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Abstract: Carbon allocation between vegetative and reproductive tissues impacts cereal grain produc-
tion. Despite great agricultural importance, sink–source relationships have not been fully character-
ized at the early reproductive stages in maize. Here, we quantify the accumulation of non-structural
carbohydrates and patterns of gene expression in the top internode of the stem and the female
inflorescence of maize at the onset of grain filling (reproductive stage R1). Top internode stem and
female inflorescence tissues of the Puma maize inbred line were collected at reproductive stage
R1 (without pollination) and non-structural carbohydrates were quantified by spectrophotometry.
The female inflorescence accumulated starch at higher levels than the top internode of the stem.
Global mRNA transcript levels were then evaluated in both tissues by RNA sequencing. Gene
expression analysis identified 491 genes differentially expressed between the female inflorescence
and the top stem internode. Gene ontology classification of differentially expressed genes showed en-
richment for sucrose synthesis, the light-dependent reactions of photosynthesis, and transmembrane
transporters. Our results suggest that sugar transporters play a key role in sugar partitioning in the
maize stem and reveal previously uncharacterized differences between the female inflorescence and
the top internode of the stem at early reproductive stages.

Keywords: Zea mays; maize stem; female inflorescence; transcriptome analysis; sucrose–
starch metabolism

1. Introduction

Yield and harvest indices in cereals are impacted by the partitioning of carbon between
vegetative and reproductive tissues. Photoassimilates produced in the source tissues travel
through the phloem as sucrose and accumulate in sink tissues as starch [1–3]. Comparative
analysis of different maize varieties has shown that the strength of the sink–source relation-
ship is established at the early stages of grain filling and has a significant impact on the
final kernel weight [4].

Source strength is determined by both the rate of photosynthesis and the rate of
photoassimilate export from source tissues [3,5]. Photoassimilate is primarily transported
in the form of sucrose. Triose phosphates produced in the chloroplast by photosynthesis
are shuttled to the cytosol and are used to synthesize sucrose through the sequential action
of fructose 1, 6-biphosphatase (F16BP), sucrose phosphate synthase (SPS), and sucrose
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phosphate phosphatase (SPP) [6,7]. Long distance sucrose transport occurs through the
phloem [5] via the SUT and SWEET sucrose transporter families. In rice, increasing sucrose
loading into the phloem through the expression of an Arabidopsis sucrose transporter (SUC2)
has been reported to increase grain yield by 16% relative to control plants [6]. Once sucrose
reaches a sink tissue, it is unloaded and can be broken down either by sucrose synthase
(SUS) into fructose and UDP-glucose or by invertase (INV) into fructose and sucrose. A
simplified measure of sink strength can be obtained as the sink size (total biomass of sink
tissue in g) per unit of sink activity (specific rate of resource uptake in mol g−1 s−1) [2,7].
Sucrose degradation in the sink tissue will drive further sucrose import, and the levels of
SUS and INV activity are a major determinant of sink strength [8–10]. In maize, increased
SUS activity results in greater starch accumulation [11].

To ensure a consistent supply of carbon to support metabolism and growth, much
of the photoassimilate delivered to a sink tissue will be stored as starch [8,9]. As such,
starch plays a dual role in carbon allocation, acting as both a source, releasing carbon
reserves in leaves for growth and development, and as a sink, either as a dedicated
starch store (in seeds and tubers) or as a temporary reserve of carbon contributing to sink
strength in organs such as flowers, fruits, and developing non-starchy seeds [8,10]. Starch
synthesis is catalyzed by ADP-glucose pyrophosphorylase (AGPase), starch synthases (SS),
starch branching and debranching enzymes (DBE and SBE), and the granule-bound starch
synthase (GBSS) [10,12–14]. Overexpression and increasing the catalytic activity of AGPase
subunits can promote a slight increase in crop yield [15–18]. Other studies have focused
on transcription factors regulating starch metabolism enzymes in different crops [19].
Transcription factors such as ZmbZIP91, ZmEREB156, and OsbZIP58 have been found to
be involved in the regulation of starch synthesis enzymes in the endosperm [20–22], while
OsCRCT regulated starch synthesis in vegetative tissues [23]. This suggests that starch
regulation mechanisms differ depending on the type of starch that is synthesized.

The transcriptional regulation of sugar partitioning and sink–source communication
has not been widely studied [24]. Further study of sink–source relations and the transcrip-
tional regulation of sucrose–starch metabolism in the stem and female inflorescence before
pollination can point to important enzymes that can be considered to increase crop yield,
such as the transporters involved in the reallocation and partitioning of carbon and their
possible regulation mechanisms. To begin to address this deficit, we have characterized
non-structural carbohydrate partitioning and transcript populations in stem and female
inflorescence tissues at an early reproductive stage in maize. Our analysis indicates that
sugar transport is highly active in the top internode section of the stem, while the female
inflorescence is the main sink tissue at the early reproductive stage.

2. Materials and Methods
2.1. Plant Growth and Material
2.1.1. Field Grown Maize for Metabolite Quantification

Two commercial maize hybrids, white grain Puma (Asgrow) and yellow grain Dow2B
(Dow), were grown in the summer at the Experimental Field of the University of Gua-
najuato, in Irapuato, Guanajuato, Mexico. A standardized method with a mechanical
juice extractor (International, model EXS) was used to extract juice from whole maize
stems, including the leaf sheaths. Juice samples were obtained in triplicate. Samples were
collected weekly, before, during, and after pollination, from 60 days after sowing (DAS) to
102 DAS. Stem juice aliquots of 1 mL were put in a 96-well microplate, immediately frozen
on dry ice, and stored at −20 ◦C until metabolite quantification.

2.1.2. Greenhouse Grown Maize for Carbohydrate Quantification and RNA Sequencing

Puma hybrid maize plants were grown in a greenhouse in Irapuato, Guanajuato, Mexico,
in 10 L plastic pots containing 1/1 v/v peatmoss and a vermiculite sterile soil mixture with
optimal watering and fertilization, under natural light with no supplemental light, during
the months of May to August, when the daylength was from 13 to 14 h. Peak daylight
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intensity was approximately 250 µmol/m2/s, which was measured at the level of the plant
female inflorescence, and the peak greenhouse temperature was 28 ◦C. Plant tissues were
collected at early reproductive stage R1 (60 DAS) between 8 a.m. and 12 p.m. Tissues
collected were root, RT; nodes, ND; the top internode section of the stem, TI; the bottom
internode section of the stem, BI; leaf sheath, LS; leaf blade, LB; and female inflorescence
(FI), which were bagged prior to silk emergence. Similar tissues (RT, ND, TI, BI, LS, and LB),
with the exception of FI, were collected in Puma hybrid maize plants at 45 DAS (vegetative
stage, v12). Samples were frozen, milled with a Retsch mill in liquid nitrogen, and stored
at −80 ◦C until carbohydrate determination and RNA extraction were needed.

2.2. Iodine Staining

Puma maize stem tissues were collected at 21 DAS. Longitudinal and cross sections of
maize stems that were 2–3 mm thick were stained with KI-I2 solution. Images of 21 DAS
plants were taken with a Leica EZ4 (Leica Application Suite v3.4.0) stereo microscope.

2.3. Non-Structural Carbohydrate Quantification

Soluble sugars (glucose, Glc; fructose, Frc; sucrose, Suc) and starch were measured
using an enzymatically coupled method as described by [25]. Stem juices (1 mL aliquots)
were centrifuged at 4000 rpm (in a SORVALL RT7 Plus Centrifuge; Newtown, CT, USA),
supernatants were collected in another deep-well microplate, and 10 µL aliquots of diluted
samples were used for Frc, Glc, and Suc measurements. All samples were diluted between
1:50 and 1:200 v/v. For starch extraction, pellets were washed three times with 80% EtOH
(v/v), and then soluble-sugar-free pellets were incubated with 500 µL 10 mM NaOH at
100 ◦C for 2.5 h. Starch was hydrolyzed in 50 mM Hepes (pH 7.5) at 37 ◦C overnight with
the addition of 10 units of a-amylase (EC 3.2.1.1; Roche) and 10 units of amyloglucosidase
(EC 3.2.1.3; Roche). The reaction mix was kept overnight at 37 ◦C to allow breakdown of the
polymeric chains to glucose molecules. Finally, samples were centrifuged at 4000 rpm, and
10–20 µL were used for starch quantification. Puma hybrid samples at V12 and R1 stages
were lyophilized, and carbohydrates were measured using a method described by [26],
using the same reagents as indicated for the previous method.

2.4. RNA Extraction

Total RNA from female inflorescences (FI) and top internodes of the stem (TI) at 60 DAS
were extracted using the PureLink RNA-micro-to-midi Kit (Invitrogen Corp., Carlsbad, CA, USA),
as described by the manufacturer. The purity and integrity of the RNA samples were evalu-
ated by electrophoresis on 2% RNase-free agarose gels, spectrophotometry (A260/A280 and
A260/A230 ratios) using a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA),
and quality analysis using the Agilent 2100 Bioanalyzer system (Agilent technologies, Inc,
Santa Clara, CA, USA).

2.5. RNAseq Analysis

RNA sequencing libraries from two biological replicates each of FI and TI tissues
were constructed according to the standard Illumina protocol and were sequenced using
the Illumina MySeq™ 2000 platform to generate 2 × 300-nucleotide paired-end reads.
This was performed as a service by the National Laboratory of Genomics for Biodiversity
(Langebio) at Cinvestav, Irapuato, Mexico. RNA-seq read quality was assessed using
FastQC v0.11.2 and was cleaned using the Trimmomatic software [27]. Reads were aligned
to the maize B73 reference genome (ZmB73_RefGen_v4, www.maizegdb.org (accessed on
1 December 2020)) using TopHat v2.0.13 software. The expression level was calculated in
fragments per kilobase of transcript per million fragments mapped (FPKM), as described
previously [28,29]. Raw data have been deposited in the GEO database under accession
number GSE181998.

www.maizegdb.org


Plants 2022, 11, 238 4 of 16

2.6. Differential Gene Expression Analysis

Differentially expressed genes (DEGs) were identified through pairwise comparison
using EdgeR software, and the p-values were adjusted using the Benjamini–Hochberg
procedure to determine the false discovery rate (FDR) [30–32]. Only the genes with FPKM
results that met the criteria of FDR < 0.05 and fold change > |2| between the two conditions
were considered to be differentially expressed. Data analyses were updated using CLC
Genomics Workbench 20.0 (QIAGEN) software mapping to the B73 RefGen_v4 (https://
www.maizegdb.org/genome/assembly/Zm-B73-REFERENCE-GRAMENE-4.0 (accessed
on 1 December 2020)).

2.7. GO Enrichment Analysis

The list of DEGs was analyzed for GO enrichment using the ClueGO and Clue-
pedia [33] plug-ins in Cytoscape v3.8.0. DEGs that presented increased expression in
each tissue (FI, TI) were analyzed separately to determine the main GO-enriched term in
each tissue. Another analysis was performed in the Panther database (available online:
http://geneontology.org/ accessed on 3 November 2020) [34,35]. The GO categories con-
sidered for the analysis included cellular component, molecular function, and biological
process. After the hypergeometric test, Bonferroni correction was employed for p-value
correction, with a cut-off of 0.05. The GO terms satisfying the condition were considered to
be significantly enriched in the DEGs list.

2.8. Quantitative Real-Time PCR (qRT-PCR)

Total RNA samples (2 µg) were reverse transcribed to generate the first strand cDNA
using an oligo dT20 primer and 200 units of SuperScript II reverse transcriptase (Invitrogen).
All primer design (Table S1) and qRT-PCR reactions were performed as described by [36].
Three biological replicates for each tissue were stored at −80 ◦C and were subjected to
independent extraction procedures and qRT-PCR analysis on the same 96-well plate and
on independent plates. qRT-PCR was performed with a CFX™ Real-Time PCR System
(BioRad). A mastermix was made using 40 ng of reverse transcribed total RNA; 1.2 mM
each of dNTP (dATP, dCTP, dGTP, dTTP); and SYBR Green TaqReadyMix™, 2X. The total
reaction volume was 20 µL. The following PCR protocol was used: denaturation program
(95 ◦C for 3 min) and amplification and quantification program repeated 40× (95 ◦C for
15 s, 60 ◦C for 30 s); a melting curve program was also used (60–95 ◦C, with a heating rate
of 0.3 ◦C per second). To compare gene expression between tissues, we used the modified
absolute gene expression data analysis method [37,38] described by [36,39]. qRT-PCR
data were reported as number of molecules at cycle zero (N0) in log10 of the fluorescence
units (RFU).

2.9. Gene Expression of Sucrose-Starch Genes in B73 Genome Atlas

Expression data for DEGs between the female inflorescence and the top internode
and for the SUT and SWEET transporter families were extracted from the B73 genome
atlas. Spearman correlation coefficients were calculated with the Hmisc and corrplot li-
braries in RStudio v1.1.423. Heatmaps were built with gplots and RColorBrewer libraries.
A co-expression network built with the 75 tissue samples from the B73 genome atlas data
was explored through the COBrowser website to search for transcription factors that were
co-expressed with sucrose–starch genes (Schaefer et al., 2014; Stelpflug et al., 2016). Whole
transcription factor and sucrose–starch genes were identified from Grassius (available on-
line: https://grassius.org/, accessed on 1 December 2020) [40], the PlantPAN database
(available online: http://plantpan.itps.ncku.edu.tw, accessed on 1 December 2020) and
the MaizeGDB database (available online: https://www.maizegdb.org, accessed on
1 December 2020), respectively. Gene expression patterns in photosynthetic tissues were
graphed with Excel software.

https://www.maizegdb.org/genome/assembly/Zm-B73-REFERENCE-GRAMENE-4.0
https://www.maizegdb.org/genome/assembly/Zm-B73-REFERENCE-GRAMENE-4.0
http://geneontology.org/
http://geneontology.org/
https://grassius.org/
http://plantpan.itps.ncku.edu.tw
https://www.maizegdb.org
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2.10. Statistical Analysis

All statistical analysis of carbohydrate measurements were performed using the
Agricolae v1.3-2 package in RStudio v.1.1.423 (RStudio Team, 2020). Data were analyzed
using an ANOVA with multiple comparison applying a Fisher–LDS test (p-value = 0.05)
with Bonferroni correction. Averages ± SE and t-tests were calculated using Excel software.

3. Results
3.1. Hexose to Sucrose Ratio Increases at Early Reproductive Stages

To evaluate carbohydrate dynamics in the maize stem at different reproductive stages,
non-structural carbohydrates were quantified in the stem juice of maize hybrids from
60 DAS (R1 stage) to 102 DAS. Figure 1A shows the carbohydrate mobilization pattern.
There is a maximum peak of hexose accumulation at the female and male flowering stages
(74–81 DAS). Additionally, an increase in the sucrose level is observed starting at 74 DAS
(Figure 1A). Starch, in contrast to sucrose, is a very large and complex molecule. Due to its
molecular weight and chemical characteristics, it cannot be moved without degradation,
so it accumulates at the location where it is synthesized. The starch level in stem juice was
very low at reproductive stages (Figure 1A). A high hexose to sucrose ratio was observed at
early reproductive stages but decreased dramatically at 81 DAS (Figure 1B). This could be
related to the senescence of the stem after the female inflorescence pollination and the grain
filling. Patterns of non-structural sugar behavior and hexose/sucrose ratio were confirmed
through the analysis of a second hybrid (Figure S1).
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3.2. The Female Inflorescence before Pollination Has High Sink Strength

To characterize the starch patterns in the different maize tissues, iodine staining
was used. The Puma hybrid at 60 DAS was chosen as our model due to the pattern of
carbohydrate accumulation in the stem (Figure 2). At 60 DAS, Puma hybrid plants were at
reproductive stage R1, the stem had reached its maximum height and female inflorescences
were obvious, with the stigma emerging 2–3 cm outside of the husk leaves (Figure 2A).
Longitudinal cuts were made to the stem tissues, and the cuts were stained with iodine to
visualize starch accumulation (Figure 2B–D). In Figure 2B,C, a high accumulation of starch
in the female inflorescence can be observed, mainly in the peduncle and the border of the
corn cob. In Figure 2D, a transversal cut of the stem highlights the accumulation of starch,
mainly in the node.
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(R1 stage). (A) Maize stem at 60 DAS showing female inflorescence with emerging stigmas.
(B–D) Longitudinal cuts of the stem and the female inflorescence stained with iodine (KI-I2) showing
starch accumulation. (E) Diagram of different tissues sections collected. (F–I) Carbohydrate quantifi-
cation of Puma hybrid tissues at 60 DAS. Plants were divided into different tissue sections: root, RT;
stem node, ND; top internode, TI; bottom internode, BI; leaf sheath, LS; leaf blade, LB; and female
inflorescence, FI. (F) glucose, Glc; (G), fructose, Frc; (H) sucrose, Suc; and (I) starch levels in the
different tissues. Bars are the average of n = 10, SE; ANOVA, Fisher-LSD test p = 0.05; means with the
same letter (a, b or c) are not significantly different.

In summary, low levels of starch were observed in the stem (Figure 2). To determine if
the same pattern was observed at early stages of stem development, longitudinal and cross
sections of 21 DAS maize stems were stained (Figure S2). At this stage, the maize stem is
very small (around 6 mm width (Figure S2A,B)), showing high starch accumulation in the
shoot tip (Figure S2B,C). Additionally, nodes and internodes can be differentiated due to
the starch accumulation. While the nodes were darkly stained (Figure S2C, yellow arrow),
the internodes did not stain (Figure S2C, red arrow). In a transverse cut of the node tissues
(Figure S2D,E), starch was present in the parenchyma tissues surrounding the bundle
sheaths. This suggests that this starch is not synthesized directly from photosynthesis
because at this stage, the stem is surrounded by leaf sheaths, and chloroplasts are not
present in the middle of the stem. At 21 DAS, the female inflorescence in the Puma hybrids
was about 3.6 mm long (Figure S2F–H) and showed high starch accumulation (Figure S2H),
while the root did not accumulate starch (Figure S2I,J). Starch accumulation in the stem and
the female inflorescence at this stage is consistent with its role as a carbon storage molecule
during the development of non-photosynthetic tissues.
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Due to the relationship between starch and sucrose in the sink–source mechanism,
we quantified carbohydrate accumulation in various tissues of the maize plant. The Puma
hybrid plants were divided into stem node, ND; top internode, TI; bottom internode, BI;
leaf sheath, LS; leaf blade, LB; female inflorescence, FI; and root, RT (Figure 2E). The car-
bohydrate levels at reproductive stage R1 are shown in Figure 2F–I. Glucose and fructose
can be transported throughout the plant and are often interconverted into more complex
carbohydrates. The female inflorescence had a high accumulation of these two hexoses,
followed by the bottom internode (Figure 2F,G). Sucrose levels were high in the nodes,
followed by the female inflorescence and the bottom internodes (Figure 2H). This makes
sense due to the role of this molecule as the main metabolite to be transported to the sink
tissues and to the close connection between these tissues. As expected, starch levels were
high in photosynthetic tissues such as those in the leaf blade (LB) and leaf sheath (LS)
(Figure 2I). The female inflorescence also had high starch levels, but in contrast to leaf
tissue, the female inflorescence is a sink tissue. Female inflorescence and leaf starches are
different: leaf starches are transitory, while the starch in the female inflorescence is a reserve
starch such as the one found in stem tissue. Finally, at 60 DAS, starch levels in the different
sections of the stem tissue (ND, TI, BI) were not significantly different from those found in
the root tissue (Figure 2I).

To compare carbohydrate composition at vegetative stages with early reproductive stages,
vegetative tissues were collected from the Puma hybrid plants at stage V12, before female
inflorescences were visible. Glc levels were similar in the vegetative tissues at the V12 stage
(ND 62.9 µmol/g; TI 57.5 µmol/g; RT 53.7 µmol/g; LB 42.4 µmol/g; LS 39.0 µmol/g) and in
the reproductive tissues at the R1 stage (ND 63.1 µmol/g; TI 67.0 µmol/g; RT 52.87 µmol/g;
LB 50.7 µmol/g; and LS 34.4 µmol/g) (Figures 2F–I and S3). Starch levels were also similar
between these two stages in most of the tissues, with the exception of the ND, which
had 60.5 µmol/g at the V12 stage and 26.7 µmol/g at the R1 stage (Figures 2F–I and S3).
The sucrose level nearly doubled from the V12 stage (ND 199.3 µmol/g; TI 86.1 µmol/g;
BI 143.2 µmol/g; RT 78.1 µmol/g; LS 53.4 µmol/g) to the R1 stage (ND 413.9 µmol/g;
TI 151.6 µmol/g; BI 286.1 µmol/g; RT 155.8 µmol/g; LS 90.6 µmol/g) (Figures 2F–I and S3).
The root tissue had similar levels of Frc and Glc, but starch was almost undetectable at both
the V12 stage (3.9 µmol/g) and at the R1 stage (1.23 µmol/g). At the V12 stage, the top in-
ternode section had Glc (57.5 µmol/g), Suc (86.1 µmol/g), and starch (6.4 µmol/g) patterns
that were similar to those of the root tissue (53.7 µmol/g, 48.9 µmol/g, and 3.9 µmol/g, re-
spectively) (Figure S3). Fructose was higher in the bottom internode, but glucose levels were
similar in the different tissues (Figure S3). Both hexoses and metabolite levels can change
constantly due to their role as part of other complex metabolites such as sucrose and starch.
Starch accumulation in the leaves was also high (Figures 2I and S3D), while hexose and
sucrose levels were lower than they were in the other tissues (Figures 2F–H and S3A–C). In
summary, iodine staining showed similar levels of starch in the female inflorescence and the
stem sections at early developmental stages. At reproductive stage R1, differential starch
and hexose/sucrose levels in the female inflorescence and stem suggest that contrasting
sucrose–starch metabolism occurs in those tissues.

3.3. Differential Gene Expression between the Female Inflorescence and the Top Internode of the Stem

To explore global gene expression changes between tissues with different carbohydrate
levels, transcriptomic analyses of the female inflorescence before pollination (FI, Figure 3A)
and the top internode of the maize stem (TI, Figure 3B) were performed at 60 DAS (re-
productive stage R1). RNA-seq data from each tissue was mapped to the B73 reference
genome (B73 RefGen-v4). A total of 591 genes with an FDR < 0.05 and log2FC > |2| were
considered as differentially expressed genes (DEGs) (Figure 3D; Table S2). A total of
182 genes were more highly expressed in the female inflorescence (FI) compared to the
top internode of the stem (TI), while 409 were more highly expressed in the top internode
(TI) of the stem compared to the female inflorescence (FI) (Figure 2D). Of these 591 DEGs,
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67 were transcription factors, of which 15 were more expressed in the FI, and 52 were more
expressed in the TI (Table S2).

1 

 

 

 

 

 

 

 

 

 

Figure 3. Transcriptomic comparison of the female inflorescence and top internode of the maize
stem at 60 DAS. (A,B) Tissues used to build the libraries for transcriptomic analysis; (A) FI, female
inflorescence and (B) TI, top internode. (C) Carbohydrate level differences between FI and TI;
mean ± SE, n = 10, unpaired t-test, df = 10, * p < 0.05, ** p < 0.01. (D) Differentially expressed
genes (DEGs) between FI and TI; DEGs visualized as a MA plot (log ratio vs. abundance) where
each dot represents a gene, and a red dot represents a significantly DEG where FDR < 0.05 and
log2FC (log of fold change) > |2|; log2CPM, log of count per million.

GO term enrichment analyses were performed on the list of DEGs. ClueGO soft-
ware found some common GO terms between these two tissues, such as “heme binding”
(Figure 4; GO:0020037, Table S3). Panther software identified “cellular nitrogen compound”
(GO:0034641) and “tetrapyrrole binding” (GO:0046906) (Table S3). The percentage of genes
per enriched GO term was low in the FI tissue compared to the TI tissue, which was
probably related to the lower number of DEGs that were overexpressed in FI tissue com-
pared to in the TI tissue (Figure 4A). The “sucrose–starch” metabolism GO term containing
Sus5 (Zm00001d051837, a sucrose synthase related to sucrose degradation) and two puta-
tive beta-glucosidases (Bglu3, Zm00001d028243; Bglu1, Zm00001d048055), was enriched
in FI tissue (Figure 4A). The TI-enriched GO terms included “photosynthesis”, “response
to light stimulus”, and “transmembrane transport” (Figure 4B), all of which are related
to the sucrose–starch metabolism and sink–source mechanisms. Analysis with Panther
(Table S3) also showed “sucrose” (GO:005986), “fructose 1,6-biphosphate” (GO:0030388),
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and “fructose” (GO:0006000) metabolic process enrichment in the TI, which could be related
to dynamic sucrose metabolism in this tissue.

Plants 2021, 10, x  9 of 17 
 

 

 
Figure 4. Enriched GO terms among DEGs. (A) GO terms enriched among DEGs more highly ex-
pressed in the female inflorescence (FI). (B) GO terms enriched among DEGs more highly expressed 
in the top internode of the stem (TI). A two-sided hypergeometric test was used to test for enrich-
ment/depletion, Bonferroni step down correction method, kappa score 0.4. The enrichments show 
only significant GO terms, p-value: * 0.05, ** 0.01. 

3.4. qRT-PCR Validation of Gene Expression for Sucrose-Starch Metabolism Enzymes 
Figure 5A shows a summary of key sucrose–starch metabolism enzymes that are ac-

tive between the photosynthetic and sink tissues. To correlate gene expression with 
changes in sucrose–starch levels between the female inflorescence (FI) and the top inter-
node of the stem (TI), we looked in our transcriptome data for genes involved in the su-
crose–starch metabolism. Quantitative real-time PCR (qPCR) validation of transcript lev-
els of differentially expressed sucrose–starch metabolism genes from Table S2 showed ex-
pression patterns that were similar to the RNAseq data (Figure 5B–D). A member of the 
AGPase family, the Agpllzm large subunit (Zm00001d033910), was significantly overex-
pressed in the RNAseq data in the TI compared to FI tissue, and a similar pattern was seen 
by qPCR (Figure 5B). Putative sugar transporters were expressed in the top internode of 
the stem tissue (Figure 5C). Consistent with the differential hexose/sucrose ratio at the R1 
stage in the stem, the Sut1 isoform (Zm00001d027854) was significantly more highly ex-
pressed in the RNAseq data in TI compared to FI; this gene also showed higher TI expres-
sion in the qPCR experiment (Figure 5C). Among the other enzymes related to sucrose 
metabolism, RNAseq analysis found a member of the fructose-1,6-biphosphate family 

Figure 4. Enriched GO terms among DEGs. (A) GO terms enriched among DEGs more highly
expressed in the female inflorescence (FI). (B) GO terms enriched among DEGs more highly ex-
pressed in the top internode of the stem (TI). A two-sided hypergeometric test was used to test for
enrichment/depletion, Bonferroni step down correction method, kappa score 0.4. The enrichments
show only significant GO terms, p-value: * 0.05, ** 0.01.

3.4. qRT-PCR Validation of Gene Expression for Sucrose-Starch Metabolism Enzymes

Figure 5A shows a summary of key sucrose–starch metabolism enzymes that are active
between the photosynthetic and sink tissues. To correlate gene expression with changes in
sucrose–starch levels between the female inflorescence (FI) and the top internode of the
stem (TI), we looked in our transcriptome data for genes involved in the sucrose–starch
metabolism. Quantitative real-time PCR (qPCR) validation of transcript levels of differen-
tially expressed sucrose–starch metabolism genes from Table S2 showed expression patterns
that were similar to the RNAseq data (Figure 5B–D). A member of the AGPase family, the
Agpllzm large subunit (Zm00001d033910), was significantly overexpressed in the RNAseq
data in the TI compared to FI tissue, and a similar pattern was seen by qPCR (Figure 5B). Pu-
tative sugar transporters were expressed in the top internode of the stem tissue (Figure 5C).
Consistent with the differential hexose/sucrose ratio at the R1 stage in the stem, the Sut1
isoform (Zm00001d027854) was significantly more highly expressed in the RNAseq data
in TI compared to FI; this gene also showed higher TI expression in the qPCR experiment
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(Figure 5C). Among the other enzymes related to sucrose metabolism, RNAseq analysis
found a member of the fructose-1,6-biphosphate family (F16bp, Zm00001d028562) that
was significantly more expressed in TI than in FI, a trend that could also be seen by qPCR
validation (Figure 5D). Sus5 (Zm00001d051837), a member of the sucrose synthase family
that participates in sucrose degradation (Figure 5A), was significantly higher in FI than in
TI in the RNAseq experiment, a trend that was also seen by qPCR (Figure 5D). Isoforms of
other sucrose metabolism enzymes such as a cell wall invertase (Invcw2, Zm00001d003776)
and a sucrose phosphate synthase (Sps1, Zm00001d012036) were also measured; their
expression by qPCR was similar to the expression shown by the transcriptome analysis
(Figure 5D).
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Figure 5. Transcript levels of genes for sucrose–starch metabolism enzymes. (A) Summary of sucrose–
starch pathway in photosynthetic and non-photosynthetic cells. (B–D) Transcript quantification by
RNA-seq (upper row) and validation by RT-qPCR (lower row). (B) ADP-Glucose pyrophosphorilase
(AGPase) family, Agpllzm, Agpl3, Agpsemzm, Agplemzm, Bt2, Sh2. (C) Sucrose transporter (SUT)
family, Sut1, Sut2, Sut5. (D) Fructose 1,6 bi-phosphatase (F16bp), Invertase (Invcw2), Sucrose
Phosphate Synthase (Sps1), and Sucrose Synthase 5 (Sus5). * Significantly differential expression
FDR < 0.05.

3.5. The Expression of the bZip113 and Ereb17 Transcription Factor Genes Was Highly Correlated
with the Expression of Sucrose Transporters

To explore whether the differential expression of sucrose–starch metabolism enzymes
might be correlated with transcription factor expression, five transcription factor genes
that were significantly more highly expressed in TI than in FI tissues in the RNAseq experi-
ment were validated by qPCR (Figure 6A). In agreement with the RNAseq results, qPCR
analysis showed higher expression of Eil7 (Zm00001d003451), Ereb17 (Zm00001d052229),
Zim2 (Zm00001d013331), Abi5 (Zm00001d013722), and bZip113 (Zm00001d026398) tran-
scription factors in TI tissue (Figure 6B). To test the correlation between differentially
expressed genes from the most enriched GO terms in Figure 4, genes related to sucrose–
starch metabolism in each tissue were extracted (Figure 6C). Only three genes related
to the “sucrose–starch” GO term were more expressed in the FI tissue (Figure 6C). The
most enriched GO term in the TI tissue was “transmembrane transporter”, followed by
“photosynthesis” and “response to light stimulus” (Figure 6C). In the “photosynthesis” GO
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term, we can see some members of the light-harvesting chlorophyll a/b complex family
(Lhca3, Lhca4, Lhca6, Lhcb1, Lhcb3), which may be expressed in the photosynthetic epidermis
of the stem. Sugar transporter genes found in the “transmembrane transporter” GO term
include Hext6 (Hexose transporter 6), Sweet4a (Sugars will eventually be exported transporter 4a),
and Sut1 (Sucrose transporter 1).

 

2 

 

 

 

 

 

 

Figure 6. Validation of differentially expressed genes in the female inflorescence vs. top internode
section of stem tissue. (A) Gene expression of transcription factors by RNA-seq and (B) validation
by RT-qPCR; * significant differentially expressed, FDR < 0.05. (C) Differentially expressed genes
from our RNAseq experiment for enriched GO terms related to sucrose–starch metabolism in the
female inflorescence (FI) and the top internode (TI); green marks refer to the large cluster formed
in the correlation graph in (D); FDR < 0.05. (D) Expression correlation of differentially expressed
transcription factors, AGPase family, sucrose transporter, and transmembrane transporters from
the maize B73 genome atlas. Spearman coefficient correlation (SCC), p-value < 0.01; colored circles
correspond to the significant correlations; non-significant correlations are blank squares.

Figure 6D shows a correlation matrix built with the full transcriptome data from
the maize B73 genome atlas. Genes represented here include the differentially expressed
transcription factors from Figure 6A,B, sucrose–starch enzymes from Figure 5B–D, and
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differentially expressed genes from Figure 6C. Sus5 (Sucrose synthase 5) and Agpllzm
(ADP-glucose pyrophosphorilase large subunit) expression were negatively correlated, as ob-
served in the FI and TI transcriptomes (Figure 5B,D). In contrast, a large cluster with a
significant positive correlation includes the Ereb17 and bZip113 transcription factors, three
sucrose transporters (Sut1, Sut2 and Sweet4a), and many other classes of transporters (green
marks in Figure 6C). This suggests that the bZIP113 and ABI51 transcription factors could
be involved in the regulation of transport, including sugar transport, in the top internode of
the stem. This cluster was negatively correlated with the AGPase isoforms related to starch
synthesis (Agpl3, Agplemzm, Bt2) as well as bGlu1 and bGlu3, which were more expressed
in the FI tissue. Overall, sugar transporter genes showed the highest positive correlation
with the bZip113 and Ereb17 transcription factors.

4. Discussion
4.1. Starch Accumulation in Maize Physiology

Insoluble starch is produced from photosynthetically derived sugars and provides
plants with a stable and abundant energy source to maintain metabolic needs in the absence
of light [12,41]. The exchange of sap containing photosynthetic sugars occurs in the stem
nodes between the large phloem vessel and a vascular bundle [42]. Consistent with this, we
observed starch accumulation in the parenchyma tissue near the bundle sheath of nodes in
the maize shoot tip at early vegetative stages (Figure S2A–E). A similar starch pattern was
described in the wheat stem tissue, and the accumulation of starch in the parenchyma tissue
has been observed in other plants [43,44]. Starch accumulation could also be observed in
the topmost ear shoot at 21 DAS (Figure S2H), suggesting that this starch may be involved
in the floral transition, which had already occurred by that time [45]. During vegetative
stages, starch in the nodes promotes the growth of young leaves and the elongation of the
stem internodes. The localization of starch to the nodes during vegetative developmental
stages also likely serves as a reserve for later carbon allocation. We observed residual starch
in the nodes and the bottom internodes while the stem was reaching its maximum height
(Figures 2D,I and S3D). Comparing the transcriptomes of the female inflorescence and
the top internode section of the stem, we found the Abi5 transcription factor to be more
highly expressed in the top internode of the stem compared to the female inflorescence
(Figure 6A,B). In Arabidopsis, overexpression of the ABA-insensitive transcription factors
ABI4 and ABI5 induced effector genes that are involved in seed maturation and reserve
storage [46]. ABI4 is also involved in sugar signaling and the control of photosynthetic and
starch biosynthetic genes [47,48].

Unexpectedly, we could not find differentially expressed starch metabolism enzymes
between our two transcriptome conditions (Table S2, Figure 5B,C), even when the top in-
ternode and the female inflorescence showed different starch levels (Figure 3C). This could
be because starch synthesis is no longer active in the female inflorescence at this stage and
because the starch present is left over from early stages or because the starch metabolism
is regulated at the protein level and does not require differential transcription. However,
other GO terms related to starch and sucrose metabolism were enriched in the genes upreg-
ulated in the female inflorescence (Figure 4A). The genes belonging to this GO term were
members of the SUS family (Sucrose synthase 5), which are involved in sucrose degradation,
and two putative genes presenting homology to the beta-glucosidase (bGlu1, bGlu3) family,
which is involved in starch degradation.

At reproductive stage R1, the topmost female inflorescence, leaf sheath, and leaf blade
showed high starch accumulation (Figure 2I). Thus, the starch in the stem and in the female
inflorescence are synthesized in sink tissues and show a similar synthesis/degradation
ratio (Figures S2E and 2B,C). The starch in the female inflorescence is a storage starch that is
synthesized in sink tissues, probably in preparation for grain filling, while the starch in the
leaves is a transitory starch that is synthesized directly in the photosynthetic tissues [49–52].
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4.2. The Function of The Maize Stem in Carbon Partitioning

The stem plays an important role because it connects the source and sink tissues of
the maize plant [45]. In the stem juice of both the Puma and Dow2B hybrids, we observed
a high rate of sucrose degradation into hexoses from the starting reproductive stage until
the pollination stage, after which sucrose started to accumulate, and the hexose–sucrose
ratio decreased drastically (Figures 1A,B and S1). Hexose accumulation in the stem may
be related to male and female flowering and may precede the start of grain filling. At
reproductive stage, the function of the stem seems to be the reallocation of carbon to the
tissue with most sink strength, the female inflorescence (Figures 1 and 2F–H). The node
tissue becomes relevant as a connection of source and sink tissue, as shown by sucrose
accumulation in the stem that is as twice as high as the sucrose accumulation found in the
V12 stage (Figures 2H and S3C). By contrast, fructose at the V12 stage is about 1.5 times that
of the level of glucose in all of the stem sections (Figure S3A,B), while at reproductive stage,
levels of these hexoses are similar. The fact that the nodes function as a carbon partitioning
port could be related to the fact that only around 3% of the axial vessels pass through nodes
without being interrupted by end walls [42].

Metabolite transport between organelles, cells, and source and sink tissues not only
enables pathway coordination, but it also facilitates whole plant communication, partic-
ularly in the transmission of information concerning resource availability [53]. The stem
functions in the transport of different metabolic substances, as shown by the many trans-
membrane transporters that were differentially active in stem internode tissue compared
to the female inflorescence (Figures 4B and 6C). A correlation analysis built with the tran-
scriptome data of the B73 genome atlas showed that the expression the bZip113 and the
Ereb17 transcription factors positively correlated with a cluster of these transmembrane
transporters (Figure 6D). In this same cluster where we also found sugar transporters,
including two sucrose transporters belonging to the SUT family (Sut1, Sut2), one from
the SWEET family (Sweet4b), and a hexose transporter (Hext). In some plants, it has been
observed that hexoses can be transported through the phloem, a process that is similar to
sucrose [54]. The manipulation of sucrose transporters, for example SUT1 and SWEETs,
may have a dramatic effect on sucrose remobilization and the source/sink relationships
underpinning plant growth and development [53,55,56].

Increasing sink strength potential in the female inflorescence before pollination is vital
for the grain filling stage. Once the reproductive stage is reached, the female inflorescence
is the principal tissue with high sink strength (Figures 2F–I and 3C). Kernel weight has pre-
viously been related to changes in assimilated availability during grain filling, suggesting
that maize plants establish an early sink potential [4]. Thus, our results point to the stem as
a dynamic reservoir of carbohydrates that may be correspond to the grain filling stage in
the female inflorescence.

5. Conclusions

Carbon partitioning in the maize stem is a dynamic process that takes place between
the vegetative and reproductive stages. Sucrose–starch metabolism plays a prominent role
in the sink–source relation during all of the developmental stages. At different reproductive
stages, the female inflorescence is the main sink tissue, so reserves accumulate as close
to the site of future grain development as possible. The sink–source role of the stem has
been studied less. Our results point to a key role for the stem in carbon partitioning
and reallocation that is related to the transcription factors bZip113 and Ereb7, which are
upregulated in the stem internode tissue and whose expression is correlated with the sugar
transporters Sut1 and Sweet4a.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11030238/s1, Figure S1: Carbohydrate quantification in stem juice of Dow2B (yellow
grain) hybrid maize at reproductive stages. Figure S2: Starch accumulation in different tissues at
21 DAS. Figure S3: Carbohydrate quantification of Puma hybrid tissues at vegetative stage V12.

https://www.mdpi.com/article/10.3390/plants11030238/s1
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Table S1: Quantitative real-time PCR primers for sucrose-starch genes and transcription factors.
Table S2: Differentially expressed genes between female inflorescence (FI) and top internode section
of the stem (TI) maize tissues. Table S3: Extended Panther GO enrichment analysis of the DEGs in
the female inflorescence (FI) and top internode of the stem (TI).
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