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Abstract: The increasing global population and the negative effects of nitrogen (N) fertilizers on the
environment challenge wheat breeding to maximize yield potential and grain protein concentration
(GPC) in an economically and environmentally friendly manner. Understanding the molecular
mechanisms for the response of yield components to N availability and assimilates allocation to grains
provides the opportunity to increase wheat yield and GPC simultaneously. This review summarized
quantitative trait loci/genes which can increase spikes and grain number by enhancing N uptake
and assimilation at relative early growth stage, and 1000-grain weight and GPC by increasing post-
anthesis N uptake and N allocation to grains.

Keywords: Triticum aestivum; nitrogen use efficiency; grain yield; grain protein concentration; root
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1. Introduction

Wheat (Triticum aestivum) is the most widely cultivated cereal in the world, providing
20% of the calories and protein in the global human diet [1]. As the world population is
predicted to be over 9 billion by 2050, the demand for wheat will increase by 60% compared
to 2010 [2]. Nitrogen (N) is an essential nutrient, and often the most critical yield-limiting
factor in crop production [3]. Among the crops, wheat received the highest amount of N
fertilizers, with 18.2% of global use, followed by maize with 17.8% and rice with 15.2% [4].
A global N budget assessment in cereal production systems for 50 years (1961 to 2010)
revealed that approximately 44.6% of N harvested by wheat crops was derived from applied
fertilizer-N, indicating most of the applied N was not used by wheat crops [5]. Fertilizer N
not recovered by crops can cause environmental problems of nitrate pollution of waters
and the pollution of the atmosphere with nitrous oxide, other oxides of N, and ammonia [6].
The Wheat Initiative Strategic Research Agenda suggests increasing N use of over 60% of
the applied amount to increase wheat production by at least 60% by 2050 [2]. Therefore,
it is required to increase wheat yield in an economically and environmentally friendly
manner. Such as breeding wheat with improved N use efficiency (NUE) and designing
variety-specific recommendations of N fertilizer management [2,7–9].

The genetic control of N use-related traits and strategies in improving NUE in wheat
have been reviewed by several authors [8,10,11]. As selecting yield and grain protein
concentration (GPC) both are important in wheat breeding, and the improvement of both
traits depends on efficient N use, this review will summarize N uptake and assimilation
quantitative trait loci (QTL)/genes which coordinate the formation of yield and yield
components and N allocation to grains.
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2. Definition of N Use-Related Traits

NUE and its components N uptake efficiency (NUpE) and utilization efficiency (NUtE)
are defined as below [12].

NUE =
GY
Ns

(1)

NUpE =
Gt
Ns

(2)

NUtE =
GY
Nt

(3)

where GY is grain yield per unit area, Nt is total N in the plant (grain + stove) at maturity
per unit area, and Ns is N supply or rate of fertilizer N per unit area. GY, Nt, and Ns are all
expressed in the same units.

N harvest index (NHI) can be expressed as:

NHI =
GY × GNC

Nt
(4)

where GNC is grain N concentration. According to the above four equations, we can get
the following equations:

NUE = NUpE × NUtE (5)

GY = NUtE × Nt =
GY
Nt

× Nt (6)

NUtE
NHI

=
GY

GY × GNC
=

1
GNC

or NUtE =
NHI
GNC

(7)

3. Genetic Gain for N Use- and Yield-Related Traits

Understanding historical trends in N use-related traits during wheat breeding is
important to design strategy in improving the NUE of future varieties while maximizing
yield potential and GPC [13]. Although wheat breeding was in most cases not targeted
to improve NUE [7], significant genetic gains have been observed for N use-related traits
around the world (Table 1). The rates of genetic gain for NUpE, NUtE, N harvest index,
and post-anthesis N uptake were comparable in wheat main production regions, including
China, Europe, and the United States (Table 1). The four studies listed in Table 1 all
observed a much lower rate of genetic gain for NUpE and NUtE than for grain yield, and
a lower rate for N harvest index than for harvest index. These data indicate that NUpE,
NUtE, and N harvest index have great potential to be improved in future wheat breeding.
Considering that GNC is negatively correlated with NUtE (Equation (7)) and GPC (GPC
= 5.7 × GNC) is a key element of wheat end-use value, NUtE should be improved by
increasing N harvest index (N remobilization), but not by reducing GNC or GPC. As such,
scientists should explore genes that can increase NUpE and more efficiently allocate the
absorbed N to grains to simultaneously improve both yield and GPC.

Table 1. The rates of genetic gain (% per year) for yield- and N-use-related traits in wheat.

Area China European The United States South-Eastern Europe

Variety released year 1937~2012 1985~2010 1960~2014 1936~2016

Reference [14] [15] [16] [13]

Grain yield 0.65% 0.45% 0.331% in 2012
0.761% in 2013

+0.31% at LN
+0.34% at HN

Biomass yield Stable

Grain number 0.16%

1000-grain weight 0.38% Stable
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Table 1. Cont.

Area China European The United States South-Eastern Europe

Spike number Stable Stable

Harvest index 0.62% 0.13% 0.24% at LN
0.28% at HN

Grain N/protein concentration Stable Stable −0.10% at LN
−0.10% at HN

N harvest index 0.17% 0.12% 0.05% in 2012
0.20% in 2013

0.07% at LN
0.07% at HN

N uptake efficiency 0.25% Not evaluated 0.076% in 2012
0.165% in 2013

0.15% at LN
0.12% at HN

N utilization efficiency 0.31% 0.20% 0.115% in 2012
0.367% in 2013

0.15% at LN
0.20% at HN

Post-anthesis N uptake 2.95% in 2012
0.485% in 2013

0.38% at LN
0.51% at HN

N partial factor productivity 0.64%

N agronomic efficiency 0.68%

HN and LN indicate high- and low-N treatment, respectively.

4. Associations of N Uptake and Assimilation Genes with Meta-QTL for N Use- and
Yield-Related Traits

Nitrate is the main N resource for wheat. Nitrate uptake by roots is mediated by the
low-affinity transport system encoded by NRT1/NPF family genes and the high-affinity
transport system encoded by NRT2 family genes. Once nitrate enters plant cells, it is
reduced to nitrite by nitrate reductase (NR) in the cytosol, and nitrite is then translocated
to the plastids and reduced to ammonium by the nitrite reductase (NiR). Ammonium can
be assimilated into glutamine (Gln) and glutamate (Glu) through the glutamine synthetase
(GS)/glutamate synthase (GOGAT) cycle [17].

The wheat genome contains 331 NRT1/NPF and 46 NRT2 genes [18,19]; however, only
a few of these transporters have been functionally characterized. The two NPF genes
(TraesCS1B02G038700 and TraesCS1D02G214200) and one NRT2 gene (TraesCS6A02G030800)
displayed nitrate transport activity when expressed in Xenopus oocytes [18]. TraesCS1D02G2
14200 (TaNRT1.1B-1D2) is closely linked with a meta-QTL for yield-related traits (Table 2)
and is an orthologue of rice OsNRT1.1B. The elite allele of OsNRT1.1B can improve NUE
and grain yield of rice (Oryza sativa) [20]. TaNRT2.5-3B required a partner protein TaNAR2.1
to give nitrate transport activity in oocytes and mediated long-distance transportation of
nitrate from roots to grains [21]. TaNRT2.1-6B encoded a dual-affinity nitrate transporter
and was associated with N harvest index and grain yield. Overexpressing TaNRT2.1-6B
increased grain yield and N uptake under low- and high-N conditions in a pot experi-
ment [22]. Genotyping of a panel of 254 diverse wheat cultivars and landraces by the
wheat 660k Axiom Array indicated that wheat breeding did not affect the polymorphisms
of most of the NPF and NRT2 genes [18]. When comparing the physical positions of the
NRT1/NPF and NRT2 genes with the locations of meta-QTL for N use- and yield-related
traits [11,23,24], we found that several NPF and NRT2 genes are located in the interval of
the meta-QTL (Table 2), providing cues for exploring the contribution of N transporters to
the natural variation in N use- and yield-related traits.
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Table 2. The N uptake and assimilation genes are linked with meta-QTL for N use- and yield-related traits.

Gene PhPosition
on RefSeq V1.0 a Gene Name Meta-QTL

for Yield [23]
Meta-QTL

for Yield b [24]
Meta-QTL

for NUE/RSA [11]

N transport

TraesCS4B02G029600 4B:21928977-21936945 NPF2.4-4B �

TraesCS4D02G026800 4D:11862455-11867655 NPF2.4-4D �

TraesCS3B02G095900 3B:64314648-64316600 NPF6.1-3B �

TraesCS1A02G031300 1A:14519757-14525659 NPF6.2-1A �

TraesCS1D02G032700 1D:13040668-13043201 NPF6.2-1D �

TraesCS2D02G182900 2D:127113821-127117419 NPF7.1-2D �

TraesCS7D02G297000 7D:374564870-374572229 NRT1.1A-7D �

TraesCS1D02G214200 1D:299575952-299578670 NRT1.1B-1D2 �

TraesCS5A02G537100 5A:693632703-693642408 NRT1.1C-5A �

TraesCS2A02G074800 2A:33054150-33056031 NRT2.3-2A � �

TraesCS2D02G073500 2D:30787486-30789242 NRT2.3-2D � �

TraesCS1D02G035700 1D:16504613-16506169 NRT2.4-1D �

TraesCS3A02G254000 3A:475304797-475306341 NRT2.5-3A �

TraesCS7A02G428500 7A:621910950-621913739 NRT2.6-7A �

TraesCS7B02G328700 7B:583923053-583926829 NRT2.6-7B �

TraesCS7D02G420900 7D:540617018-540627808 NRT2.6-7D �

NRT2 cluster 6A:15727844-16410137 13 NRT2s �

N assimilation

TraesCS4A02G376700 4A:651365942-651370213 NR1.2-4A � �

TraesCS7A02G078500 7A:43180494-43185382 NR1.2-7A �

TraesCS7D02G073700 7D:43212472-43217253 NR1.2-7D �

TraesCS6A02G017500 6A:8694483-8700180 NR1.1-6A �

TraesCS6B02G024900 6B:15128191-15134280 NR1.1-6B �
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Table 2. Cont.

Gene PhPosition
on RefSeq V1.0 a Gene Name Meta-QTL

for Yield [23]
Meta-QTL

for Yield b [24]
Meta-QTL

for NUE/RSA [11]

TraesCS6D02G020700 6D:8149929-8155961 NR1.1-6D � �

TraesCS6A02G333900 6A:564882616-564886300 NiR-6A � �

TraesCS6A02G298100 6A:531394366-531398363 GS1.1-6A �

TraesCS4B02G04740 4B:34722272-34725256 GS1.3-4B � �

TraesCS4D02G047400 4D:22946578-22949866 GS1.3-4D �

TraesCS2A02G500400 2A:729293649-729297303 GS2-2A �

TraesCS2B02G528300 2B:722629776-722634436 GS2-2B � �

TraesCS2A02G130600 2A:78328734-78346097 FD-GOGAT-2A �

TraesCS2D02G132900 2D:78375985-78392563 FD-GOGAT-2D �

TraesCS3A02G266300 3A:490922100-490932750 NADH-GOGAT-3A � �
a The physical positions were retrieved from http://wheat.cau.edu.cn/TGT/, accessed on 10 December 2021. b The meta-QTL was analyzed based on QTL related to wheat yield under
irrigated, drought- and/or heat-stressed conditions. RSA root system architecture.

http://wheat.cau.edu.cn/TGT/
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Analysis of Chinese Spring reference sequence (http://plants.ensembl.org/Triticum_
aestivum/Info/Index, accessed on 15 December 2021) revealed that the genes encoding
NR, NiR, GS, and GOGAT all present in a small gene family in wheat, with three TaNRs,
one TaNiR, three cytosolic TaGS1s, one plastic TaGS2, and two GOGATs in each of the wheat
sub-genomes. As a small number of primary N-assimilation genes mediate the assimilation
of the inorganic N absorbed by wheat plants into amino acids, they should have a critical
role in determining NUE in wheat. When comparing the physical positions of these
primary N-assimilation genes with the locations of meta-QTL for N use- and yield-related
traits [11,23,24], we found that 15 of these 30 N-assimilation genes locate in the interval
of the meta-QTL (Table 2). Cross-genome meta-QTL analysis also revealed the crucial
role of N-assimilation genes in mediating NUE in crops including wheat [25]. Haplotype
variations of TaGS2-2A, -2B and -2D were associated with root system architecture-, N
use- and yield-related traits [26], and the elite allele of TaGS2-2Ab has been successfully
used to engineer wheat with improved NUE and yield under both high- and low-N
conditions [27]. TaNADH-GOGAT-3B has been suggested as a candidate contributing to
the natural variation of NUE in wheat [25], more recently overexpression of TaNADH-
GOGAT-3B has been shown to increase N uptake and yield in wheat [28]. In rice, allelic
variation at OsNR2 contributed to the difference in nitrate assimilation capacity and NUE
between the indica and japonica rice subspecies, with indica OsNR2 exhibiting greater NR
activity [29]. The elite allele of OsNiR1 with increased NiR activity significantly improved
rice regeneration [30], and increasing OsNiR1 expression enhanced NUE by promoting
spike number in rice [31]. In maize (Zea mays), the GS1 genes ZmGln1.3 and 1.4 linked with
QTL for NUE-related traits and were specifically involved in the control of kernel number
and kernel size, respectively [32]. As only a few of the N-assimilation genes have been
characterized by their biological functions and allelic variations in wheat, their contribution
to the genotypic difference in NUE has yet to be explored in the future.

It is worthy to notice that several N transport and assimilation genes are located in
the interval of meta-QTL for the yield-related trait under drought and heat stress (Table 2).
Wheat crops are grown in environments that are prone to drought and heat stress [33].
Drought and heat stresses are known to have adverse effects on N uptake and assim-
ilation [34–36]. For example, short-term heat stress greatly inhibited NR activity and
photosynthetic N use efficiency of wheat plants [35]. Drought stress considerably reduced
the contents of total protein, Rubisco, and GS2 isoenzyme in wheat leaves, and GS has
been suggested as a good indicator in characterizing wheat cultivars in terms of drought
stress tolerance [34]. Recently, overexpression of wheat cytosolic and plastid glutamine syn-
thetases has been shown to enhance drought tolerance in tobacco (Nicotiana tabacum) [37].
As such, selecting for N use efficient wheat varieties may increase yield stability under
drought and heat stress conditions.

5. N Uptake and Assimilation for Increasing Spikes and Grain Number

To obtain higher wheat yield and GPC with less N input, it is important to understand
the timing of N uptake and wheat development in relation to the formation of yield
components. The grain yield can be expressed as:

Grain yield = spike number × spikelet number per spike × fertile floret number per spikelet × grain weight

Wheat development can be divided into seedling growth, tillering, stem elongation,
booting/ear emergency, flowering, and ripening, the tillering and stem elongation stages
are critical in determining fertile spikes and grain number, while the duration and rate of
grain filling determine 1000-grain weight [38]. It is well known that N fertilizer increases
grain yield mainly by increasing spike number and grain number. N application rate and
timing greatly affected spike number, spikelet number per spike, and fertile floret number
per spikelet [39–42], and N concentration and accumulation in both spike and non-spike
organs were significantly positively correlated with grain number at stem elongation [40].

http://plants.ensembl.org/Triticum_aestivum/Info/Index
http://plants.ensembl.org/Triticum_aestivum/Info/Index
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As such, N application and efficient N uptake at the relative early growth stage are then
critical for increasing spikes and grain number.

It has been reported that winter wheat roots are mostly established during the fall
growing season, supporting N uptake demand for rapid above-ground growth in early
spring [43], and vigorous early root growth has been shown as a major factor influencing
N uptake [44]. Studies on the historical and modern wheat varieties in the wheat main
production areas in China revealed that the genetic gain in N uptake (aerial N accumulation
amount) mainly raised during stem elongation phase, explaining the significant genetic
gains in grain number per spike and per unit area (spike number per unit area × grain
number per spike) [45,46]. Therefore, understanding the molecular mechanism underlying
the roots’ efficient N acquisition of wheat seedlings may improve NUE and yield by
increasing spikes and grain number. Based on our best knowledge, we listed QTL/genes
which can increase root growth and nitrate influx rate of wheat seedlings in Table 3, and
summarized their effects on N use- and yield-related traits of mature plants grown under
field conditions. These QTL/genes mediated root growth, N influx rate, and N assimilation
of wheat seedlings, and had positive effects on N use-related traits (N uptake, GNC, N
harvest index) and yield-related traits (grain yield, spike number, grain number, 1000-
grain weight, and harvest index) of mature plants (Table 3). The major QTL qTaLRO-2B
coincided with QTL for N uptake and grain yield under low-N conditions, and increased
both primary and lateral root length with reduced root diameter, suggesting that this QTL
produces a deep and large root system with low carbon cost. In maize, steep, cheap, and
deep roots have been suggested as an ideotype for optimizing N acquisition by maize
crops [47]. As such, qTaLRO-2B may be an ideal locus for wheat breeding with improved
NUE and grain yield. The response of root system architecture to N availability is critical
for root N foraging [48]. The auxin biosynthetic Tryptophan Aminotransferase-Related TAR2 is
required for low N-stimulated lateral root branching [49,50]. Overexpressing TaTAR2.1-3A
in wheat enhanced lateral root branching, spike number, grain yield, and N uptake at
low- and high-N while reducing TaTAR2.1 expression through RNAi had the opposite
effects [49]. The rice NUE QTL qDNR1 (Dull Nitrogen Response 1) encodes a putative
pyridoxal phosphate-dependent transferase and functions in auxin homeostasis, knockout
of OsDNR1 promoted auxin biosynthesis and consequently induced AUXIN RESPONSE
FACTOR-mediated activation of N uptake and N-metabolism genes, leading to improved
rice yield under moderate levels of N fertilizer input [51]. As such, auxin metabolism and
signaling have a crucial role in regulating N use in cereal crops.

Table 3. QTL/genes controlling root system architecture (RSA)- and N uptake-related traits of
wheat seedlings.

QTL/Gene Name RSA-Related Traits of
Wheat Seedlings N Use-Related Traits Yield-Related Traits Reference

qTaLRO-2B
RDW-HN&LN,

MRL-HN&LN, PRL,
PRE, LRL, TRL, RD(-)

NUP GY-LN, BY-LN, [52–55]

qMRL-7B RDW, MRL, TRL, and
RT at HN and LN NUP and NHI at HN and LN GY and TGW at HN

and LN [55,56]

TaTAR2.1-3A LRL and RT at HN and
LN NUP at HN and LN BY, GY, and SN at HN

and LN [49]

TaNFYA-6B LRL
TAR2, NPF8.3-7D, NRT2.1-6B.

Nitrate influx rate at LN, GNC-HN,
NUP at HN, and LN

BY, GY, and SN at HN
and LN [57]
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Table 3. Cont.

QTL/Gene Name RSA-Related Traits of
Wheat Seedlings N Use-Related Traits Yield-Related Traits Reference

TaNAC2-5A RDW at LN
Seedling vigor

NPF7.9-6D (former named as
NPF7.1-6D), NRT2.1-6B, TaNRT2.5,

TaGS2-2A. Nitrate influx rate at HN
and LN. GNC, grain nitrate

concentration, NUP, and NHI at HN
and LN

GY and SN at HN and
LN. SDW and TN of

wheat seedlings at HN
and LN.

[21,58]

TaNRT2.5-3B Seedling vigor,
LRL-HN&LN, PRL-LN

Nitrate influx rate at HN and LN.
NUP, grain nitrate concentration GY, SN [21]

TaGS2-2Ab MRL and LRL at HN
and LN

NRT2.1, NPF6.3, Nitrate influx rate
at HN and LN; SNC at stem

elongation, flowering, 14 days after
flowering at HN and LN; LNC and
Pn of flag leaves during grain filling

at HN and LN; NUP, GNC, NHI,
and LNC (-) at maturity at HN and

LN.

GY, SN, GN, TGW, and
HI at HN; net

photosynthesis rate of
flag leaves at HN and

LN

[27]

TaNADH-GOGAT-3B MRL, LRL NUP BY, GY, SN [28]

RSA-related traits: MRL maximum root length, PRL primary root length, LRL lateral root length, TRL total root
length, PRE primary root elongation rate, RD, root diameter, RT root tip number. N use-related traits: NUP N
uptake, NCT, N concentration, GNC grain N concentration, SNC shoot N concentration, LFC leaf N concentration,
Pn net photosynthesis rate, NHI N harvest index. Yield-related traits: BY biomass yield, GY grain yield, SDW
shoot dry weight, SN spike number, TN tiller number, TGW 1000-grain weight, HI harvest index. N treatment:
HN high N treatment, LN low N treatment. The negative mark in paragraph (-) after a trait indicates the negative
effect of the QTL/gene on that trait.

Although vigorous early root growth has been shown as a major factor influencing
N uptake, the high-vigor wheat lines (38–19, 92–11, and CV97) showed a lower nitrate
influx rate than the low-vigor commercial variety Janz, suggesting that the genotypic
variation in nitrate uptake capacity (per unit of the root) offset differences in morphological
traits and should be considered in efforts to improve N uptake [59]. Vigorous root growth
with a high nitrate uptake capacity is then promising in increasing NUE and grain yield.
The nitrate transporter TaNRT2.5-3B, N-assimilation gene TaGS2-2A, and the transcription
factors TaNFYA-6B and TaNAC2-5A have been shown to enhance root growth as well as
nitrate influx rate of wheat seedlings, and consequently increased N use- and yield-related
traits (Table 3).

It has been mentioned above that overexpressing TaNADH-GOGAT-3B increased N
uptake, spike number, and grain yield. The expression of TaNADH-GOGAT was nega-
tively regulated by the ABRE-binding factor (ABF)-like leucine zipper transcription factor
TabZIP60-6D, reducing TabZIP60 expression though RNAi increased NADH-GOGAT ac-
tivity, N uptake, spike number, and grain yield, while overexpressing TabZIP60-6D had
opposite effects [28]. In rice, OsARE1 is a genetic suppressor of a rice fd-gogat mutant
defective in N assimilation, and knockout of ARE1 increased rice yield under low- and
high-N conditions [60]. Recently, CRISPR/Cas9-mediated targeted mutagenesis has been
used to generate a series of transgene-free mutant lines with partial or triple-null mutation
of the three TaARE1 homoeologs from the elite winter wheat variety Zhengmai 7698. All
the mutant lines displayed higher spike number, grain number, 1000-grain weight, and
grain yield than the wild type under field conditions [61]. As such, the identification of
genes negatively regulating N assimilation provides the opportunity to engineer wheat
with improved NUE and yield through a genome editing approach.

6. N Uptake and Assimilation for Increasing Yield and Grain Protein Concentration

One of the challenges in wheat breeding is to simultaneously improve both yield and
GPC because of the strong negative relationship between these two traits [62]. Several
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studies on historical and modern wheat varieties revealed significant genetic gain in
grain yield, but not in GPC (Table 1). However, there is a genotypic difference in grain
protein deviation, the deviation from the regression line between grain yield and GPC,
and grain protein deviation has been suggested as a selection criterion for wheat breeding
with increased grain yield and GPC [16,62–64]. QTL for grain protein deviation has been
detected in common wheat and durum wheat, and several N-related genes were found to
be linked with QTL for grain protein deviation [65,66], suggesting a genetic opportunity
for increasing grain yield and GPC simultaneously.

Grain N originates from remobilization of N accumulated in vegetative tissues pre-
anthesis and N uptake post-anthesis. Several studies pointed out the importance of post-
anthesis N uptake in determining grain protein deviation and GPC [16,63,64,67,68]. It
has been reported that post-anthesis N uptake was associated with expression of TaNRT2
members, such as TaNRT2.1 and TaNRT2.2 on group 6 chromosomes, TaNRT2.3 on group 2
chromosomes, TaNRT2.4 on group 1 chromosomes, TaNRT2.5 on group 3 chromosomes,
TaNRT2.6 on group 7 chromosomes, and NRT2 partner genes TaNAR2 [21,62,69]. The
TaNRT2.5-TaNAR2.1 complex had nitrate transport activity in Xenopus oocytes and was
located to the tonoplast in a tobacco leaf transient expression system. TaNRT2.5 and the
root-specific TaNRT2.1 had comparable mRNA abundance in roots at the grain filling stage.
Overexpressing TaNRT2.5-3B increased post-anthesis N uptake and grain yield without
reducing GNC [21]. The nitrate-inducible NAC transcription factor TaNAC2-5A directly
regulates the expression of TaNRT2.5 and TaNRT2.1, and overexpression of TaNAC2-5A
significantly increased nitrate influx rate, N uptake, GNC, and grain yield under both
low- and high-N conditions [58]. As such, manipulating TaNRT2 expression shows great
potential in increasing grain yield and GPC simultaneously.

Although several QTL for root system architecture-related traits were associated with
N use-related traits [11], their contribution to N use was largely not validated. A recent
study has investigated the effects of QMrl-7B on N use and yield by using near-isogenic
lines (NILs). QMrl-7B was a major stable QTL controlling the maximum root length of
wheat seedlings and was linked with a QTL for N uptake at maturity [55]. When a set of
QMrl-7B NILs with superior and inferior alleles was grown under field conditions in two
consecutive growing seasons, the NILs with the superior allele had larger and deeper root
system from seedling stage to maturity, greater N uptake after stem elongation, and higher
grain yield, 1000-grain weight, harvest index, GNC and N harvest index at maturity than
those with the inferior allele under high- and low-N conditions [56]. These results indicate
that QMrl-7B is valuable in increasing grain yield and GPC. Besides QMrl-7B, several key
determiners for wheat development also have a crucial role in controlling root system
architecture. The Green Revolution Rht1 genes have been found to reduce root biomass [70].
Whereas introducing the 1RS alien translocation into modern varieties can greatly increase
shallow and deep root biomass and uptake of N [71,72]. The VERNALIZATION1 (VRN1)
gene responsible for spring-winter growth habit is a key determiner in controlling root
system architecture and NUE in wheat [73,74], the winter allele of VRN1 leads the winter
wheat a narrower root angle than the spring wheat [73]. Since the RHT1 and VRN1
genes are important for wheat adaptation to local growing conditions, understanding
their interactions with N signaling will facilitate the precise design of N-efficient wheat
varieties according to the prevalent allele(s) of RHT1 and VRN1 genes in different wheat
ecological regions.

It has been reported that GS-mediated N assimilation is one of the main checkpoints
controlling the N status of the plant and N remobilization for grain filling [75]. In wheat
leaves, GS2 is the major GS isoform [76–78], but it experiences rapid loss during grain
filling [76,78]. Two studies in China showed that wheat breeding increased grain yield
but reduced GNC, and increased N uptake during stem elongation phase but not after
anthesis [45,46], possibly because that wheat breeding increased leaf GS activity at stem
elongation and anthesis but not at grain filling [46]. As such, low GS2 activity during
grain filling may be a limiting factor for increasing post-anthesis N uptake and GPC. This
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assumption was evidenced by the study of transgenic expressing the elite allele TaGS2-2Ab
under the control of its native promoter. Compared with the wild type, the transgenic
lines had higher expression of TaGS2 in shoots and roots of the seedlings, and higher GS2
protein abundance and GS activity in flag leave when checked at 14 days post-anthesis [27].
The increased grain yield, GNC, harvest index, and N harvest index of the transgenic
lines meet the requirement for an N efficient wheat ideotype [79]. These merits of the
transgenic lines were associated with increased root growth and nitrate influx rate possibly
by up-regulating TaNRT2.1 and TaNPF6.3 expression, N uptake before and after anthesis,
N remobilization, and leaf functional duration (Figure 1). The expression of TaGS2-2A
was directly regulated by TaNAC2-5A, overexpression of TaNAC2-5A increased grain yield,
GNC, and N harvest index [58]. As such, the identification of genes regulating TaGS2
expression and GS2 activity may provide more gene resources for improving grain yield
and GPC.
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Figure 1. N efficient wheat ideotype mediated by the elite allele TaGS2-2Ab.

Besides GS2, NR encoding genes also showed potential in improving grain yield and
GPC. All the six NR1 genes are located in the interval of the meta-QTL for N use- and yield-
related traits (Table 3). Compared with the low NR wheat genotype, the high NR genotype
had increased N harvest index and GNC without yield penalty [80]. Overexpression of a
tobacco NR gene in wheat increased 1000-grain weight and GPC [81]. In rice, overexpression
of the elite allele of OsNR2 from indica rice increased grain yield and N concentration in
panicle [29].

Efficient N uptake and assimilation increase spikes and grain numbers, and efficient
N uptake and remobilization during grain filling benefit higher grain weight and grain
protein concentration. Increasing TaGS2 expression enhanced N uptake before and after
anthesis, and allocated more N to grains, showing its crucial role in breeding N efficient
wheat ideotype. The nitrate transporter TaNRT2.5-3B, and the transcription factors TaNFYA-
6B and TaNAC2-5A enhanced root growth as well as nitrate influx rate of wheat seedlings,
and thus increased spike number and grain yield. This working model was derived from
the study by [27]. DPA days postanthesis, Pn net photosynthesis rate.
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7. Future Perspectives

The goal of improving NUE is to maximize yield potential and GPC economically and
environmentally friendly. To achieve this goal, it is required to understand at the molecular
level how N signals affect tiller/spike number, spikelet number per spike, fertile floret per
spikelet, and allocation of assimilates to grains. Although a larger number of QTL for N
use- and yield-related traits and N-responsive genes have been reported, only a few of
them have been molecularly characterized owing to wheat’s huge and complicated genome.
Considering the complex gene network governing NUE and yield, and the relatively small
number of primary N assimilation genes, identification of genes regulating the expression
and activity of primary N assimilation genes will facilitate wheat breeding with improve
NUE, yield, and GPC through marker-assisted selection and genome editing approaches.
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