceed 0.6 mg/g FW). Small fluc-
tuations in flavonoid accumulation during the subculture period can be explained by the
genetic and morphologic heterogeneity of callus tissue.
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Figure 4. Dynamics of flavonoid accumulation in S. hortensis callus over six subcultures.

2.3. Effect of Monochromatic Light on Callus Tissue Characteristics and Flavonoid Content

To study the effect of the light regime on flavonoid accumulation, were chosen the
following conditions: LED lamps of a monochrome spectrum–blue, green and red.

Appearance and consistency of callus tissue. Callus of the 4th subculture obtained from
hypocotyl explants was used for the experiment. Cultivation under blue LEDs during the
5th subculture resulted in the growth of callus tissue of green-yellow color with slight red
spots; the callus consistency was slightly watery and friable; it disintegrated into small
aggregates, with quite dense areas (Figure 5a). Cultivation under green LEDs led to the
formation of an actively growing soft, easily disintegrating into small aggregates, watery
callus from a light-yellow color to green. In isolated cases, rhizogenesis was observed;
thin roots 2–3 mm in length were formed (Figure 5b). Red light promoted growth of
green-yellow callus with small brown areas, with denser consistency than under green
light (Figure 5c).
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Flavonoid accumulation in S. hortensis callus tissue under the monochromatic light influence.
Cultivation during the 5th subculture under monochromatic LED lamps did not result in
significant changes in flavonoid accumulation (Figure 6).
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of cultivation.

Summarizing the data obtained, we can conclude that the appearance of callus tis-
sue when cultured under monochrome LED light: blue, green, and red, does not differ
significantly, the most actively growing callus under green light is characterized by low
levels of flavonoid accumulation, the same as the callus under the other monochrome
lamps. Thereby, the factor of lighting conditions in the selected modes did not affect the
accumulation of flavonoids in S. hortensis callus tissue samples. However, according to
some researchers, the cultivation of aseptic plants under monochrome lighting affected
flavonoid accumulation [31]. It may be due to disruption of both the genetic material
in the cell and disorders of its expression, which are characteristic of callus tissue as a
heterogeneous structure [31].

A number of researchers note an increase of flavonoid accumulation during the
cultivation of aseptic plants and cell cultures under blue light [34]. For example, this
trend is typical for Saccharina japonica (J.E. Areschoug) C.E. Lane, C. Mayes, Druehl &
G.W. Saunders, Saussurea medusa Maxim., and Lactuca sativa L. [34–37]. In 2018, Li et al.
studied the influence of the monochrome spectrum of LEDs, as well as the photoperiod
and radiation intensity on the growth of the embryogenic callus of Dimocarpus longan
Lour. The following dependence of the flavonoid accumulation on the spectrum of LED
lamps was noted–blue light > green light > dark > white light > red light [34].

3. Materials and Methods

Plant material. S. hortensis ‘Gnom’ seeds were used for introduction to in vitro culture.
‘Gnom’ (seed produced by the Agrogroup Biotechnica)—a compact form of summer savory,
forming a strongly branching bush 10–12 cm high.

Introduction of S. hortensis to in vitro culture and further cultivation of aseptic
plants. To obtain aseptic plantlets, S. hortensis seeds were treated with 5% sodium hypochlo-
rite solution (NaOCl) for 10 min, then washed in two portions of sterile distilled water
and placed in Petri dishes with hormone-free Murashige and Skoog (MS) medium with
3% (w/v) sucrose, 0.8% (w/v) agar [38] for germination. After 8–10 days, the seedlings
were transplanted into test tubes with a medium of the same mineral composition. After
30 days of cultivation, the plants were divided into segments of 2–3 nodes and transplanted
into 0.9-L glass culture bottles covered with cotton-gauze plugs, 3–4 pieces per bottle with
the nutrient medium of the same composition for more intensive biomass accumulation.
Aseptic plants were cultured in a growth room with a 16-h photoperiod, a temperature
of 21 ± 2 ◦C, under white fluorescent lamps with an illuminance of 2500 Lx, photon flux
density 22 ± 2.2 µmol/(s·m2), 4000K (manufacturer ‘OSRAM’, Smolensk, Russia). The
duration of the subculture was 30 days.
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Induction of callus formation. Cotyledons and hypocotyls of seedlings at the age of
6–8 days placed in Petri dishes with an MS medium supplemented with 1 mg/L benzy-
laminopurine (BAP) were used to induce callus formation. Primary callus tissues 0.3–0.5 cm
in diameter were transplanted after 30–35 days to the medium of the same mineral and
hormonal composition and in vitro culture was continued. The duration of subsequent
subcultures was 25–30 days. Callus tissue in vitro culture was performed under the growth
room conditions indicated above. Three samples of callus tissue were taken from five Petri
dishes at the end of each subculture to analyze the total flavonoid content.

Callus culture under monochrome LED lighting. Petri dishes with callus tissue were placed
under light regimes with the following characteristics: blue light (λmax = 460 nm) (Figure 7a),
green light (λmax = 520 nm) (Figure 7b), and red light (λmax = 660 nm) (Figure 7c), to study the
monochrome light effect. The photon flux density in all variants was 70 ± 10% µmol/(s·m2).
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Preparation of extracts. A sample of fresh plant material (callus samples or aseptic plant
segments collected at the end of the subculture) was ground in 96% ethyl alcohol solution, left
in the refrigerator for 48 h for extraction at 4 ± 2 ◦C, filtered, and used for analysis.

Determination of the total flavonoid content. We used a colorimetric analysis to de-
termine the total flavonoid content (Varian Cary® 50 UV-Visible spectrophotometer, Varian
Inc., Palo Alto, California, USA). Preparation of the mixture for spectrophotometry: 1000 µL
ethanol extract, 50 µL 10% aluminum chloride (AlCl3) in ethanol solution, 50 µL potassium
acetate (CH3COOK), and 1400 µL distilled water was kept for 30 min. Optical density was
measured at a wavelength of 415 nm. The calibration curve was made by quercetin.

Statistical processing of the data obtained. Statistical processing of the experimental
results was performed using the statistical functions of Excel (Microsoft Office) and the
AgCStat software package. The data in the tables and graphs are presented as the arithmetic
mean of the samples ± confidence interval (p = 0.05). All experiments were performed in
five biological and three analytical replicates.

4. Conclusions

Aseptic S. hortensis plants accumulate valuable secondary metabolites: flavonoids. The
accumulation was found to occur mainly in leaves (8.35 ± 0.17 mg/g FW), flower buds
(7.55 ± 0.29 mg/g FW), and calyx (5.27 ± 0.28 mg/g FW). Fluctuations of flavonoid ac-
cumulation in different organs of S. hortensis aseptic plants during three subcultures were
also noted. The level of flavonoid accumulation in the resulting morphogenic callus tissue
(0.44 ± 0.11 mg/g FW) and regenerants (1.26 ± 0.21 mg/g FW) was found to be significantly
lower than in aseptic plants. The observed slight fluctuations in the level of flavonoid accumu-
lation in the callus throughout six subcultures may be related to the genetic and morphological
heterogeneity of the callus tissue. Callus culturing under monochromatic light affected the
morphological features, but did not significantly change flavonoid accumulation. The total
flavonoid content in callus simples under blue LEDs was 0.24 ± 0.07 mg/g FW, under green
LEDs-0.18 ± 0.03 mg/g FW, and under red LEDs-0.19 ± 0.04 mg/g FW.
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