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Abstract: Mutation breeding has produced promising results, with exceptional attributes including
pest/disease and environmental tolerance and desirable ornamental traits. Among the tools used
in mutation breeding, chemical mutation is the most inexpensive way to develop novel plants. Suc-
culents have gained popularity with high market demand because they require minimal watering
and have plastic-like visuals. Ornamental succulents with rare leaf morphologies are costly. An
LD50 study was conducted beforehand to determine the survival rates of colchicine-treated Echeveria
‘Peerless’. Mutants in the first generation (MV1) were identified and analyzed. Determining whether
mutagenic characteristics are carried to the subsequent generation (MV2) is a key component in
breeding programs. Additional investigation was performed by producing MV2 plants through
vegetative propagation to determine mutagenic retention. For MV2, mutants exhibited shortened
leaves, increased leaf width and thickness, and fewer leaves, which significantly differed from the
control, indicating compactness, wider leaf apex, and varying leaf color. To confirm the mutations,
stomatal analysis was conducted, wherein there was a decrease in density and an increase in stomatal
size. Likewise, chromosome counting and flow cytometry analysis confirmed the induction of poly-
ploidization. Colchicine induction to develop new cultivars with novel phenotypic and cytogenetic
characters is suitable for ornamental succulents.

Keywords: chemical mutation; ornamentals; plant mutagenesis; succulents

1. Introduction

A booming industry with an estimated annual growth rate of USD 500 million, flori-
culture is an important sector in agriculture, with a high demand to develop new varieties
with improved attributes [1]. Growing in hype among millennials, succulent potted plants
have been raved about and have increased market demand [2]. This is due to their beautiful
geometric shapes, rosette-formed structures, unique leaf shapes, and most importantly,
these plants require minimal care and watering, which fits the current lifestyle of busy
metropolitan areas [3]. The peculiar leaf shape and color variation of succulents increase
their ornamental value, thus demanding a higher selling price [4]. To produce these
unique visual characteristics, natural breeding and cultural management practices are
implemented; however, the former method requires years to develop, whereas the latter
produces changes that may disappear under seasonal or environmental conditions (i.e.,
lighting conditions, watering, and temperature) [5].

To modify these plant characteristics and retain their unique features, the genetic
information of a plant must be stably changed through mutagenesis [6]. Mutation breeding
allows the induction of abrupt variations in the heritable DNA of a living cell or any
organism without undergoing genetic recombination or natural breeding [7]. Among the
tools used in mutation breeding, induced mutations using chemical mutagens are preferred
because of their effectiveness (high mutation rates), ease of handling, and few detrimental
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effects. Additionally, this method produces long-lasting desirable changes compared with
physical mutations that require sophisticated facilities [8,9].

Colchicine, an alkaline mitotic inhibitor, is a mutagen that has been reported to effec-
tively induce morphological changes in ornamental plants such as chrysanthemum [10],
gladiolus [11], marigolds [12], and orchids [13]. The mechanism by which colchicine in-
duces compactness and change in color, size, and thickness of leaves and floral structure
depends on its ability to inhibit microtubule formation and alter the chromosome num-
ber [14–16]. This process often results in polyploidization, which has also been found to
exhibit such plant polymorphisms [17].

Our previous studies on the use of colchicine on leaf cuttings successfully produced
putative succulent mutants using colchicine at certain concentrations and dipping du-
rations [18]. This was conducted because there is scant information available regarding
the attainable range and degree of effects of chemical mutagenesis on asexually propa-
gated succulent species or cultivars. The results of our previous study suggested that
colchicine treatments induced compactness in plants, which exhibited fewer, shorter but
thickened leaves compared with those of the control. In addition, stomatal changes were
also evident, as less dense stomates were found with increased stomatal size. Genome
size evaluation using flow cytometry also revealed mixoploidy in these putative plants.
These observed changes were also reported by other researchers using colchicine and have
been attributed to polyploidization for both phenotypic and plant organ traits, as well as
stomatal characteristics [19,20].

The question remains as to whether the retention of induced mutations brought about
by mutagenesis in the first generation (MV1) will be carried on to its subsequent generation
(MV2). Hence, this study was conducted to evaluate the mutagenic effects of colchicine
on selected Echeveria ‘Peerless’ from MV1 to MV2 at both the phenotypic and cytogenetic
levels.

2. Results and Discussion

During screening for mutants, Eng and Ho [21] suggested that the use of indirect
(i.e., morphological and physiological traits, including plant measurements and stomatal
evaluation) and direct (i.e., chromosome counting and flow cytometry) methods is needed.
However, the latter method is preferred because of its accuracy, uninfluenced by environ-
mental conditions, and high reliability. Our study used both direct and indirect methods to
evaluate the retention of mutagenic changes in the primary generation of colchicine-treated
Echeveria ’Peerless’.

2.1. Phenotypic Traits

To determine phenotypic differences, plant and leaf parameters were evaluated to as-
sess the growth and development of mutant plants. Likewise, lamellae color was measured
and analyzed through spectrophotometric color readings using the CIELAB color space.

2.1.1. Plant Growth Parameters

Parameters of plant and leaf measurements are shown in Table 1 for Echeveria ‘Peerless’
for two successive generations. Data on mutant plant growth and development showed
varied effects across treatments; however, there was a clear difference between the control
plants and the putative mutants.

In both generations, the results indicate that colchicine-treated succulents were gener-
ally taller plants with shorter, wider, and thicker leaves and fewer than those of the control
(Figure 1).

These developmental differences in leaf measurements reflected equivalent changes in
leaf shape and apex. Figure 2 highlights the differences between control and mutant plants,
wherein the leaves were altered from being cuneate in the control to being obovate in the
mutants with much wider and less prominent tips.
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Table 1. Plant and leaf growth parameters of MV1 and MV2 E. ‘Peerless’ mutants treated with
colchicine treatment.

Treatment

MV1 MV2

Plant (mm) Leaf (mm) Plant (mm) Leaf (mm)

Height Diameter No. of
Leaves Length Width Thickness Height Diameter No. of

Leaves Length Width Thickness

Control 35.53 ±
4.92 1

97.75 ±
5.15

33.67 ±
0.88

39.04 ±
7.44

21.23 ±
3.95

5.21 ±
0.91

36.32
± 1.24

65.15 ±
1.20

49.00 ±
0.84

45.05 ±
0.83

19.18
± 0.10 4.98 ± 0.12

0.2% + 3 h 33.58 ±
6.46

73.94 ±
3.53

18.50 ±
1.50

34.67 ±
1.05

31.38 ±
1.14

5.84 ±
4.21

48.45
± 0.00

85.88 ±
0.00

30.00 ±
0.00

41.96 ±
0.00

29.97
± 0.00 9.82 ± 0.00

0.4% + 3 h 42.60 ±
9.25

85.43 ±
5.15

20.00 ±
2.08

37.98 ±
3.58

23.70 ±
4.96

7.55 ±
1.26

49.57
± 1.20

83.81 ±
0.83

29.00 ±
1.41

33.96 ±
2.23

26.97
± 1.36 9.59 ± 1.14

0.6% + 3 h 48.92 ±
4.11

86.79 ±
2.68

19.67 ±
2.00

38.17 ±
3.59

23.98 ±
4.35

8.35 ±
2.13

55.95
± 0.00

90.42 ±
0.00

39.00 ±
0.00

41.56 ±
0.00

26.27
± 0.00 9.53 ± 0.00

0.8% + 3 h 36.64 ±
6.00

65.21 ±
2.46

22.40 ±
1.87

30.43 ±
3.85

22.12 ±
1.39

23.1 ±
1.17

50.62
± 0.71

73.34 ±
2.07

25.80 ±
1.38

36.26 ±
0.96

24.83
± 0.74 8.80 ± 0.61

1 Data are presented as Mean ± Standard Error (SE).
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Figure 1. Echeveria ‘Peerless’ plants treated with colchicine: (A) control at MV1 (B) 0.2% + 3 h, (C) 
0.4% + 3 h, (D) 0.6% + 3 h, and (E) 0.8% + 3 h and at MV2 (F) 0.2% + 3 h, (G) 0.4% + 3 h, (H) 0.6% + 3 
h, and (I) 0.8% + 3 h. 

These developmental differences in leaf measurements reflected equivalent changes 
in leaf shape and apex. Figure 2 highlights the differences between control and mutant 
plants, wherein the leaves were altered from being cuneate in the control to being obovate 
in the mutants with much wider and less prominent tips. 

Several studies have reported that colchicine-induced mutants among ornamental 
crops, such as calendula, chrysanthemums, gladiolus, and petunia [15,19,22,23], exhibited 
thicker leaves, darker colors in their leaves and flowers, and high compactness, which 
were attributed to polyploidy plants [17]. 

Polyploids have been found to possess more advantageous features than their dip-
loid counterparts. They demonstrate superior environmental adaptability, disease re-
sistance, and prominent features [24]. These changes are associated with the application 
of colchicine as an effective mutagen that prevents the formation of microtubules and 

Figure 1. Echeveria ‘Peerless’ plants treated with colchicine: (A) control at MV1 (B) 0.2% + 3 h, (C) 0.4%
+ 3 h, (D) 0.6% + 3 h, and (E) 0.8% + 3 h and at MV2 (F) 0.2% + 3 h, (G) 0.4% + 3 h, (H) 0.6% + 3 h,
and (I) 0.8% + 3 h.

Several studies have reported that colchicine-induced mutants among ornamental
crops, such as calendula, chrysanthemums, gladiolus, and petunia [15,19,22,23], exhibited
thicker leaves, darker colors in their leaves and flowers, and high compactness, which were
attributed to polyploidy plants [17].

Polyploids have been found to possess more advantageous features than their diploid
counterparts. They demonstrate superior environmental adaptability, disease resistance,
and prominent features [24]. These changes are associated with the application of colchicine
as an effective mutagen that prevents the formation of microtubules and spindle fibers,
which in turn leads to chromosome doubling and polyploid induction [25,26]. The compact-
ness exhibited in E. ‘Peerless’ may be due to ‘high-ploidy syndrome’, in which the mutants
display enhanced cell expansion but reduced cell division or slower growth rates [27].
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Figure 2. Effects of colchicine on E. ‘Peerless’ showing the (A) control and (B) mutant whole plant
and leaf apex.

2.1.2. Leaf Spectrophotometric Color Readings

The color of the lamellae of the plants was also evaluated. Spectrophotometric color
readings were obtained using a spectrophotometer that uses the L*a*b* color spaces to
indicate lightness, hue, and saturation, respectively. One-way analysis of variance (ANOVA)
was used to determine significant differences in the mean CIELAB scores (L*, a*, and b*)
(Table 2).

Table 2. CIELAB color values of colchicine-induced MV1–MV2 mutant E. ‘Peerless’.

Treatment
MV1 MV2

L* a* b* L* a* b*

Control 40.73 ± 1.60 1 6.48 ± 1.08 a 2 12.19 ± 2.35 39.13 ± 1.53 d 5.52 ± 2.86 a 13.19 ± 2.80 a

0.2% + 3 h 47.60 ± 1.48 2.15 ± 0.48 c 6.43 ± 0.64 48.84 ± 2.66 c 5.07 ± 0.92 a 6.72 ± 0.58 b

0.4% + 3 h 42.92 ± 3.36 2.00 ± 0.72 c 11.91 ± 1.59 49.23 ± 1.12 c 3.28 ± 0.68 b 7.90 ± 1.07 b

0.6% + 3 h 41.18 ± 2.02 −0.81 ± 0.44 e 11.79 ± 2.93 50.32 ± 0.54 b 5.09 ± 0.62 a 6.45 ± 1.12 b

0.8% + 3 h 45.58 ± 2.85 0.51 ± 1.29 d 10.50 ± 1.27 53.60 ± 1.54 b 2.87 ± 0.24 c 7.01 ± 0.77 b

F-test 2 NS ** NS * * *
1 Data are presented as Mean ± Std Dev. 2 Columns with the same letters are not significantly different by
Duncan’s multiple range test at p = 0.05. NS, *, **, non-significant or significant at p = 0.05, or 0.01, respectively.

Colchicine treatment did not significantly affect the L* and b* values. However, it
significantly affected a* values (p < 0.01) in E. ‘Peerless’ MV1 plants. This shows that the
control plants had a more dominant red hue than the mutant plants.
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In the subsequent generations, all color spaces were found to be significantly affected
by colchicine treatment (p < 0.05). Lighter colors were observed in treated plants with a
lesser red hue and less saturation than in the control.

These types of color changes in the leaves of colchicine-treated mutants have often been
attributed to abnormalities in chlorine production in the gladiolus [19], as this micronutrient
is actively involved in photosynthesis [28], turgor regulation [29], and elongation and
growth [30]. Conversely, other studies have suggested that reduced chlorophyll content in
colchicine-treated plants may be due to structural modification of the lamellar or thylakoid
membranes of the chloroplast [31].

The retention of phenotypic traits from MV1 to MV2 may be attributed to the stability
of the mutation in the subsequent generation. Similarly, upon induced polyploidy in the
first generation, the use of vegetative propagation allows fixation and maintenance of
the desired genotype under domestication, which has been commonly used in numerous
ornamentals [32].

2.2. Stomata Characteristics

Results show that colchicine treatment significantly affected the stomatal characteris-
tics of E. ‘Peerless’ for both generations (p ≤ 0.001), as shown in Table 3.

Table 3. Stomatal data on the adaxial area of control and MV1–MV2 E. ‘Peerless’ mutants treated
with colchicine.

Treatment
MV1 MV2

Density Size (µm) Density Size (µm)

Control 10.33 ± 0.33 1 a 2 20.58 ± 0.59 d 10.54 ± 0.81 a 19.26 ± 0.35 d

0.2% + 3 h 9.33 ± 0.88 b 25.68 ± 0.74 b 7.67 ± 0.67 b 24.02 ± 0.14 c

0.4% + 3 h 6.33 ± 0.33 c 25.92 ± 0.67 b 5.67 ± 0.67 c 27.31 ± 0.14 b

0.6% + 3 h 8.35 ± 0.89 b 28.03 ± 0.25 a 9.00 ± 0.00 b 28.10 ± 0.03 a

0.8% + 3 h 8.55 ± 0.67 b 22.75 ± 0.15 c 8.33 ± 0.33 b 28.47 ± 0.12 a

F-test 3 ** ** ** **
1 Data are presented as Mean ± Std Dev. 2 Columns with the same letters are not significantly different by
Duncan’s multiple range test at p = 0.05. 3 NS, **, non-significant or significant at p = 0.05, or 0.01, respectively.

For both successive generations, the stomatal density decreased in the colchicine-
induced mutants with increased stomatal size, wherein control plants showed the smallest
stomatal size. Additionally, higher concentrations (0.6% and 0.8%) resulted in larger
stomata (Figure 3).

Manzoor et al. [17,19] emphasized that these changes in stomatal size are commonly
observed in mutagen-induced polyploids. Likewise, determining stomatal changes, es-
pecially identifying an increase in size, has often been used as an indicator of putative
mutants, which is a simple and non-destructive method for mutant screening [33,34].

As polyploids incite cell enlargement, stomatal dimensions are equally affected. Cells
carrying larger genomic material ultimately grow to retain a constant ratio between the
nuclear and cytoplasmic volume, which then enhances the expression of proteins brought
about by the increase in the gene number [35]. Similar results of enlarged stomata and
decreased density have been found in colchicine-induced horticultural and agronomic
crops, such as Stevia rebaudiana Bertoni [36], Gladiolus grandifloras [19], Glycyrrhiza glabra [33],
and African marigolds [37]. Consistent trends for stomatal data for successive generations
suggested that mutagenic characteristics were retained from the MV1 stage.
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MV1 (b) 0.2% + 3 h; (c) 0.4% + 3 h; (d) 0.6% + 3 h; and (e) 0.8% + 3 h and at MV2 (g) 0.2% + 3 h;
(h) 0.4% + 3 h; (i) 0.6% + 3 h; and (j) 0.8% + 3 h. Scale bar = 10 µm.

2.3. Chromosome Counting and Nuclear DNA Genome Size Estimation Using Flow Cytometry

The Crassulaceae family possesses very small chromosomes, within which the Echeve-
ria genus has been reported to have a great diversity of larger gametic numbers ranging
from n = 12–34 to n = 260 [38,39]. Because of the wide range of chromosome numbers in
both n and 2 n, a few species that were identified as diploids could possess chromosome
numbers as high as those of polyploids [39,40]. However, there have been no reports of
chromosome counting in cultivars circulating in succulent or ornamental markets.

In this study, E. ‘Peerless’ control and putative plants were subjected to chromosome
counting (Table 4). However, among the mutant groups, only those with lower concentra-
tions (0.2% and 0.4%) produced young roots for mitotic chromosome counting. This may
be due to the slow growth reported for chemically induced polyploids.

Table 4. Chromosome number of colchicine-induced E. ‘Peerless’.

Treatments MV1 MV2

Control 2 n = > 110
0.2% + 3 h 2 n = > 206 2 n = > 204
0.4% + 3 h 2 n = > 215 2 n = > 184

Chromosome counts from the control plants yielded 2 n = > 110, while those of
the colchicine-treated plants in both generations were almost twice the number at MV1
(2 n = > 204–206) and MV2 (2 n = > 184–202) (Figure 4). In MV1, the chromosome number
was found to be a proportionally higher number at higher concentration, given that at
0.4% it had 2 n= > 215, followed by those at 0.2% with 2 n = > 206. Some studies have
reported that some Echeveria species possess as high as 6 x–10 x ploidy levels, with about a
2 n = 260~270 chromosome number [39–41].

It is probable that there was a slight decrease in the number of chromosomes in MV2.
However, based on the retained morphological expression, this had little to no effect on
the compactness of the plants. However, other qualitative characteristics such as disease
resistance or environmental adaptability may be affected and should be investigated at a
later stage. Likewise, several reports have shown that chromosomal instability is recognized
in polyploids [42,43]. On the other hand, the study of Pierre et al. [44] reported chromosome
losses among chemically induced polyploids, but they became stable over time.
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(C) 0.4% + 3 h and MV2 (D) 0.2% + 3 h and (E) 0.4% + 3 h.

The karyotype indicated in the chromosome count successfully identified chromo-
some doubling. Chromosome doubling or, as it is often referred to, ‘polyploidization’, is
often pointed out as the root cause for the increase in biomass yield [27] and phenotypic
changes [17], which play a vital role in cultivar development as well as normal plant growth
and development. Zhou et al. [45] reported that the application of colchicine in plants
restrains microtubules and inhibits gene expression of cytokinesis, which leads to slow cell
activity, which would explain the slow plant growth observed in E. ‘Peerless’.

Flow cytometry (FCM) is a reliable tool for analyzing the genome sizes of various plant
species as well as a screening method for putative mutants and cultivars using regenerated
young plant tissues [46]. The use of flow cytometry to estimate the DNA genome size
of E. ‘Peerless’ significantly shows and supports the chromosome doubling found in the
chromosome counting (Table 5). Compared with the control (1.06 pg), plants within the
mutant groups for both the subsequent generations had significantly doubled genome sizes.

Table 5. Nuclear DNA Genome size estimate of E. ‘Peerless’.

Treatments 2 C (Mbps) 1 CV (%) 2 1 C (Mbps) 1 C (pg) 3

Control 2071.63 0.72 1035.82 1.06

MV1

0.2% + 3 h 4949.46 1.04 2474.73 2.53

0.4% + 3 h 4110.86 1.67 2055.43 2.10

MV2

0.2% + 3 h 4604.74 0.48 2302.37 2.35

0.4% + 3 h 4618.33 1.30 2309.17 2.36
1 Mbps—megabase pairs. 2 CV = coefficient of variation (%); reliable results should be <5%. 3 pg—picograms.

As seen in the histogram of the FCM (Figure 5), 2 C peaks of the control (A) were
found in channel 8, while the mutant group 2 C peaks were found further away in channels
16 to 20, indicating a significant peak difference in the genome size estimates. This includes
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both results for the succeeding generations. It was also observed that the dip in the
chromosome number for MV1 to MV2 was identified using FCM. However, the differences
in the chromosome number within the mutant group were not as significant as those in the
control group. Similar results of increased nuclear DNA content are found in colchicine-
induced plants, such as Platanus acerifolia [47], Gerbera lines [48], and Catharanthus roseus [49],
which confirms that the analyzed plants exhibit polyploidy.
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3. Materials and Methods
3.1. Plant Materials

Putative mutants from 3 h of treatment at various colchicine concentrations (0.2%, 0.4%,
0.6%, and 0.8%) from a previous study were evaluated for the retention of mutagenic traits.
The E. ‘Peerless’ mutants were grown in a succulent nursery in Goyang City, Gyeonggi-do
Province, South Korea.

Surviving mutant plants were considered MV1. Vegetative propagation of leaf cuttings
from the three lower whorls (location of the mature leaves) was collected from succulent
mutant plants and planted, and the resulting progenies were considered MV2 (Figure 6).

3.2. Plant Management

All the plants were watered once per week. Dead leaf cuttings were removed to avoid
possible infection to other growing leaf cuttings from the decaying ones. The average
temperature was 24 ± 3 ◦C, and the relative humidity was 65–70%.
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3.3. Data Collection
3.3.1. Phenotypic Evaluation

Plant (height, diameter, and number of leaves) and leaf (length, width, and thick-
ness) growth parameters were measured, and morphological characteristics (leaf shape
and apex) were observed. The CIELAB color readings were obtained using a handheld
spectrophotometer (CM−2600 d; Konica Minolta Inc., Tokyo, Japan).

3.3.2. Stomatal Characteristics

Putative plants were sampled for stomatal evaluation by collecting leaves near the base
whorl. The nail varnish technique was used to evaluate the stomatal size and density [50].
Microscopic observations of stomatal impression slides were performed under a light
microscope (Olympus BX53 F, Tokyo, Japan) at 40× and 80× magnifications. To determine
the stomatal density, three counts were obtained per leaf at three adjacent locations across
the surface. The stomatal size was measured using ImageJ software (v. 1.52 a, National
Institutes of Health, Bethesda, MD, USA).

3.3.3. Chromosome Counting

Young roots were harvested from in vivo grown mutant E. ‘Peerless’ under ice-cold
water and were treated with 2 mM 8-hydroxyquinoline for 5 h at 25 ◦C. Carnoy’s solution
(3:1 acetic acid–ethanol) was used to fix the roots overnight at room temperature and stored
in 70% ethanol at 4 ◦C to preserve the roots. The fixed root tips were washed with distilled
water prior to enzyme treatment (0.3% cellulose, cytohelicase, and pectolyase) at 37 ◦C for
90 min. The enzyme-treated roots were transferred to a 1.5 mL tube containing Carnoy’s
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solution and vortexed for 20 s. The homogenized root meristems were placed on ice for
5 min and centrifuged at 13,000 rpm to collect pellets. The supernatant was discarded,
and the pellet was immediately resuspended in acetic acid–ethanol (9:1) solution. The
final suspension was spread on a 70 ◦C pre-warmed glass slide using the steam drop
method [51].

3.3.4. Flow Cytometry Analysis

Flow cytometry analysis was performed based on the methods of Dolezel et al. [52].
Healthy young leaves (approximately 20 mg) from the putative mutants were chopped
using a sharp razor blade and put on a petri dish, and 1 mL of ice-cold nuclei isolation
buffer was added. The homogenate was mixed by pipetting up and down the solution to
avoid air bubbles. The mixture was then filtered through a 50 µm nylon mesh and further
filtered through a 30 µm nylon mesh (CellTrics Filters, Sysmex Asia Pacific, Singapore).
The final homogenate was labeled and 50 µL propidium iodide (Sigma-Aldrich, St. Louis,
MO, USA, cat. no. P4170; Molecular Probes; cat. no. P3566) was simultaneously added to
50 µL RNase (Sigma-Aldrich, St. Louis, MO, USA, cat. no. R5000) and placed in a 1.5 mL
Eppendorf tube (Sigma-Aldrich, St. Louis, MO, USA, T9786-1000EA).

Thereafter, the tube was placed in a CytoFLEX flow cytometer equipped with a 50 mW
488 nm solid-state diode laser (Beckman Coulter Inc., Pasadena, CA, USA). An external
method of DNA content analysis was employed, which involved successive analysis of the
sample and the standard (Glycine max cv ‘Polanka’) [53]. The peaks of both the standard and
sample were compared using CytExpert v2.3 software (Beckman Coulter Inc., Pasadena,
CA, USA), and the sample DNA content was computed.

3.3.5. Statistical Analysis

Numerical data obtained from the morpho-anatomical evaluation were subjected to
analysis of variance (ANOVA). Significant differences between means were analyzed using
Duncan’s multiple range test (DMRT) at a 5% significance level. All statistical analyses
were performed using SPSS version 22 (IBM Corp., Armonk, NY, USA).

4. Conclusions

Satisfying all methods for confirming polyploidization for both successive generations
of colchicine-induced E. ‘Peerless’ was undertaken in this study. Along with the phenotypic
and stomatal traits, combined with a more intensive method in chromosome counting
and FCM analysis, colchicine-induced E. ‘Peerless’ mutants were found to successfully
retain their mutagenic characteristics in the succeeding generation through vegetative
propagation. Through chemical mutagenesis, these mutants were found to possess novel
genetic and phenotypic variations. This convenient and efficient method of creating new
cultivars with high ornamental value will demand higher market prices and increased
revenue for succulent breeders, nurseries, and other key players in the ornamental industry,
as well as other related plant species.
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