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Abstract: Weed-suppressive crop cultivars are a potentially attractive option in weed management
strategies (IWM). A greenhouse study was conducted at the R. R. Foil Plant Science Research Center,
Starkville, MS, to assess the potential weed-suppressive ability of 17 tomato cultivars against Palmer
amaranth (Amaranthus palmeri S. Wats), yellow nutsedge (Cyperus esculentus L.), and large crabgrass
(Digitaria sanguinalis L.). The experiment was a completely randomized design, with four replications,
and was repeated twice. The height, chlorophyll, and dry weight biomass of the weeds were measured
28 days after sowing. Weed suppression varied greatly among tomato cultivars. The most significant
effect of tomato interference was recorded on Palmer amaranth, and the least reduction was observed
with yellow nutsedge plants. Cultivars 15 and 41 reduced Palmer amaranth height and biomass by
about 45 and 80%, respectively, while cultivar 38 reduced 60% of the chlorophyll percentage. Large
crabgrass plants were 35% shorter in the presence of cultivar 38 and had a biomass reduction of
35% in the presence of cultivar 38. Under tomato interference, a minimal effect was observed in
chlorophyll, height, and biomass of yellow nutsedge seedlings. Factoring all parameters evaluated,
cultivars 38 and 33 were most suppressive against Palmer amaranth and large crabgrass.

Keywords: crop improvement; large crabgrass (Digitaria sanguinalis L.); Palmer amaranth (Amaran-
thus palmeri S. Wats); yellow nutsedge (Cyperus esculentus L.); weed suppression

1. Introduction

Tomato is an economically important vegetable in the United States. In 2019, there was
110,700 ha of processing tomato harvested, with a national average yield of 44,000 kg ha−1 [1].
Weed management is one of the costliest practices in tomato production, and it is considered
a significant portion of the total operating cost to farmers [2]. Notably, weed thresholds
acceptable to growers of high-value vegetables such as fresh and processed tomato are
near zero.

Palmer amaranth (Amaranthus palmeri S. Wats.), yellow nutsedge (Cyperus esculentus
L.), and large crabgrass (Digitaria sanguinalis L.) are among the primary weed species
interfering in tomato farming [3]. The season-long presence of 25 yellow nutsedge plants
m2 can reduce tomato yield by 25% [4]. Furthermore, field infestations of large crabgrass at
a density of 55 plants m2 in direct-seeded tomato can cause up to 74% yield reduction [5].
In transplanted tomato crops, a decrease of 76% was observed in productivity under infes-
tation of Amaranthus spp. [6]. Physical and chemical interactions govern the interference of
these weed species. Essentially, plant–plant interaction comprises two factors: allelopathy
and competition [7]. Competition is the physical perception of surrounding environmental
resources available. At the same time, allelopathy is a chemical-mediated interference
associated with the release of compounds from a donor plant that can influence the growth
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and performance of a receiving plant [8]. Resource competition has driven plant commu-
nity interactions, but, recently, allelopathy has emerged as an approach to solve issues in
agricultural fields.

Attention has been given to identifying a wide range of crops with natural weed-
suppressive ability to offset weed interference. Weed-suppressive ability, within the context
of this paper, refers to the potential of a crop to reduce or inhibit weed emergence or growth.
Certain tomato cultivars have shown differential weed-suppressive abilities when grown
together with weeds compared to monocultures. For instance, tomato cultivars can reduce
barnyardgrass seed production, but the magnitude of this reduction depends on barnyard-
grass density and tomato sowing rate [9]. Cultivar differences in weed-competitiveness
were documented among four tomato cultivars in tomatoes in response to velvetleaf compe-
tition, where cultivar H8892 had the lowest yield loss due to weed interference [10]. Under
full tomato interference, the shoot dry weight of yellow nutsedge plants was reduced by
48% compared with the weed growing in monoculture. Additionally, the belowground
plant parts were affected, where yellow nutsedge plants produced 20% fewer and 40%
smaller tubers than when grown in the absence of tomato [4]. Tomato cultivars 9492,
9553, and 9992 are proven to have considerable tolerance to lespedeza dodder (Cuscuta
spp.), a parasitic weed, resulting in dodder growth reduction by more than 70% [11]. The
utility of such cultivars with specific abilities to tolerate weed infestation can be valuable in
low-input agricultural systems or situations when chemical weed control is not possible,
such as in organic cropping.

Weed-suppressive cultivars involve a manifestation of joint activity and interaction
of many characteristics instead of a single trait [12]. Plant architecture, growth habit
pattern, and overall morphological performance, such as early groundcover and leaf area
accumulation, are essential traits responsible for increased competitiveness between crop
and weed species [12]. Weed-suppressive crops are often found to present allelopathic
properties. The allelopathic ability has been found in cereal crops, such as rye, sorghum,
rice, and wheat, and leguminous crops, such as sunflower and rapeseed [13]. Some well-
studied phytochemicals include simple phenolics, flavonoids, and alkaloids [14]. The
allelopathic property of some plants is potentially valuable for intercropping systems, soil
additives via crop residue incorporation, and suppression of weed emergence [15]. The
discovery of parental varieties with weed-suppressive potential can be a helpful resource
to tomato breeding programs and benefit farmers with an alternative to chemical weed
control, thus contributing to a more sustainable farming system. The present research
evaluated seventeen tomato genotypes with potential weed-suppressive ability against
problematic weeds in tomato production. The hypothesis underlying tomato was that
tomato has the potential to suppress surrounding weeds through a higher competitive
ability or allelopathy, against the null hypothesis that the tomato has no potential to
suppress weed. This study, therefore, aims (i) to determine the weed-suppressive potential
of diverse tomato germplasm, and (ii) to examine the effects of weed–crop interaction of
tomato cultivars on Palmer amaranth, junglerice, and yellow nutsedge.

2. Materials and Methods

Greenhouse experiments were conducted over three years (2017 to 2019) at the Missis-
sippi State University at the R. R. Foil Plant Science Research Center (88.7847◦, 33.4552◦),
Starkville, MS. Weed-suppressive potential of 17 tomato cultivars (Table 1) were tested
against Palmer amaranth (Palmer amaranth S. Wats), yellow nutsedge (Cyperus esculentus
L.), and large crabgrass (Digitaria sanguinalis L.). Weed-suppressive ability was evaluated
following the method described by Shrestha et al. (2020) [16], with modifications.
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Table 1. Codes and names of 17 tomato cultivars tested for suppressive ability on Palmer amaranth,
yellow nutsedge, and large crabgrass.

Cultivar Code Cultivar Name

5 AVTO 9802
7 1595
10 114
15 1511
17 2079
18 2709
20 1512
31 1458
33 2661
38 168
40 3056
41 2401
44 1511
54 M82
59 FERRY MORSE
63 AVTO 1219
64 WV63

Pots of 10 L were filled with a mixture of field soil and commercial potting mix (2:1).
Field soil was used as the growth medium to minimize chemical inhibition by using the
organic substrate. To avoid water contact with plant shoot, the pots were placed in trays
filled with water according to their necessity. Four tomato plants and four plants of a
single weed species were colocated in the same potting container (Figure 1). Thus, tomato
plants could interfere with weed species either by competition or by generating chemical
interference due to the release of allelochemicals from root exudates. In our context, this
screening involves tomato cultivars that are able to suppress the target weeds due to their
robust morphological and natural genetic traits. Tomato and weeds were direct-seeded at
equal spacing. Tomato seeds were placed on the edge of the pot, while the seeds of the
weed species were sown at the center of the pot. At the moment of emergence, four tomato
plants and four weed plants were kept per pot.
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Figure 1. Representation of the experimental setup to evaluate weed-suppressive ability of tomato
genotypes against Palmer amaranth, large crabgrass, and yellow nutsedge. Four tomato plants were sown
at the edges of the pot, and four plants of a particular weed species were sown in the center of the pot.

The experiment was conducted in a completely randomized design, with four replica-
tions, and was repeated twice for each cultivar and weed species. Greenhouse day/night
temperature was set at 30/25 ◦C, and humidity was maintained at 70%. The four central
weed plants were considered for the evaluations. Plant height, chlorophyll, and dry weight
biomass of the weeds were measured 28 days after sowing (DAS). The height of the weeds
was measured from the soil to the insertion of the last leaf. Chlorophyll was evaluated using
a CCM-300 SPAD meter (Opti-Sciences Inc., Hudson, NY, USA). At 28 DAS, plants were cut
at the soil surface and stored in paper bags. Samples were dried in a forced-air circulation
oven at 60 ◦C until constant weight. Comparison among weed species was based on percent
inhibition data. Sixteen plants of each weed species were grown as a control treatment
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without tomato interference. All variables mentioned above were recorded to calculate the
reduction, as shown in the equation below (1). Height, chlorophyll, and biomass reduction
percentage of recipient plant and donor plant samples were calculated as

reduction (%) = 100 – (receiver plant × 100)÷ (control plant)

where the control is the mean height, chlorophyll, or biomass of all the plants in the
control plants combined, and the height, chlorophyll, or biomass receiver is based on weed
plant grown with tomato. Principal component analysis (PCA) was used to determine the
highest- and lowest-ranking tomato cultivars against each weed species based on height,
chlorophyll, and biomass. Data were analyzed using a general linear model with mean
values separated using Fisher’s protected least significant difference at a 0.05 probability
level using JMP 16.0 software (SAS Institute Inc., Cary, NC, USA).

3. Result

The weed-suppressive potential of tomato accessions was calculated based on height,
shoot dry biomass, and chlorophyll reduction of three weed species. The greenhouse
study was conducted over four weeks. Weed height, chlorophyll, and shoot biomass
were significantly affected by the interference of tomato cultivars (p < 0.05), and the null
hypothesis was rejected. Chlorophyll reduction percentage was relatively low for all weed
species evaluated (Table 2). The chlorophyll reduction of Palmer amaranth ranged from
10 to 60%, and cultivar 38 caused the highest reduction (p = 0.0001) (Table 2). Yellow
nutsedge seedlings had less than 20% of chlorophyll reduction (p = 0.0001). Cultivars 63
and 5 reduced yellow nutsedge chlorophyll the most, while roughly half of the cultivars
tested had less than 10% chlorophyll reduction. None of the tomato cultivars presented a
considerable reduction in the chlorophyll of large crabgrass plants (<25%).

Table 2. Percentage of chlorophyll reduction of Palmer amaranth, yellow nutsedge, and large
crabgrass across 17 tomato cultivars, at 28 days after sowing. Four tomato plants and four plants
of a single weed species were grown together in the same pot. The reduction values were based
on a comparison to plants of individual weed species grown as a control treatment without tomato
interference. Error bars represent the standard deviation of the mean. The difference between the
two mean values is compared to the least significant difference (LSD) value. If the difference was
greater than the LSD value, then the means are significantly different according to Student’s t-test at
a 0.05 probability level.

Chlorophyll Reduction (%)

Cultivar Palmer Amaranth Yellow Nutsedge Large Crabgrass

5 14 17 18
7 16 8 19
10 11 4 16
15 13 11 9
17 17 1 21
18 13 2 9
20 21 15 8
31 16 2 13
33 10 5 17
38 61 10 20
40 11 2 8
41 13 12 11
44 12 5 23
54 16 8 21
59 16 14 18
63 10 17 11
64 13 14 14

LSD (α = 0.05) 7.5 10 8
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Palmer amaranth was the most affected by tomato cultivars among the weed species
(Figure 2). Height reduction of Palmer amaranth (p = 0.0001) ranged from 18 to 45%.
Cultivars 15 and 41 stunted Palmer amaranth height the most (45 and 44%, respectively),
but were statistically similar to the other cultivars (Figure 3). Although no significant
differences (p = 0.05) were found among tomato cultivars, cultivar 20 stunted yellow
nutsedge the most, 77% more than cultivars 5, 44, 59, and 54. Overall, a range of 20 to
35% of height reduction was found in large crabgrass plants. Large crabgrass height was
reduced by 35% in the presence of cultivar 38 compared with the weed in monoculture,
which did not differ statistically from the other cultivars.
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Figure 2. Average seedling height, biomass, and chlorophyll reduction (%) of Palmer amaranth,
yellow nutsedge, and large crabgrass, at 28 days after sowing. Four tomato plants and four plants
of a single weed species were grown together in one pot. The reduction values were based on
a comparison to plants of individual weed species grown as a control treatment without tomato
interference. Error bars represent the standard deviation of the mean.
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Figure 3. Weed-suppressive ability of tomato cultivars on height reduction (%) and chlorophyll
reduction (%) of Palmer amaranth, large crabgrass, and yellow nutsedge at 28 days after sowing.
Four tomato plants and four plants of a single weed species were grown together in the same pot. The
reduction values were based on a comparison to plants of individual weed species grown as a control
treatment without tomato interference. Error bars represent the standard deviation of the mean. The
difference between the two mean values is compared to the least significant difference (LSD) value. If
the difference was greater than the LSD value, then the means are significantly different according to
Student’s t-test at a 0.05 probability level.
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Palmer amaranth shoot biomass was considerably decreased due to the interference
of tomato cultivars (p = 0.0001), and the percentage of reduction ranged from 25 to 80%
(Figure 4). The maximum reduction of dry biomass in Palmer amaranth was due to the
influence of the tomato cultivars 33 (83%) and 15 (83%), whereas the minimum biomass
reduction was due to cultivar 10 (25%) (Figure 4). Yellow nutsedge biomass decreased
about 40% with the interference of cultivar 15, but most of the cultivars did not reduce
the biomass by more than 30% (p = 0.0048). Overall, 60% of tomato cultivars resulted in
biomass reduction of large crabgrass by more than 20% (p = 0.0137). The highest biomass
reduction in large crabgrass among the cultivars was due to cultivar 63 (45%), followed by
cultivar 64, 33, and 38, with about 40% reduction. The least suppressive effect was observed
with cultivar 18 (5%).
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Figure 4. Weed-suppressive ability of tomato cultivars on biomass reduction (%) of Palmer amaranth,
large crabgrass, and yellow nutsedge at 28 days after sowing. Four tomato plants and four plants
of a single weed species were grown together in the same pot. The reduction values were based
on a comparison to plants of individual weed species grown as a control treatment without tomato
interference. Error bars represent the standard deviation of the mean. The difference between the
two mean values is compared to the least significant difference (LSD) value. If the difference was
greater than the LSD value, then the means are significantly different according to Student’s t-test at
a 0.05 probability level.

A principal component analysis (PCA) was performed to identify the most contribut-
ing traits in suppressing weed species accurately. Principal component 1 contributed 55%
of the total variability of large crabgrass, whereas 33.2% of the variation can be attributed
to component 2 (Figure 5). In Palmer amaranth, principal component 1 (PC1) accounted
for 53.5% of the total variation in the dataset, and PC2 accounted for 36.4%. The PCA of
yellow nutsedge revealed that 59.4% of the variation in allelopathic potential was related
to component 1, and 30.5% was related to component 2. Among the parameters used,
height reduction and biomass reduction were positively correlated with component 1, but
chlorophyll reduction was not closely related to these parameters. From the PCA analysis,
tomato cultivars 38 and 63 clustered together in the PC1, indicating high weed-suppressive
potential on large crabgrass plants. Cultivars 38, 59, and 33 exhibited high suppression on
Palmer amaranth. Yellow nutsedge was affected the most by cultivars 7, 10, and 17.
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Figure 5. Principal component analysis (PCA) is based on three components: height, chlorophyll, and
biomass. The proportion of variances for principal components (PC) 1 and 2 are shown in parentheses.

4. Discussion

Plants respond differently to stressful conditions of interference by neighboring
species [17,18]. The receiver plant suppression in our experimental design can occur
partly due to competition and allelopathic interferences. Our study is only a first step
towards a more comprehensive analysis of crop–weed interaction. At this research stage,
we only considered the aboveground parts of the plant, not including root system or soil
environmental parameters. Nevertheless, this approach explores the processes in plant–
plant interactions, allowing for the analysis of different architectural and morphological
interactions among tomato genotypes and distinct weed species.

The competitive ability of a plant is associated with the space that it is able to occupy at
the early season stage and the rate that this plant is able to expand within this space under
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limiting resources [19]. Because growth morphology differs among weed species, junglerice,
yellow nutsedge, and Palmer amaranth were chosen in this study as representatives of
Poaceae and Amaranthaceae families. In tomato, the critical period of weed interference
was found to occur between 28 and 35 days after transplanting [20], 28 to 45 days [6], or 24
to 36 days after transplanting [21]. Tomatoes are typically not directly sown in the soil to
provide an early-season advantage. However, for this experiment, tomato and weed seeds
were sown simultaneous, allowing full interference for 28 days.

Chlorophyll content was reduced by less than 25%, regardless of weed species and
tomato cultivars. In a screening with potential allelopathic varieties of cultivated rice
and weedy rice against barnyardgrass (Echinochloa crusgalli), chlorophyll reduction of
barnyardgrass plants was little and ranged from 3–34% [22]. Under interference and stress
conditions, plants tend to defend themselves and increase competitiveness by allocating
resources to energy-costly defense mechanisms [23]. For instance, rather than investing
in growth and biomass production, plants tend to present stunting due to stress condi-
tions [24,25]. This phenomenon is widely studied with insect–plant or pathogen–plant
interactions [26], but few studies have described plant–plant interference either by allelopa-
thy or competition. Our results show that the interference caused by the tomato cultivars
on weed species was entirely dependent on the weed species. Palmer amaranth and large
crabgrass were the most affected under the interference of tomato cultivars, while the
reduction of yellow nutsedge growth was less than 10% across cultivars. In studies with
yellow and purple nutsedge, a higher effect of crop–weed interaction was observed with
yellow nutsedge. Overall, tomato shoot biomass was reduced by 19%, and this result was
attributed to increased aboveground competition between tomato and yellow nutsedge,
while the growth of purple nutsedge had a higher effect by tomato shading [4]. In this
study, yellow nutsedge shoots were above the tomato canopy (data not shown), indicating
that competition for light between the crop and the weed could contribute to the lower
height reduction observed in this species. The low reduction in plant height clearly indi-
cates yellow nutsedge to be the stronger competitor in the early growth stage of tomato
plants, which is also supported by the low dry biomass reduction of yellow nutsedge plants
compared to Palmer amaranth and junglerice.

Except for cultivar 10, the shoot biomass of Palmer amaranth was decreased by more
than 50% regardless of the tomato cultivar. Tomato cultivars are known to provide suppres-
sion of Palmer amaranth under full interference. In previous research, Palmer amaranth
shoot dry biomass in monoculture decreased from 440 g to 230 g per plant when grown with
tomato [27]. Other studies also showed that Palmer amaranth growth was suppressed by
tomato cultivars regardless of weed population density, which reinforces the feasibility of
weed-suppressive crops as a tool for weed management where this weed is a problem [28].
Our results indicated that large crabgrass and yellow nutsedge exhibited no more than 30%
of biomass reduction when grown in the presence of the tomato. With the simultaneous
emergence of tomato and barnyardgrass, a greater competition from barnyardgrass is ex-
pected [29]. In these circumstances, the competition for light can be a major determinant of
reduction in tomato yield due to barnyardgrass interference. Nevertheless, the competition
can increase when barnyardgrass plants are clumped compared to when they are either
uniformly or randomly distributed [29]. In our study, junglerice plants were uniformly
distributed when grown together with tomato plants, which can possibly explain the low
effect of tomato on junglerice growth.

The genetic background of the tomato genotypes can significantly influence the weed–
crop interactions. The natural weed-suppressive ability varied within tomato cultivars.
The influence of these cultivars also varied among each parameter measured, and not all
the cultivars had high weed-inhibition potential. Tomato cultivars 38 and 33 were highly
suppressive in this screening based on all the three parameters measured. Although we do
not have enough evidence to indicate allelopathy as the phenomenon observed in this study,
this enhanced weed-suppressive potential of these two tomato cultivars might be caused
by robustness or allelopathic traits. The greatest suppressive potential was observed on
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Palmer amaranth. In contrast, very little effect was observed on yellow nutsedge seedlings.
Overall, these findings are encouraging, as they show that some tomato cultivars are likely
to have a significant impact on weed suppression. Improving crop competitiveness is one
of the principles behind cultural weed-control management and a valuable step forward
for low-input systems and resource-poor farmers. Tomato growers can benefit from this
research by selecting genotypes with advantaged characteristics against weeds, especially
in fields where Palmer amaranth is a problem.

5. Conclusions

This study demonstrated that tomato cultivars can suppress the growth of key weed
species in tomato production. Cultivars 38 and 33 exhibited the highest weed suppression
based on the three parameters measured. Under interference, weeds showed a reduction in
growth and biomass accumulation, but no effects in chlorophyll reduction were observed.
Palmer amaranth growth and biomass were greatly influenced due to interference of tomato
cultivars, whereas yellow nutsedge plants showed very little effect. Altogether, our study
provides evidence that weed-suppressive tomato genotypes can be integrated into weed
management programs and should be further studied to understand what mechanisms are
most likely associated with the enhanced potential to withstand weed interference.
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