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Abstract: Plant biodiversity is an important source of compounds with medicinal properties. The alka-
loid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA
for the palliative treatment of mild to moderate Alzheimer’s disease due to its acetylcholinesterase
(AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an
industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to
its low natural yield and the high cost of its synthesis. The aim of this work was to determine the
alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the
potential application of their extracts for the treatment of Alzheimer’s disease. The alkaloids were
identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory
activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species,
the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type
structures. The R. multiflora extract was also the most active against AChE, with the half maximal
inhibitory concentration (IC50) values of 0.17 ± 0.02 µg·mL−1 in comparison with the IC50 values
of 0.53 ± 0.12 µg·mL−1 for galanthamine, used as a reference. Computational experiments were
carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward
five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine,
3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically
showed a higher inhibition of hAChE and different interactions with the active site compared to
galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indi-
cate that R. multiflora is an important natural source of galanthamine-type structures and could be
used as a model for the development of biotechnological tools necessary to advance the sustainable
production of galanthamine.

Keywords: acetylcholinesterase; Alzheimer’s disease; Amaryllidaceae; alkaloids; galanthamine; Rauhia

1. Introduction

According to the World Health Organization (WHO), important medical and phar-
macological discoveries are made through a greater understanding of the Earth’s biodiver-
sity [1]. Nature is a source of natural products and/or natural product structures that play a
significant role in the search for new drugs [2]. Alkaloids, nitrogenated compounds metab-
olized mainly by plants, are of particular interest in the development of new medicines due
to their structural diversity [3,4]. The plant family Amaryllidaceae, specifically the Amaryl-
lidoideae subfamily, contains exclusive isoquinoline alkaloids known as Amaryllidaceae
alkaloids, which show remarkable biological activities [5]. This subfamily contains more
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than 800 species, which are classified into 59 genera and distributed in different climatic
zones, including South America [6].

The subfamily Amaryllidoideae has been the focus of diverse publications in recent
decades, which have provided new information about its botanical, chemical, and bio-
logical characteristics. Galanthamine—an alkaloid first isolated from Galanthus woronowii
(Amaryllidaceae)—together with donepezil and rivastigmine are the only three acetyl-
cholinesterase inhibitor drugs approved by the Food and Drug Administration (FDA)
for the palliative treatment of Alzheimer’s disease [7]. These products are able to inhibit
the acetylcholinesterase enzyme, thus increasing the presence of acetylcholine, a neuro-
transmitter involved in the process of learning and memory, in the human brain [7]. The
screening of different Amaryllidaceae species and the search for Amaryllidaceae alkaloids
with acetylcholinesterase inhibitory activity has increased in the last few years.

Rauhia (Amaryllidaceae) is a small, xeromorphic genus established by Traub (1957) [8]
with the description of R. peruviana Traub (1957). Ravenna (1969) [9] recognized that Rauhia
peruviana was conspecific with Phaedranassa multiflora Kunth (1850) and established the
combination Rauhia multiflora (Kunth) Ravenna. Rauhia megistophylla (Kraenzlin) Traub
(1966) [10] is a synonym of R. multiflora. Four additional species have since been described:
Rauhia staminosa Ravenna (1978), Rauhia decora Ravenna (1981), Rauhia occidentalis Ravenna
(2002), and Rauhia albescens Meerow & Sagást. (2019) [11–14]. All the species have greenish-
white to green flowers and produce deciduous, carnose, pseudo-petiolate leaves either
contemporaneously with the flowers or emerging from the large, globose bulbs with the
scape. Young leaves are sometimes tessellated. The fruit is a tri-loculicidal capsule releasing
numerous flat, papery, winged blackish-brown seeds that are probably wind dispersed.

The genus Rauhia is endemic to the seasonally dry Marañón woodlands of the inter-
Andean valleys of northern Peru and is the first branch of the tribe Eucharideae in phy-
logenomic analyses [15]. The Eucharideae is a well-supported assemblage of six genera
belonging to the Andean tetraploid clade of the American Amaryllidaceae [15,16], distin-
guished by their pseudo-petiolate leaves, the loss or pseudogenization of much of the ndh
family of plastid genes, and 2n = 46 chromosomes. Rauhia is closely related to the genera
Eucrosia Ker Gawler, Phaedranassa Herb., and the monotypic Plagiolirion horsmanii Baker [15].
Rauhia species typically form small to moderate populations growing among Cactaceae
and/or seasonally deciduous trees and shrubs. The bulbs are dormant during the long dry
season, though the desiccated leaves sometimes remain visible above ground. Nothing is
known about their pollination biology.

R. multiflora is found in the region of Cajamarca in the province of Jaen, Peru, at a
500–800 m altitude, whereas R. decora was described from the region of Amazonas, on the
west side of the Utcubamba River valley between Bagua and Chachapoyas, with no altitude
reported. The live material examined in this study was collected at 500 m. R. staminosa
is found not far from R. decora, also in Amazonas, between Bagua and Tingo on the way
to Chachapoyas, with no altitude reported in the protologue. The live material examined
here was collected at 800 m. R. occidentalis was described from Cajamarca, the province of
Chilete, Choropampa, near mount Palco. Ravenna (2002) considered it to be intermediate
between R. multiflora and R. staminosa. R. albescens was found in the La Libertad region,
Pataz Province, near Huaylillas, at 2300 m, which means this is the most southern species
studied and grows at the highest altitude (Figure 1).
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Figure 1. Rauhia species investigated in this study. (A–C). R. decora. (A). Flowers. (B). Emerging 
leaves with induplicate vernation that form a funnel-like structure, putatively a device for 
channeling moisture to the bulb. (C). Juvenile leaves showing tessellation. (D,E). R. multiflora. (D). 
Flowers. (E). Fully developed leaves. (F,G). R. staminosa. (F). Flowers. (G). In natural habitat, 
Amazonas region, Peru. Photo credits: (A,B,D–F), Alan Meerow. (C) Dylan Hannon. (G) Henk van 
der Werff. 

The aim of this work was to evaluate the diversity of alkaloids in the bulb extracts of 
three species of the genus Rauhia collected in Peru and to verify their potential use in 
Alzheimer’s disease therapy. The species R. staminosa, R. decora, and R. multiflora were 
analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and in vitro and 
in silico experiments were carried out to analyze their acetylcholinesterase inhibitory 
activity. 

  

Figure 1. Rauhia species investigated in this study. (A–C). R. decora. (A). Flowers. (B). Emerging
leaves with induplicate vernation that form a funnel-like structure, putatively a device for channeling
moisture to the bulb. (C). Juvenile leaves showing tessellation. (D,E). R. multiflora. (D). Flowers. (E).
Fully developed leaves. (F,G). R. staminosa. (F). Flowers. (G). In natural habitat, Amazonas region,
Peru. Photo credits: (A,B,D–F), Alan Meerow. (C) Dylan Hannon. (G) Henk van der Werff.

The aim of this work was to evaluate the diversity of alkaloids in the bulb extracts
of three species of the genus Rauhia collected in Peru and to verify their potential use in
Alzheimer’s disease therapy. The species R. staminosa, R. decora, and R. multiflora were ana-
lyzed by gas chromatography coupled to mass spectrometry (GC-MS) and in vitro and in
silico experiments were carried out to analyze their acetylcholinesterase inhibitory activity.

2. Results and Discussion
2.1. Alkaloid Profiling

GC-MS analysis revealed 30 alkaloids in the species R. staminosa, R. decora, and
R. multiflora, three of which were not identified (Table 1 and Figures S1–S3). Each al-



Plants 2022, 11, 3549 4 of 13

kaloid described in Table 1 was quantified as a µg of galanthamine (GAL), which was
related to the mg of the dry weight (µg GAL·100 mg−1 DW). The identified structures are
presented in Figure 2.

Table 1. Alkaloid profile of Rauhia species by GC-MS.

Alkaloid [M]+ m/z RI A 1 A 2 B 1 B 2 C 1 C 2

Lycorine-type 317.5 314.5
1-O-acetylpluviine (1) 329 (80) 268 (85), 242 (100) 2598.0 - - 10.1 0.1 - -
pluviine (2) 287 (78) 286 (52), 268 (55), 243 (61), 242 (100) 2608.2 16.1 1.4 69.2 11.9 - -
assoanine (3) 267 (57) 266 (100), 250 (28), 222 (12), 180 (13) 2622.3 21.6 3.3 24.0 2.9 - -
norpluviine (4) 273 (80) 254 (60), 228 (100) 2635.7 - - 10.3 0.3 - -
1-O-acetylnorpluviine (5) 315 (80) 254 (90), 228 (100) 2641.5 - - 16.0 2.4 - -
kirkine (6) 273 (<1) 253 (55), 252 (100), 237 (21), 209 (22) 2642.2 13.9 1.4 - - - -
1-O-acetyl-9-O-methylpseudolycorine (7) 345 (30) 284 (25), 242 (100) 2769.3 - - 10.5 0.3 - -
galanthine (8) 317 (20) 298 (10), 268 (15), 242 (100), 228 (5) 2775.9 21.6 3.3 - - - -
lycorine (9) 287 (30) 268 (27), 250 (15), 226 (100), 147 (15) 2789.3 - - 10.1 0.1 - -
9-O-methylpseudolycorine (10) 303 (33) 302 (22), 284 (14), 243 (78), 242 (100) 2830.1 11.4 1.1 17.9 2.4 - -
sternbergine (11) 331 (41) 270 (32), 252 (14), 229 (72), 228 (100) 2844.1 25.8 17.4 10.8 0.6 - -
2-O-acetyl-9-O-methylpseudolycorine (12) 345 (30) 284 (100), 268 (40), 242 (40) 2907.3 168.9 32.5 135.6 16.6 - -
2-O-acetylpseudolycorine (13) 331 (30) 270 (100), 254 (75), 228 (80) 2945.1 38.2 15.4 - - - -

Galanthamine-type 10.0 10.8 278.7
galanthamine (14) 287 (94) 286 (100), 270 (25), 244 (42), 216 (49) 2437.0 - - - - 103.6 48.3
lycoramine (15) 289 (78) 288 (100), 232 (14), 202 (22), 187 (18) 2459.4 10.0 0.1 10.8 0.4 73.1 10.3
sanguinine (16) 273 (100) 272 (81), 256 (23), 230 (16), 202 (44) 2476.2 - - - - 21.7 5.3
O-demethyllycoramine (17) 275 (67) 274 (100), 218 (8), 174 (13), 173 (17) 2487.6 - - - - 23.4 5.9
lycoraminone (18) 287 (68) 286 (100), 244 (5), 218 (17), 202 (23) 2491.6 - - - - 10.3 0.3
narwedine (19) 285 (86) 284 (100), 216 (25), 199 (24), 174 (43) 2517.5 - - - - 17.3 1.8
3-O-acetylgalanthamine (20) 329 (34) 328 (31), 270 (100), 216 (31), 165 (17) 2577.2 - - - - 13.0 0.9
3-O-acetylsanguinine (21) 315 (46) 256 (100), 255 (59), 254 (40), 212 (29) 2584.6 - - - - 16.3 1.4

Homolycorine-type 57.0 42.0
nerinine (22) 347 (<1) 110 (8), 109 (100), 108 (18) 2511.4 11.0 0.2 18.8 1.6 - -
homolycorine (23) 315 (<1) 110 (11), 109 (100), 108 (30) 2785.4 19.2 2.5 10.0 0.1 - -
8-O-demethylhomolycorine (24) 301 (<1) 110 (23), 109 (100), 108 (53) 2847.6 26.8 4.1 13.2 1.3 - -

Haemanthamine -type 11.0
8-O-demethylmaritidine (25) 273 (100) 230 (24), 202 (27), 201 (93), 189 (60) 2549.8 - - 11.0 0.4 - -

Pretazettine-type 11.7 9.9
O-methyltazettine (26) 345 (30) 330 (30), 314 (25), 261 (100), 239 (25) 2643.2 - - - - 9.9 0.2
tazettine (27) 331 (24) 316 (13), 298 (20), 247 (100), 70 (26) 2686.1 - - 11.7 1.2 - -

Unidentified 24.8 11.2
UI 1 (HLY type) (28) 329 (<1) 221 (<1), 109 (100) 2510.8 - - 11.2 1.1 - -
UI 2 (HLY type) (29) 330 (<1) 221 (<1), 109 (100) 2555.9 13.4 1.2 - - - -
UI 3 (30) 325 (40) 282 (100), 266 (10), 139 (60) 2989.5 11.4 0.3 - - - -

Total: 409.3 401.2 288.6

RI: Kovats retention index; UI: unidentified; A: R. staminosa; B: R. decora; C: R. multiflora; HLY type: homolycorine-
type; 1 values expressed in µg GAL·100 mg−1 DW; 2 values expressed in %TIC (total ion current).

More than 650 Amaryllidaceae alkaloids are reported in the literature [17] and their
structures are classified into 42 skeleton types, among which lycorine, haemanthamine,
homolycorine, galanthamine, and pretazettine are among the most representative [17]. As
shown in Table 1, the alkaloids identified in the Rauhia species in the present study are
cataloged according to the scaffold type.

In R. staminosa (sample A), high amounts of Amaryllidaceae alkaloids (409.3 µg
GAL·100 mg−1 DW) were quantified and 13 lycorine-type structures (317.5µg GAL·100 mg−1

DW) were identified. Compounds 12 and 13, identified as 2-O-acetyl-9-O-methylpseudoly-
corine (168.9 GAL·100 mg−1 DW) and 2-O-acetylpseudolycorine (38.2 µg GAL·100 mg−1

DW), were predominant. Galanthamine- and homolycorine-type scaffolds were also
detected in this species. Two unidentified structures, 29 and 30, were observed and,
based on the fragmentation pattern, the former can be classified as a homolycorine-type
alkaloid (Table 1).

Among the species listed in Table 1, R. decora (sample B) had the highest diversity
of the Amaryllidaceae alkaloid groups, with lycorine-, galanthamine-, homolycorine-,
haemanthamine-, and pretazettine-type skeletons being detected. The most prevalent was
the lycorine-type alkaloid, identified as 2-O-acetyl-9-O-methylpseudolycorine (12) (135.6 µg
GAL·100 mg−1 DW). One unidentified structure was found in this species, which exhibited
the usual fragmentation pattern of homolycorine-type alkaloids.
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Promising results were obtained for the species R. multiflora (sample C), which showed
a high diversity and amounts of galanthamine-type alkaloids (278.7 µg GAL·100 mg−1

DW) (Table 1 and Figure 2). Galanthamine (6) was the predominant alkaloid quanti-
fied in R. multiflora (103.6 µg GAL·100 mg−1 DW), followed by lycoramine (7) (73.1 µg
GAL·100 mg−1 DW). Additionally, one pretazettine-type structure was quantified (9.9 g
GAL·100 mg−1 DW).

The alkaloid galanthamine has been used for the palliative treatment of mild to mod-
erate symptoms of Alzheimer’s disease since 2001 [18,19]. Different Amaryllidaceae plants
metabolize galanthamine, the species Narcissus cv Carlton, Leucojum aestivum, and Lycoris
radiada being the principal sources for pharmaceutical companies [20]. Additionally, high
concentrations of galanthamine have been described in an in vitro culture of Hippeastrum
papilio (Amaryllidaceae), patented under the number EP2999480B1 [21].

The presence of substantial amounts of other types of Amaryllidaceae alkaloids,
especially lycorine, can be a hindrance for the industrial process of the purification of
galanthamine [20,22]. In the preparation of galanthamine as an active pharmaceutical
ingredient, no lycorine should remain due to its cytotoxicity [23,24]. The low natural yield of
galanthamine and the costly and time-consuming processes required for its industrial-scale
production call for the development of efficient tools that can control its biosynthesis [25].

Among the results presented in Table 1, the species R. multiflora stands out for its
high diversity of galanthamine-type alkaloids and different unquantified Amaryllidaceae
alkaloid scaffolds, especially lycorine-type structures. This species may therefore be a suit-
able candidate for use as a model plant to elucidate the biosynthesis of galanthamine-type
alkaloids. The knowledge generated would contribute to developing new biotechnological
approaches for the sustainable and scaled-up production of galanthamine.
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2.2. Acetylcholinesterase Inhibition

The acetylcholinesterase (AChE) inhibitory activity of the Rauhia species was eval-
uated (Figure 3). R. multiflora showed the half maximal inhibitory concentration (IC50)
values of 0.17 ± 0.02 µg·mL−1, while R. staminosa and R. decora presented IC50 values of
0.43 ± 0.05 and 1.10 ± 0.27 µg·mL−1. Galanthamine, used as a positive control, exhibited
IC50 values of 0.53 ± 0.12 µg·mL−1 (Table 1 and Figure 3).
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The high amount and diversity of galanthamine-type alkaloids detected in R. multiflora
are likely responsible for the high AChE inhibitory activity of the extract (Table 1). Some
authors have evaluated the inhibitory activity of sanguinine (16) and galanthamine (14)
against Electrophorus electricus AChE (EeAChE), which showed IC50 values of 0.10 ± 0.03 and
1 ± 0.05 µM, respectively [26]. The potential of the alkaloids narwedine (19), lycoramine
(15), and lycoraminone (18) against human erythrocyte AChE (hAChE) have also been
reported in the literature, showing IC50 values of 282 ± 33, 456 ± 57, and >500 µM,
respectively [27,28].

Many studies have described the alkaloid profiles and AChE inhibitory properties of
different Amaryllidaceae species from South America, but none of the published results
match the findings reported here for R. multiflora. Despite differences in the extract prepa-
ration, it is of interest to briefly review the most important results reported in the literature
on this topic.

Among species from the genera Crinum, Eucharis, Hippeastrum, Hymenocallis, Phae-
dranassa, and Zephyranthes collected in Colombia, Eucharis bonplandii (Kunth) Traub was
the most active against hAChE, with IC50 values of 0.72 ± 0.05 µg·mL−1, and was found
to contain lycorine-, haemanthamine-, and galanthamine-type structures, the latter rep-
resented by galanthamine-N-oxide, sanguinine, galanthamine, and narwedine [29–32].
In recent studies on six species of Phaedranassa and the species Crinum x amabile Donn
collected in Ecuador, Phaedranassa cuencana Minga, C. Ulloa, and Oleas was the most ac-
tive against EeAChE, with IC50 values of 0.88 ± 0.11 µg·mL−1; three galanthamine-type
alkaloids were detected: galanthamine, sanguinine, and N-demethylgalanthamine [33–35].
The plant Ismene amancaes (Ker Gawl.) Herb. collected in Peru showed a low activity
against EeAChE, with IC50 values of 14.6 ± 0.6 µg·mL−1, although high concentrations of
lycoramine, a galanthamine-type alkaloid, were detected [36]. Among different species
of the genera Rhodophiala, Rhodolirium, and Phycella collected in Chile, the bulb extract
of Rhodophiala splendens (Renj.) Traub was the most active against EeAChE, with IC50
values of 3.62 ± 0.02 µg·mL−1, although no galanthamine-type alkaloid was reported in
this plant [32,37–39]. A study on the genera Amaryllis, Zephyranthes, and Crinum collected
in Venezuela found the strongest EeAChE inhibitory activity in a C. amabile extract, with
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IC50 values of 0.88 µg·mL−1 [40]; the main alkaloids found in the extract were of the
crinine/haemanthamine type, and sanguinine, a galanthamine-type alkaloid, was also
detected [40]. Among nine species of the genera Hippeastrum and Rhodophiala bifida (Herb.)
Traub, all collected in Brazil [41,42], the species Hippeastrum papilio (Ravenna) Van Scheepen
and Hippeastrum glaucescens (Mart. ex Schult. & Schult. f.) Herb. were the most active
against EeAChE, with IC50 values from 0.33 to 0.49 µg·mL−1, and galanthamine was the
main constituent in both extracts [41]. Species from the genus Habranthus, Hieronymiella,
Hippeastrum, Phycella, and Rhodophiala, all collected in Argentina, were investigated as pos-
sible sources of cholinesterase inhibitors [26,43–45]. Among them, the species Habranthus
jamesonii (Baker) Ravenna and Zephyranthes filifolia Herb. ex Baker and Kraenzl., collected
in San Juan and Mendoza, respectively, were described as the most active against AChE,
with IC50 values of 1 ± 0.01 and 1 ± 0.08 µg·mL−1, respectively, and found to contain
galanthamine-type alkaloids among their chemical profiling [45]. Recently, the species of
the genus Eucharis Planch reported herein have been revised and re-cataloged as Urceolina
Rchb., as well as Habranthus Herb. and Rhodophiala C. Presl, which have both been re-
named as Zephyranthes Herb. [46]. A visual representation of this information is provided
in Figure 4, which lists all the reported genera according to the place of collection and using
the updated generic names.
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2.3. Molecular Docking

As shown in Table 2, eight galanthamine-type alkaloids identified in R. multiflora were eval-
uated by molecular docking. Galanthamine, sanguinine, narwedine, 3-O-acetylgalanthamine,
and 3-O-acetylsanguinine have a double bond between C-1 and C-2. Sanguinine, O-
demethyllycoramine, and 3-O-acetylsanguinine show a hydroxyl group at C-9, whereas
the other galanthamine-type structures found in R. multiflora present a methoxy group at
this position. Most of the structures detected in this species have a hydroxyl group at C-3,
although alkaloids with carbonyl and acetoxy groups at this position were also found in
this plant extract (Figure 2). All the computational assays were carried out on five different
X-ray crystals of human acetylcholinesterase (hAChE): 4EY5, 4EY6, 4EY7 [47], 4M0E, and
4M0F [48]. In a molecular docking experiment, the ligands, ions, and water molecules are
eliminated from the Protein Data Bank (PDB) file, so the topological form of the active site
should be distinguished by the amino acid orientation around the co-crystalized ligand.

Table 2. Estimated binding free energy in molecular docking studies of alkaloids identified in the
species Rauhia multiflora toward five different hAChE structures. Values are expressed in kcal·mol−1.

alkaloid 4EY5 4EY6 4EY7 4M0E 4M0F

3-O-acetylgalanthamine (20) −9.08 −9.77 −11.25 −8.57 −9.93
3-O-acetylsanguinine (21) −8.75 −9.76 −10.55 −8.42 −10.11
narwedine (19) −9.15 −9.70 −10.41 −8.69 −9.72
lycoraminone (18) −9.70 −9.48 −9.37 −9.10 −9.25
lycoramine (15) −8.84 −9.08 −8.87 −8.64 −8.41
O-demethyllycoramine (17) −8.74 −9.08 −8.91 −8.66 −8.40
sanguinine (16) −8.13 −8.54 −9.14 −8.50 −9.12
galanthamine (14) −8.59 −8.75 −9.83 −7.90 −8.74

Five X-ray PDB structures co-crystalized with different ligands were selected and
deleted. Our reference protein was 4EY6, a PDB structure crystalized with galanthamine
as the ligand. In this protein, the geometric distribution of a monoacid around the pocket
(active site) is optimum for hosting molecules similar to galanthamine. Accordingly, the
molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone
have higher binding free energy (BE) values than galanthamine (upper 8.75 kcal·mol−1).

On the other hand, as molecular docking treats the protein as a rigid body, each
hAChE crystal has an active site with a slightly different geometry, relative to each ligand
co-crystalized in the X-ray diffraction experiment. For example, in 4EY5, the co-cristallized
ligand was huperzine A. The molecular docking results show the same behavior for 4EY6:
the alkaloids 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone
had the highest BE values. As with 4EY5 and 4EY6, the molecular docking experiments for
4EY7 revealed that 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lyco-
raminone had the highest BE values (upper 9.83 kcal·mol−1). For 4EY7, the co-crystallized
ligand was donepezil.

In the case of 4M0E, the original co-cristallized ligand was dihydrotanshinone I, a
molecule with a more planar conformation than galanthamine. The molecular docking
experiment showed that lycoraminone will form the most stable ligand–protein complex.
For 4M0F, the alkaloid with the lowest BE was 3-O-acetylsanguinine; however, the values
for the 3-O-acetylgalanthamine, narwedine, and lycoraminone molecules were also signifi-
cantly high (upper 8.74 kcal·mol−1). The territrem, a large molecule in a 3D conformation,
was the co-crystallized ligand on 4M0F.

To understand the arrangement of amino acids around the active site in the reference
protein 4EY6, a 2D ligand–protein interaction diagram for the most energetically stable
alkaloids within the active site was generated and is presented in Figure 5. The stabilization
of 3-O-acetylgalanthamine (20) is produced by the presence of two hydrogen bond interac-
tions with the residues Glu 202 and Tyr 124, one π-cation interaction with Trp 86, and three
hydrophobic interactions with Tyr 133, Tyr 337, and Phe 338. For 3-O-acetylsanguinine (21),
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the stabilization arises from the presence of one hydrogen bond interaction with Glu 202,
one π-cation interaction with Trp 86, and two hydrophobic interactions with Tyr 133 and
Tyr 337. For narwedine (19), the interactions with the active site are similar to those of
compound 20, with two hydrogen bond interactions with Glu 202 and Tyr 124, one π-cation
interaction with Trp 86, and three hydrophobic interactions with Tyr 133, Tyr 337, and
Ile 451. Finally, in lycoraminone (18), there is one hydrogen bond interaction with Tyr
124, two π-cation interactions with Trp 86, and three hydropohic interactions with Tyr
337, Phe 338, and Phe 297. In conclusion, in all the molecules depicted in Figure 5, the
stabilizaton is achieved by the interactions of the NH+ group with the residues Trp 86, Glu
202, Ser 203, and His 447 (the last three amino acids known as the catalytic triad) [49]. In
the case of galanthamine (14), as depicted in Figure 5, the best conformation estimated by
the molecular docking experiment shows the NH+ group oriented in the opposite direction
to the catalytic triad, and this explains the low estimated BE values.
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3. Materials and Methods
3.1. Plant Material Voucher

All the Rauhia Traub species, which were collected in Peru over several years, were
received as bulbs from botanical gardens and identified by Dr. Alan W. Meerow. The
following species have been deposited at the Fairchild Tropical Botanic Garden (FTG) and
National Arboretum (NA), both in the USA: R. multiflora (Meerow 2441, FTG), R. decora
(Meerow 1160, FTG), and R. staminosa (Meerow 3530, NA).

3.2. Extraction

The bulbs of each Rauhia species were dried at 40 ◦C, and then milled. The extraction
procedure was carried out according to [50], using fifty mg of each sample to obtain the
alkaloid extracts.

3.3. GC-MS Analysis

The dried alkaloid extracts of the Rauhia species were dissolved in 100 µL of chloroform
and analyzed by GC-MS. A total of 1 µL of each sample was injected in a GC-MS 6890N
apparatus (Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent MSD5975
Inert XL, operating in electron ionization (EI) mode at 70 eV, and with a Sapiens-X5 MS
column (30 m × 0.25 mm i.d., film thickness 0.25 µm). More information about the
chromatographic conditions is available [50].

3.4. Alkaloid Identification and Quantification

The chromatograms of each Rauhia species were analyzed using AMDIS 2.64 software.
The alkaloid profile of each sample was obtained using the library database of the Natural
Products Group of Barcelona University (Spain), the NIST 05 Database (Gaithersburg, MD,
USA), and by a comparison with the data in the literature. All the alkaloids were quantified
through a calibration curve of galanthamine, using codeine as the internal standard.

3.5. Enzymatic Assay

The AChE inhibitory activity of each Rauhia species was analyzed as described by [50].
The enzyme AChE from Electrophorus electricus (Merck, Darmstadt, Germany) was used.
The calibration curves of the bulb alkaloid extracts (0.05, 0.1, 0.25, 0.5, 1, and 10 µg·mL−1)
were applied to obtain the IC50 values for the AChE inhibition, using Prism 9 software.
Galanthamine was used as a positive control.

3.6. Statistical Analysis

The results were analyzed by an ANOVA, using Prism 9 software (Figure 3). The data
are expressed as the mean ± standard deviation (SD). Significant results are marked as
follows: ** p < 0.01, * p < 0.1, and ns (not significant). One-way ANOVA with Dunnett’s
multiple comparison test was used to compare the mean of each column with the mean of
a control column (galanthamine).

3.7. Molecular Docking

The molecular docking simulations of galanthamine-type alkaloids observed in the
species R. multiflora were carried out using the Autodock 4.2 program [51]. These in
silico experiments require the ligand and protein structures to be correctly prepared. The
tridimensional alkaloid structures were downloaded from the PubChem database and were
edited using the Maestro program [52] belonging to the Schrodinger suite. In this process,
hydrogen atoms were added, and the protonation states were checked for a pH of 7.0 ± 2.0.
As a result, nitrogen is protonated in all the evaluated configurations.

Additionally, a set of human AChE protein structures were downloaded from the
Protein Data Bank web site and were prepared using the Maestro program. The preparation
consisted of deleting the water molecules, ions, and ligands included in the crystallography
PDB file. Additionally, the bond orders were assigned, the hydrogen atoms were added,
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the missing side chains were included, and the amino acid protonation states were checked.
In the molecular docking simulations, the first step corresponded to computing a set of pre-
calculated grids of affinity potentials via AutoGrid to find suitable binding positions for a
ligand on a given macromolecule. In this step, a grid box with dimensions of 60 × 60 × 60 Å
and centered in the coordinates −10.30, −43.46, and 30.08 was selected. The second stage in
the docking experiment involved obtaining the best orientation of a ligand at the active site
of a protein, treated or selected as a rigid body, through the Lamarckian genetic algorithm
(LGA) [53]. For this protocol, a population size of 5000 individuals and 50 LGA runs was
selected. The best ligand–protein complexes were analyzed according to the potential
intermolecular interactions such as hydrogen bonding and the cation–π, π–π stacking.

4. Conclusions

This is the first report about the alkaloid profile and biological potential of the genus
Rauhia Traub (Amaryllidaceae). The most interesting results were obtained for the species
R. multiflora, which was found to contain several galanthamine-type structures, and its
extracts exerted a high in vitro inhibitory activity against AChE. The theoretical interaction
of the alkaloids with five different crystallographic structures of human AChE was detailed
by in silico experiments. The results indicate that R. multiflora is a promising candidate
for biotechnological assays to obtain new insights into the biosynthesis of galanthamine-
type alkaloids, which may contribute to the development of new methodologies for the
sustainable production of galanthamine.
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