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Editorial

Crop Adaptation to Elevated CO2 and Temperature
James Bunce
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There is no ambiguity about the fact that both atmospheric CO2 levels and air temper-
atures are continuing to increase. It has only recently been recognized that the combination
of these changes is likely to have a net negative impact on the production of many of our
most important food crops. Therefore, concurrent with efforts to reduce emissions of CO2
and other gases which warm the atmosphere, efforts should be made to adapt crops to the
conditions of elevated CO2 levels and temperature.

In response to the solicitation of articles on this topic, twelve articles have been
published in this Special Issue of Plants, reflecting strong current research interest in this
topic, as well as the diversity of relevant approaches.

Gavelienė et al. [1] tested the effects of warming on the root morphology of two species
of lupine, one invasive and one noninvasive, and found that the two species had contrasting
responses, which might affect their adaptation to climate warming.

Gardi et al. [2] examined growth and water use efficiency responses to elevated CO2
levels among 15 landrace and 15 released lines of barley from Ethiopia and found a large
diversity of responses, suggesting that genetic improvement should be feasible in this
important crop species.

Marcos-Barbero et al. [3] screened sixty bread wheat genotypes for grain yield at ele-
vated CO2 and high-temperature conditions and found a large range of yields under those
conditions, identifying genotypes that displayed promise of adaptation to climate change.

Jurkoniene et al. [4] examined the effects of warming on the IAA content and ethylene
production of two lupine species with contrasting invasiveness and found more flexible
responses in the invasive species.

Barickman et al. [5] compared the growth of basil at low, moderate, and high tem-
peratures at ambient and elevated CO2 levels and found that elevated CO2 levels re-
duced photosynthesis at high temperatures but increased it at moderate and lower growth
temperatures.

Ben Marium et al. [6] conducted a meta-analysis concerning the impacts of elevated
CO2 levels, elevated temperature, and drought on the yield and grain quality of cereals and
found that the beneficial yield responses to elevated CO2 levels were offset by both high
temperatures and drought stress, with a general negative impact of elevated CO2 levels on
nutritional quality.

Chen and Setter [7] examined the responses of tuber formation in potato to elevated
temperature and CO2 levels and found that elevated CO2 levels partly compensated for
the inhibition of tuber growth caused by elevated temperatures and that high temperatures
at tuber initiation were especially important in this species.

Jayawardena et al. [8] examined the responses of nitrogen uptake and metabolism to
elevated CO2 levels and temperature in tomato in great detail and found that the decreased
nitrogen uptake and assimilation in response to the combined treatments probably resulted
from decreased plant demand for nitrogen.

Bourgault et al. [9] tested the hypothesis that an elevated CO2 level only increases root
growth in topsoil, not at depth. They conducted a detailed root-growth analysis in a FACE
experiment with lentil, and found that in some cases, root growth at depth also increased
at elevated CO2 levels.
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Ma et al. [10] analyzed the response of sugar-metabolism-related genes to elevated
CO2 level treatment in the goji berry to provide a molecular explanation of the reduced
sugar content of these fruits when plants are grown at elevated CO2 levels.

Wang and Liu [11] provided a review of the effects of heat and elevated CO2 levels on
the yield and grain quality of wheat, one of the crops in which negative effects of climate
change on grain quality were first noticed.

Ziska [12] reviewed data concerning whether newer crop varieties are better adapted
than older ones to high CO2 levels and suggested that examining the genetic responses of
weedy relatives of crops to the changes in atmospheric CO2 that have recently occurred
may provide a useful source of genetic traits, which could improve the responses of crops
to future CO2 levels.

I hope that this compilation of research papers and reviews illustrates the broad range
of relevant research on the topic of Crop Adaptation to Elevated CO2 and Temperature and
stimulates additional research on this critical topic.
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