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Abstract: The combined effects of deficit irrigation and crop load level on sweet cherry (Prunus avium
L.) physiological and agronomic response were evaluated during the 2019 season in a commercial
orchard located in southeastern Spain. Two irrigation treatments were imposed: (i) control treatment
(CTL) irrigated above crop water requirements at 110% of crop evapotranspiration (ETC) and (ii) a
deficit irrigation treatment (DI) irrigated at 70% ETC. Within each irrigation treatment, crop load was
adjusted to three levels: 100% (natural crop load—high), 66% (medium crop load), and 33% (low
crop load). The water relations results were more affected by the irrigation strategies applied than
by the crop load management. The deficit irrigation strategy applied reduced soil water availability
for DI trees, which led to a continuous decrease in their gas exchange and stem water potential. At
harvest, the fruit water potential and osmotic potential of cherries from the DI treatment resulted in
significantly lower values than those measured in cherries from CTL trees. On the other hand, both
the irrigation strategies imposed and the crop load management used impacted fruit quality. Trees
with the lowest level of crop load had fruits of greater size, regardless of the irrigation treatment
assayed, and in the DI treatment, cherries from the trees with the lowest crop load were darker
and more acidic than those from the trees with the highest crop load. Our results emphasize the
different effects that rainfall before harvest has on mature cherries. Thus, cracked cherries at harvest
represented 27.1% of the total yield of CTL trees while they were 8.3% of the total yield in DI trees.
Cherries from CTL trees also showed a greater cracking index than those from DI trees. Moreover, a
linear relationship between crop load and fruit cracked at harvest was observed, particularly for the
CTL treatment; thus, the lower the crop load, the greater the proportion of cracked cherries.

Keywords: deficit irrigation; fruit and stem water potential; fruit quality; osmotic water potential;
tree water status; thinning

1. Introduction

Cracking in sweet cherries (Prunus avium L.) has been described as a main physiologi-
cal problem for all cultivars and a factor limiting the further increase of cherry production
in several regions where rain occurs during the harvest period [1]. Moreover, climate
change is likely to worsen this situation, as water scarcity will be paired with extreme
episodes of heavy storms that are expected to intensify in frequency. This situation may
increase the chances of having rain and hailstorms during the weeks prior to harvest
and subsequently cause significant economic losses to cherry growers, which threatens
commercial production in vulnerable regions. Cracked cherries are not marketable because
of their poor quality (which implies short storage and shelf life) and are associated with
postharvest diseases (such as decay [2]).

Fruit cracking, although not completely elucidated, is described as a result of increas-
ing turgor pressure, which provokes the bursting of the flesh cells (“Zipper model”). It is
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caused by water uptake (osmotically) first for the cells of the skin and then for those in the
flesh, and it happens during or right after a rainfall episode when the cherries are in the
final stage of fruit development. The main route of water uptake appears to be through the
fruit surface, through microcracks in the cuticle [3].

The flow of water from the soil to the fruit in cherry trees is influenced by changes in
the gradients between roots, stem, leaves, and fruit water potentials, and the environmental
conditions such as vapor pressure deficit, as well as the developmental stage of the fruit.
A relationship was observed by Measham et al. [4] between the incidence of rainfall and
the direction of water flow (sap) to the fruits through the tree. On the other hand, a
larger water absorption is thought to occur through the sweet cherry’s fruit surface when
the fruit is wet, especially during and after rainfall [5]. However, although related, fruit
cracking incidence in an orchard is not exclusively related to the volume of rainfall or
to the duration of the rainfall episode [6]. Several factors apart from the quantity and
distribution of rainfall during the ripening season [4] have been related to fruit cracking,
such as genetically determined susceptibility of species and cultivars [7] and the soil
type and soil moisture condition of the orchard [8]. Regarding the last point, there are
different approaches; on the one hand, Measham et al. [9] suggest that avoiding water
stress at late stages of fruit growth can improve resistance to cracking. On the other hand,
Edin et al. [10] reported that low values of soil water content might help to decrease root
water uptake and fruit cracking. Other authors highlight a relationship between major
changes in soil water content prior to harvest and the development of cuticular fractures
in the fruit, which might cause cherry cracking [11]. In other fruit crops, water deficit and
irrigation strategies that involve water stress management in different phenological periods
(such as regulated deficit irrigation (RDI)) have shown mixed effects on fruit cracking.
On the one hand, Galindo et al. [12] and Goodwin et al. [13] reported in pomegranates
and apples, respectively, that water stress increases the number of cracked fruits. On the
other hand, Yan et al. [14] reported in plums that the cracking incidence was lower when
the trees were under deficit irrigation. In cherries, tree management practices with the
main purpose of reducing fruit cracking incidence have been widely studied. Thus, the
use of physical barriers [15,16] or hydrophobic films [17,18] to reduce fruit wetting in
the final stage of ripening or to modify fruit osmotic potential during the occurrence of
rain [19] have successfully decreased cracking incidence, although they have also affected
fruit quality. However, other management practices such as irrigation management might
also play a key role in cracking incidence, particularly when combined with cultivation
practices such as thinning, which increases fruit size and the concentration of soluble solids
and consequently modifies the fruit’s osmotic and turgor potentials. Thus, this study was
conducted to assess the impact of deficit irrigation and crop load management on the tree
physiological response, fruit quality, and cracking incidence in sweet cherries.

2. Results
2.1. Soil-Plant-Atmosphere Water Status

Environmental conditions during the experiment varied greatly, with values that
increased from air temperature and reference crop evapotranspiration (ET0) close to 10 ◦C
and 2 mm d−1 at the beginning of the experiment to 22 ◦C and 6.5 mm d−1 at harvest,
respectively. The accumulated amount of rainfall during the experiment was 206 mm, with
the greatest rain episode in late April (149 mm in 5 days). However, it must be highlighted
that two rain episodes happened in the three weeks prior to harvest, mid-May (35 mm)
and early June (11 mm), the period when cherries are more likely to crack (Figure 1A).
The accumulated ET0 during the experiment (the 2019 preharvest) was 311 mm and the
irrigation water applied during the same period was 2031 and 1250 m3 ha−1 for the control
(CTL) and deficit irrigated (DI) trees, respectively.

The soil matric potential (Ψm) values clearly identified the irrigation strategies assayed.
As expected, the Ψm values for CTL trees were more stable than those for DI trees and
higher than −90 kPa at both depths (25 and 50 cm). The soil water availability for DI trees
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showed a decreasing pattern during the experiment, with minimum values that fell below
−400 kPa at 25 cm depth and −300 kPa at 50 cm depth (Figure 1B). Increments in Ψm for
the DI treatment were caused by the rain and the environmental variability, which led to
mismatches between the tree water requirements calculated according to the previous days’
environmental conditions and the actual water needs of the trees for that period.

Figure 1. Seasonal evolution of environmental conditions (A): daily air temperature (green solid line),
reference evapotranspiration (black dashed line) and rainfall (blue bars), and soil matric potential
(B) at 0.25 m (solid line) and 0.50 m (dash line) depth for the two irrigation treatments, CTL (full
irrigated treatment; blue) and DI (deficit irrigation treatment; red). The vertical dotted line indicates
the harvest day (day of year, DOY 162; days after full bloom, 81 DAFB). Full bloom: 22 March 2019;
harvest day: 11 June 2019.

Reductions in soil water availability for DI trees resulted in a decrease in gas exchange.
So, while during the first stage of fruit growth there were no significant differences be-
tween trees from the two irrigation treatments, after the Ψm dropped to values below
−200 kPa, significant reductions in the stomatal conductance (gs) and net assimilation rate
(Pn) values of DI trees were detected until the end of the experiment. The mean gs and Pn
values for the last part of fruit development (stage III) for the CTL trees were similar to
320 mmol m−2 s−1 and 17 µmol m−2 s−1, with the highest values present for the trees with
the highest crop load. Meanwhile, for DI trees for the same period of time, the gs and Pn
values were 200 mmol m−2 s−1 and 13 µmol m−2 s−1, respectively, with the highest values
present for the trees with the lowest crop load (Figure 2).
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Figure 2. Seasonal evolution of stomatal conductance (A) and net assimilation rate (B) for the two
irrigation treatments: CTL (full irrigated treatment; blue) and DI (deficit irrigation treatment; red),
and the three levels of crop load: low (33%, squares), medium (66%, triangle), and high (100%, circle).
Each point is the mean ± SD of three trees. Asterisks indicate significant differences between CTL
and DI, according to ANOVA (p < 0.05). The vertical dotted line indicates the harvest day (day of
year, DOY 162; days after full bloom, 81 DAFB). Full bloom: 22 March 2019; harvest day: 11 June 2019.

Midday stem water potential (Ψstem) identified the water deficit applied to the DI trees
earlier than gs and Pn, and consistently showed significant differences between the two
irrigation treatments imposed from DOY 126 onwards (45 DAFB; Figure 3A). Moreover, a
trend in the deficit irrigation treatment was observed, particularly in those measurements
below −0.90 MPa, that the trees with the lowest crop load presented higher values of stem
water potential (Figure 3A). On the other hand, no clear effect of the crop load on the water
status of the CTL trees was found.

Figure 3. Seasonal evolution of midday stem water potential (A) and maximum daily branch
shrinkage (B) for the two irrigation treatments: CTL (full irrigated treatment; blue) and DI (deficit
irrigation treatment; red), and the three levels of crop load: low (33%, squares), medium (66%,
triangle), and high (100%, circle). Each point is the mean ± SD of three trees. Asterisks indicate
significant differences between CTL and DI, according to ANOVA (p < 0.05). The vertical dotted
line indicates the harvest day (day of year, DOY 162; days after full bloom, 81 DAFB). Full bloom:
22 March 2019; harvest day: 11 June 2019.

The maximum daily shrinkage (MDS) was also affected by the irrigation treatments
assayed and at a lower level by crop load, with values twice as high (500 µm) for those trees
with a high crop load and that were deficit irrigated than those irrigated as CTL (240 µm;
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Figure 3B). Both indicators, the Ψstem and the MDS, were able to identify the changes
produced by the 30 mm rainfall (144 DOY; 63 DAFB) in the tree water status of the DI trees.
Thus, Ψstem values gradually decreased as MDS values increased in DI trees throughout
the experiment until the day prior to the rainfall, with Ψstem and MDS values similar to
−1.15 MPa and 350 µm for those trees with a low crop load and −1.30 MPa and 500 µm for
those with a medium and high crop load. After the rain episode, the MDS values of the DI
trees fell below those recorded in the CTL trees for three days, and even one week after the
rain, Ψstem mean values for all DI trees were similar to −0.80 MPa (Figure 3).

2.2. Fruit Water Relations

The fruit water potential (Ψfruit) values of both CTL and DI trees were always lower
than the stem water potential values measured in the corresponding tree. Moreover,
unlike Ψstem, Ψfruit did not distinguish between irrigation treatments until the fruit reached
maturity, when the fruit from DI trees had lower values than that from CTL trees, −5.0
and − 4.1 MPa, respectively; no trend regarding crop load was observed in any of the
irrigation treatments assayed (Figure 4A). As expected, fruit osmotic potential (Ψπf) was
strongly related to Ψfruit with mean values that, at the green, straw and maturity stages,
were lower by 29, 12, and 2%, respectively, than those of Ψfruit (Figure 4B). Both Ψfruit and
Ψπf only showed significant differences between irrigation treatments at the maturity stage
(Figure 4A,B).

Figure 4. Fruit water potential (A), fruit osmotic potential (B), fruit turgor potential (C), and fruit
osmotic potential gradient between skin and flesh at harvest (D) for the two irrigation treatments:
CTL (full irrigated treatment; blue) and DI (deficit irrigation treatment; red), and the three levels
of crop load: low (33%), medium (66%), and high (100%). Each bar is the mean ± SD of six fruits.
Asterisks indicate significant differences between CTL and DI, according to ANOVA (p < 0.05).

The estimated fruit turgor potential (Ψρ) showed a different evolution pattern than
Ψπf and Ψfruit. It was the highest at the fruit green stage and, while it was stable at the
straw stage for CTL fruits (with values of 0.28 MPa), it decreased to values that were close
to 0.20 MPa for fruits from DI treatment; moreover, in the DI treatment, it was noted that
the fruit from the trees with the highest crop load was that with the lowest values of Ψρ

(Figure 4C). These differences continued and increased at the fruit maturity stage when
a trend related to the crop load was found for the Ψρ values of DI fruits. Thus, when the
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Ψρ for the fruit of the CTL and DI treatments was compared, we found that for the fruit
from trees with low, medium, and high crop load, Ψρ of the fruit from CTL trees was twice,
seven, and twelve times higher, respectively, than that of the fruit from DI trees. It must be
highlighted that, although the mean value of the estimated Ψρ of all treatments, irrigation,
and crop load resulted in values above zero at the maturity stage, the estimated Ψρ in some
fruits from trees with high and medium crop load and deficit irrigation was negative as a
consequence of the water deficit and the crop load.

At fruit maturity, the osmotic potential of the skin of the fruit (Ψπs) was measured and
compared with that of the flesh. A similar trend was detected with significant differences
between irrigation treatments but with higher values than those reported by Ψπf (Figure 4).
The skin of the cherries from the CTL trees had values of osmotic potential (Ψπs =−1.6 MPa)
that were 38% of that reported by the flesh (Ψπf = −4.1 MPa), while the DI cherries had
values of Ψπs (−2.8 MPa) that were 56% of that reported by the Ψπf (−5.0 MPa). When the
gradients of the osmotic potential between skin and flesh were compared, no differences
were detected, neither between irrigation treatments nor between crop loads, with values
that ranged between 2.1 and 2.6 MPa. However, it was observed that the differences
between the skin and flesh osmotic potentials showed a trend toward greater values in
cherries from CTL compared to DI (Figure 4D).

2.3. Fruit Yield and Quality

The average trunk cross-sectional area (TCSA) of the trees considered in this study
ranged from 289 to 336 cm2, without significant differences among the different crop levels.
Tree crop load was adjusted to three levels (low, medium, and high), which corresponded
to 2.4, 5.7, and 8.2 fruit cm−2 TCSA, respectively (the mean values of both irrigation
treatments, Table 1). The fruit yield and the average number of fruits produced per tree
increased along with the crop load, with mean values relevant to each crop level of 8.5,
19.1, and 26.4 kg tree−1 and 640, 1548, and 2148 cherries per tree, respectively (the mean
values of both irrigation treatments, Table 1). The occurrence of double fruit, which was
below 1.5% in all the treatments, was not influenced by the crop load. In the same vein,
the proportion of cracked fruit at harvest and the cracking index were not significantly
influenced by the crop load. However, in the CTL treatment, trees with low crop loads had
a higher proportion of cracked fruit than trees with the natural crop load.

Table 1. Yield, number of fruits per tree, fruit efficiency (FE), double fruit, cracked fruit at harvest,
cracking index, and water productivity (WP) of ‘Prime Giant’ sweet cherries under two irrigation
treatments, control (CTL), and deficit irrigation (DI) and three levels of crop load (high—100%,
medium—66%, low—33%).

Yield
(kg Tree−1)

n
Fruit(n Fruit

Tree−1)

FE (n Fruit
cm−2 Trunk)

Double Fruit
(%)

Cracked Fruit
(%)

Cracking
Index

WP
(kg m−3)

CTL33 8.13 b 599 b 2.35 b 0.17 31.50 63.47 2.67 b
CTL66 18.19 a 1401 ab 5.34 ab 0.17 28.50 59.73 6.07 a

CTL100 25.31 a 1944 a 7.04 a 0.50 21.33 60.00 8.44 a

ANOVA 0.005 0.006 0.025 0.492 0.412 0.153 0.004

DI33 8.91 b 680 b 2.40 b 1.00 10.33 53.87 4.75 b
DI66 20.06 ab 1694 a 6.09 ab 0.83 4.83 50.67 10.70 ab

DI100 27.52 a 2351 a 9.28 a 1.33 9.83 49.07 14.68 a

ANOVA 0.007 0.004 0.019 0.911 0.354 0.092 0.007

CTL 17.21 1304 4.91 0.28 27.11 61.07 5.73
DI 18.83 1598 5.92 1.06 8.33 51.20 10.05

ANOVA 0.695 0.412 0.550 0.094 0.001 0.001 0.033

Each value is the mean of the three replicates. Different letters on the same parameter (column) denote significant
differences among levels of crop load within the same irrigation treatment, according to Duncan’s multiple range
test (p < 0.05). In the ANOVA row, the p-values of each parameter are included.
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When the fruit yield between both irrigation treatments was compared, considering
all the crop levels, there were no significant differences between both irrigation strategies
regarding fruit yield, which was similar to 18 kg tree−1. However, significant differences
emerged between irrigation treatments when the proportion of cracked fruit was compared.
CTL trees had three times more cracked fruit (27.1%) than DI trees (8.3%). In a lower
proportion, this trend was also observed in the determination of the cracking index carried
out in the lab. As expected, the water productivity of those trees irrigated with the DI
strategy was significantly higher than that of those irrigated with the CTL strategy (Table 1).

Regarding fruit quality, it was noticed that the unitary size was the most sensitive
quality parameter to crop load adjustment. In both irrigation treatments, fruit equatorial
diameter increased with decreasing crop load. Moreover, crop load had a different effect
on fruit depending on the irrigation strategy. Thus, the quality of the fruit produced by
those trees irrigated as CTL did not significantly differ among crop load levels (except for
the equatorial diameter, which resulted in the lowest value for the cherries from the trees
with the highest crop load). On the other hand, fruit quality was more affected by the crop
load in the DI treatment. DI cherries with the lowest crop load had a similar size as those
from the CTL treatment (31 mm of diameter and 13 g of unitary mass) and were darker
and more acidic than those from the highest crop load within the same irrigation treatment
(Table 2).

Table 2. Effect of the irrigation treatment (control (CTL) and deficit irrigation (DI)) and crop load level
(high—100%, medium—66%, low—33%) on fruit quality characteristics of ‘Prime Giant’ sweet cherries.

Equatorial
Diameter

(mm)

Fresh Mass
(g) Dry Mass (g)

Relative
Water

Content (%)

Skin Color
(hue◦)

Soluble Solids
Concentration

(%)

Titratable
Acidity (%)

CTL33 31.73 a 13.40 3.14 77.59 17.05 21.57 0.99
CTL66 31.48 a 13.01 2.94 78.43 21.98 20.50 0.94

CTL100 30.48 b 13.06 2.75 78.79 19.78 18.93 0.91

ANOVA 0.035 0.239 0.297 0.760 0.226 0.253 0.140

DI33 31.05 a 13.14 a 3.17 76.21 10.33 b 24.83 1.19 a
DI66 29.32 b 11.82 b 2.75 76.26 14.17 ab 22.97 1.08 ab
DI100 29.15 b 11.70 b 3.03 74.05 16.60 a 22.30 0.99 b

ANOVA 0.014 0.016 0.482 0.706 0.047 0.089 0.045

CTL 31.23 13.17 2.94 78.27 19.60 20.33 0.94
DI 29.84 12.21 2.98 75.51 13.70 23.37 1.09

ANOVA 0.004 0.004 0.825 0.043 0.002 0.002 0.003

Each value is the mean of the three replicates. Different letters on the same parameter (column) denote significant
differences among levels of crop load within the same irrigation treatment, according to Duncan’s multiple range
test (p < 0.05). In the ANOVA row, the p-values of each parameter are included.

There were no significant differences in fruit fresh mass between the medium and
high crop load levels, but it was significantly increased by 11% in the level with the lowest
crop load (11.8 g vs. 13.1 g, respectively). The irrigation treatments assayed had a greater
impact on the fruit quality than did the crop load (Figure 5). Thus, when the PCA was
performed on the fruit quality parameters measured, the data could be classified by the
irrigation treatment imposed easier than by the crop load. The PCA explained 80% of the
variability of the data. Fruit quality parameters such as fruit unitary mass and equatorial
diameter were located on the side of the CTL treatment and the lowest crop load level,
while soluble solids concentration (SSC) was on the DI side, indicating that fruit from CTL
trees had a greater size than those cherries from DI trees, which were sweeter.
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Figure 5. Principal component analysis (PCA) biplot of the fruit quality characteristics, expressed
as vectors, of fruit from the two irrigation treatments, CTL (full irrigated treatment) and DI (deficit
irrigation treatment), and the three levels of crop load: low (33%), medium (66%), and high (100%).
The two principal components of the PCA explained 79.7% of the variation in the measured data.

2.4. Cracking Susceptibility

The relationship between the cracked fruit and the different physiological and qual-
ity values measured was calculated. The proportion of cracked cherries was positively
related to the unitary mass of the cherry but negatively related to the titratable acidity (TA)
(Figure 6). When the proportion of cracked cherries at harvest was compared with the rela-
tive water content and the osmotic water potential gradient, no relationships were found.

Figure 6. Correlation heat map of the quality parameters analyzed.
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On the other hand, the cracking index was significantly related to both parameters,
particularly the relative water content (R2 = 0.47). When the proportion of cracked fruit
at harvest per block and the cracking index measured in the laboratory were compared, a
significant and positive relationship was obtained. Thus, those blocks with more than 25%
cracked fruit at harvest had a cracking index value higher than 60 (Figure 7).

Figure 7. Linear regression between the fruit osmotic potential gradient (∆Ψπ) and the fruit relative
water content (RWC) (A), the cracking index (CI) assessed in the laboratory and the proportion of fruit
cracked at harvest (B), the fruit relative water content and the cracking index (C), and the osmotic
potential gradient and the cracking index (D) for the two irrigation treatments: CTL (full irrigated
treatment; blue) and DI (deficit irrigation treatment; red), and the three levels of crop load: low (33%
square), medium (66% triangle), and high (100% circle). Each point represents one replicate (tree).
* indicates a significant relationship between the studied variables at p < 0.05.

Within each irrigation treatment, a negative linear relationship was found between
crop load and both the proportion of cracked fruits at harvest and the cracking index
(Figure 8). Trees with lower crop loads showed higher levels of cracking, which highlights
the influence of the crop load on the trend of the fruits to crack. The trend toward a
higher proportion of cracked cherries at harvest for those trees with a light crop load (<four
fruit cm−2 TCSA) was stronger for CTL trees compared with DI trees. When both linear
regression lines were compared, the linear regression line of CTL trees had an intercept
and slope four and six times higher, respectively, than those of DI trees.
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Figure 8. Linear regression between crop load and fruit cracked at harvest (A), cracking index (B),
and osmotic potential gradient (C) for the two irrigation treatments: CTL (full irrigated treatment;
blue) and DI (deficit irrigation treatment; red). ** indicates a significant relationship between the
studied variables at p < 0.01 and n.s. indicates no significant relationship (p > 0.05).

3. Discussion

The plant water status indicators considered in this study clearly identified the two
irrigation strategies assayed. Among them, MDS was the indicator that first detected early
water stress, followed closely by Ψstem and distantly by gs and Pn. However, when both
MDS and Ψstem were compared, it was observed that MDS was more affected by the differ-
ent environmental conditions (particularly by the rainfall) than Ψstem. The relationships
between soil and plant water status indicators in sweet cherry trees were widely studied
and reported in Blanco et al. [20]. In relation to the crop load, the tree water status was more
affected by the crop load level in those trees under deficit irrigation than in those irrigated
to fulfill their water requirements. Likewise, Conejero et al. [21] reported in well-watered
peach trees that different crop loads did not affect tree water status. In our experiment,
the plant water status indicators identified that those trees with the highest crop load
were under stronger water deficit conditions than those with a low crop load. Similarly,
Intrigliolo and Castel [22] reported that the MDS was more affected by the crop load in the
deficit irrigation treatment than in the control treatment.

Regarding the fruit water indicators, Ψfruit was not as sensitive as Ψstem and could
not distinguish between irrigation treatments until harvest. In a previous experiment
on sweet cherry trees [23], Ψfruit did not show significant differences between CTL trees,
trees irrigated at 110% ETC, and trees under a slight water deficit (90% ETC). However, in
this study, as the water deficit applied to the DI trees was more severe (70% ETC), Ψfruit
exhibited significant differences between irrigation treatments at harvest. Ψfruit has been
described as a reliable tree water status indicator for fruit trees such as pomegranate [12]
and medium–late maturing peach [24]. For sweet cherry trees, as fruit development lasts
for a shorter period of time, Ψfruit can only be considered a reliable water stress indicator
if the deficit irrigation is moderate or severe and is applied during the last part of stage
III of fruit growth. The effect of crop load on Ψfruit in peach trees was discussed by
McFadyen et al. [25], who reported significant differences in the Ψfruit of fruits from trees
with different levels of crop load, with more negative values in those trees with a high
crop load level. In our study, Ψfruit was not significantly affected by the different levels
of crop load assayed, neither in fruits from CTL trees nor in fruits from DI trees, despite
the differences in fruit mass and SSC. However, a trend was detected in the DI treatment
with the lowest values of Ψfruit in the cherries from the trees with the lowest level of crop
load. We hypothesized that this trend to low values would be caused by the combination
of the effect of the lowest level of crop load and the deficit irrigation. Mpelasoka et al. [26]
reported that ‘Braeburn’ apples from trees under deficit irrigation ripened earlier than those
from trees that were irrigated to satisfy their water requirements. Furthermore, for the same
apple cultivar, Kelner et al. [27] reported that a low level of crop load hastened fruit maturity.
In that sense, the water stress applied to DI trees promoted a slightly faster development of
the cherries by increasing the soluble solids concentration, decreasing the Ψπf, and finally
decreasing Ψfruit, which was more noticeable in the fruit from the low level of crop load.
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As expected, Ψπf was strongly related to Ψfruit, with values slightly more negative than
those reported by Moing et al. [28] in the sweet cherry cracking resistant cultivar ‘Fermina’
but following the same trend, with values that decrease as the fruit develops and the SSC
increases. Winkler et al. [29] reported that, in sweet cherries, the content of the soluble
sugars (glucose, fructose, and sorbitol) determines Ψπf, as it represents 86% of the total
osmolarity, while the organic acids and the minerals represent 7% each. Regarding the
estimated turgor potential (Ψρ), cherries from the DI treatment had lower Ψρ values than
those from the CTL treatment from the straw stage to maturity. Significant lower Ψρ values
during stage III of fruit development indicated that the lower fruit size of DI fruit was
more related to the effect of water deficit on the cell enlargement stage than on the first
stage of cell division, as cell enlargement requires turgor to allow fruit growth [30]. The
sharp fall in Ψρ values for the mature DI cherries from trees with medium and high crop
load levels showed a fruit turgor loss, which emphasized the inability of sweet cherry
trees to cope with or tolerate water stress. This is in line with the slow response of the gs,
as it took more than a month since the water deficit was applied to induce a significant
stomata closure in order to reduce water losses and postpone water deficit effects. These
results agree with Blaya-Ros et al. [31], who described the extreme anisohydric behavior
of cherry trees. When the osmotic potential of the flesh and the skin were compared, the
values measured in the flesh were more negative than those measured in the skin. For both
osmotic potentials, DI fruits had significantly lower values than CTL fruits. Grimm and
Knoche [32] reported that the Ψπ of the flesh in sweet cherries is markedly more negative
than that of the skin. Moreover, the same authors stated that the more negative the osmotic
potential in the flesh, the more extensible and less likely to crack the skin will be, as a
result of dehydration of the skin caused by the flesh. Consequently, large osmotic potential
gradients between the skin and the flesh might cause the skin to not act as a buffer to
allow the water uptake into the flesh and can trigger fruit microcracks. In this sense, the
fruit from CTL trees did not result in significant differences compared to the fruit from DI
trees; however, a trend toward a larger skin–flesh osmotic potential gradient was noticed
in CTL fruits, which might be related to the greater cracking incidence measured in the
CTL treatment at harvest. These results are in line with those reported by Correia et al. [33],
who stated that irrigation techniques and strategies that decrease root water uptake have a
positive impact on decreasing cracking incidence.

Cracking incidence was positively related to the fruit mass and negatively related to
SSC and TA (principal components of the Ψπf, [29]). Furthermore, a negative relationship
between the cracked fruit and the crop load was obtained, which implies that the fruit
from both irrigation treatments with the lowest level of crop load was the most susceptible
to cracking. Measham et al. [34] reported a negative relationship between the cracking
incidence and the crop load in the ‘Simone’ sweet cherry; however, the relationship widely
varied over multiple years. The cracking index measured in the lab was significantly
related to the results of cracked fruit at harvest. Both measures clearly identify that cherries
from the CTL treatment were more prompt to crack than those from the DI treatment.
Another complementary mechanism that should be taken into consideration to explain
the significantly lower susceptibility to crack of fruit from trees under water deficit is the
modification of the cuticular wax. Several authors have highlighted that fruits from plants
under drought stress increase cuticle wax load as a mechanism to reduce transpiration
rates [35,36]. The larger amount of wax reported in fruits from deficit irrigated trees
compared to that naturally present in those fruits from trees under no water restrictions
might have played a role as a thick physical barrier that protects the fruit by keeping the
rainwater from directly contacting the skin of the fruit.

As with cracking, fruit quality was also affected by both water deficit and crop load.
The fruit characteristics of both CTL and DI trees at harvest were consistent with those
values reported as optimal for ‘Prime Giant’ sweet cherries, with unitary mass values higher
than 10 g, a mahogany color, and more than 17% SSC [37]. Similar results, increments of
the unitary mass, and the SSC values of the cherries from trees with low crop load have
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been previously reported in the sweet cherry [38,39]. On the other hand, a decrease in the
fruit unitary mass has been reported in sweet cherries as a result of a high fruit yield or a
low leaf-to-fruit ratio [40,41]. The combination of a low or medium crop load and deficit
irrigation did not negatively affect fruit size, color, SSC, or TA, and furthermore, it was not
as affected by cracking at harvest as CTL fruit was. Thus, both combinations stand out as
good options for growers facing water scarcity while producing high-quality fruit.

4. Materials and Methods
4.1. Experimental Site, Plant Material and Treatments

The study was conducted in a 0.5 ha commercial orchard located in Jumilla (Murcia,
Spain, 38◦8’ N; 1◦22’ W) during the 2019 growing season. The climate is typically Mediter-
ranean, with low rainfall distributed in autumn and spring, hot dry summers, and mild
winters. The average annual reference evapotranspiration (ET0) for the period from 2015
to 2018 was 1219 mm, and the average annual rainfall was 313 mm. The soil has a sandy
loam texture and is moderately stony, with 0.32 meq 100 g−1 potassium, 108.67 mg kg−1

available phosphorus, and 2.7% active limestone. The irrigation water had 0.8 dS m−1 of
electrical conductivity.

The plant material consisted of nineteen-year-old ‘Prime Giant’ sweet cherry trees
grafted on ‘SL64′ rootstock, and ‘Early Lory’ and ‘Brooks’ used as pollinizers, spaced at
5 m × 3 m. Trees were drip-irrigated using a single drip line for each tree row, with three
pressure-compensated emitters per tree, each with a discharge rate of 4 L h−1.

The different irrigation treatments were initiated each season before flowering and
suspended at the end of November. Full bloom was on 22 March (day of year (DOY)
81) and fruit was harvested on 11 June (DOY 162: 81 days after full bloom (DAFB)). The
horticultural practices used (e.g., fertilization, weed control, and pruning) were the same
for the trees of all treatments. Fertilization was applied through the irrigation system with
the water and was the same in all treatments regardless of the amount of water applied.
The fertilization program consisted of 63 kg ha−1 of N, 30 kg ha−1 of P2O5, 107 kg ha−1 of
K2O, and 8 kg ha−1 of CaO.

Two irrigation treatments were applied: a control (CTL) irrigated at 110% of crop
evapotranspiration (ETC) to maintain non-limiting soil water conditions and a deficit
irrigation treatment (DI) irrigated at 70% of ETC. Within each irrigation treatment, three crop
loads were adjusted at bloom (high—100% natural crop load; medium—66%; low—33%).

Crop water requirements under drip irrigation were calculated using the following
equation: ETC = ET0 × Kc × Kr. The reference evapotranspiration (ET0) was calculated
using the FAO-Penman–Monteith equation [42], where Kc is a crop coefficient for sweet
cherry reported by Marsal [43] and Kr is a localization factor [44] related to the percentage
of ground covered by the crop.

The experimental design was completely randomized in a 2 × 3 factorial scheme
(irrigation × crop load level) with three replicates per treatment (three trees per treatment).

4.2. Soil, Tree, and Fruit Water Status Measurements

The plant water status was measured weekly by measuring midday stem water
potential (Ψstem) at solar noon following the methodology proposed by McCutchan and
Shackel [45] with a Scholander pressure chamber (Model 3000, Soil Moisture Equipment,
CA, USA) in healthy and mature leaves located close to the trunk, two leaves per tree, six
leaves per treatment. The fruit water potential (Ψfruit) was measured at three fruit stages
(green, straw, and maturity) on cut slices of the pitless fruits, six fruit per treatment, using a
WP4C Dewpoint Potentiometer (Decagon Devices, Inc., Pullman, WA, USA) following the
procedure of Léchaudel [46]. Fruit osmotic potential, flesh, and skin, (Ψ

1 
 

ᴫ f) were measured
in the same picked fruit used to measure Ψfruit using a vapor pressure osmometer (Wescor
Vapro 5600, Logan, UT, USA) for the same three stages for the flesh (but measuring only the
maturity stage for the skin). The estimated fruit turgor potential (Ψρ) was estimated as the
difference between osmotic and fruit water potential according to Milad and Shackel [47].
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The stomatal conductance (gs) and net assimilation rate (Pn) were measured at solar
midday every 7 days using a portable photosynthesis system CIRAS-2 (PP System, Ames-
bury, MA, USA) with a PLC6(U) cuvette at a photosynthetic photon flux density (PPFD) ≈
1500 µmol m−2 s−1; leaf temperature was held at 25 ◦C and CO2 reference concentration at
380 µmol mol−1 on two sun-exposed leaves per tree, six leaves per treatment, on the same
three trees per treatment that were used for the Ψstem measurement.

Branch diameter fluctuations were recorded using three dendrometers (LVDT sensors,
model DF ± 2.5 mm, accuracy ± 10 µm, Solartron Metrology, Bognor Regis, UK) per
treatment, each on a main tree branch away from direct sunlight. The sensors were installed
on aluminum and invar holders to prevent thermal expansion. The maximum daily branch
shrinkage (MDS) was calculated as the daily difference between the maximum and the
minimum branch diameter. The soil matric potential (Ψm) was measured by means of
two thermal compensation capacitive sensors per replicate (MPS-6, Decagon Devices,
Inc., Pullman, WA, USA) at 0.25 and 0.50 m depth and at a distance of 0.23 m from the
emitter and 1.5 m from the trunk, under the canopy projection. Continuous measurements
of branch diameter fluctuations and matric potential were recorded every 30 s, and the
datalogger was programmed to report the means every 10 min (Campbell Scientific, Logan,
UT, USA). Daily agrometeorological data were recorded by a weather station near the
experimental orchard owned by the Spanish Agroclimatic Information Service (SIAR;
http://crea.uclm.es/siar/datmeteo/, accessed on 7 August 2019).

4.3. Fruit Yield and Quality

At harvest, all the fruit produced per tree were harvested from the three trees con-
sidered per treatment and weighed in order to obtain fruit yield. To estimate fruit load,
the weight of 100 fruits per tree was registered on 18 trees, 9 trees per irrigation treatment
(CTL and DI), and 6 trees per crop load (high, medium, and low), to determine fruit unitary
weight; consequently, fruit load (number of fruits per tree) was calculated from the yield
(kg tree−1) and fruit unitary weight (g) measured in the field. Similarly, the fruit efficiency
(FE) was calculated as the number of fruits per cm2 of the trunk cross sectional area (TCSA),
and the water productivity (WP) was calculated as the kilograms of fruit produced by each
tree per m3 of water applied. In order to evaluate the thinning and irrigation effects on fruit
quality at harvest, 40 representative sweet cherries were picked per replicate (tree), 120
fruits per treatment. Of those, 20 fruits were used for the quality determinations and the
other 20 were used to assess the cracking incidence. The quality parameters studied were
equatorial diameter, fresh and dry weight, fruit color, soluble solids concentration, and
titratable acidity. The equatorial diameter (mm) was measured with a digital caliper (model
17-262, Acha, Eibar, Spain). Fresh unitary mass (g) was estimated as the average of the
unitary mass of 10 fruits from the same replicate weighed on an electronic balance (model
AX623, Sartorius, Gottingen, Germany). Dry mass (g) was measured from the same fruits,
which were dried at 60 ◦C until they were at a constant weight in a ventilated oven (model
Digitheat, JP Selecta, Barcelona, Spain). Relative water content (RWC, %) was calculated by
subtracting the dry weight from the fresh weight and referring it to the fresh weight. Fruit
color was recorded using a colorimeter (CR-400, Minolta, Tokyo, Japan). Lightness and
hue angle (hue◦) were obtained from the L*, a*, and b* values of the CIE Lab scale system
used. The soluble solids concentration (SSC, %) was determined with a digital hand−held
refractometer (model N1, Atago, Tokyo, Japan) at 20 ◦C from the juice of the remaining
10 fruits per replicate, obtained with a hand press squeezer. Titratable acidity (TA, %) was
measured with a titration (model 716 DMS Titrino, Metrohm, Herisau, Switzerland) and
calculated from the volume of NaOH (0.1 M) needed to reach a pH of 8.1.

With the aim of assessing whether the interaction between irrigation and crop load
management can affect fruit susceptibility to crack, the cracking index was measured in
20 fruits per replicate and 3 replicates following the procedure described by Christensen [48].
Cherries were immersed in 2 L distilled water (pH 7) at 20 ◦C, and crack presence on the

http://crea.uclm.es/siar/datmeteo/
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fruit was evaluated after 2, 4, and 6 h. At each instance, cracked cherries were removed
and recorded. The cracking index was calculated as:

Cracking index = 100 × [5a + 3b + c] × (5N)−1 (1)

In this Equation (1), a, b, and c represent the number of cracked fruits at 2, 4, and 6 h
of immersion, respectively, and N is the total number of fruits measured (N = 20).

4.4. Statistical Analysis

At harvest, analysis of variance (ANOVA) and multivariate analysis of variance
(MANOVA) were carried out to determine significant (p = 0.05) differences between the
treatments. The degree of agreement between the independent variables (crop load) and
the dependent variables (fruit cracked at harvest, cracking index, osmotic potential) was
assessed using regression analysis. Statistical analyses were carried out using IBM SPSS
Statistics v24 (Armonk, NY, USA). Principal component analysis (PCA) was carried out in
RStudio package (RStudio Inc., Boston, MA, USA).

5. Conclusions

This study suggests that irrigation and crop load management affect sweet cherry tree
and fruit water relations, fruit quality, and susceptibility to rain-induced fruit cracking.
The cherries from trees submitted to deficit irrigation resulted in higher soluble solids
concentration, lower fruit and osmotic potential of the flesh and skin at harvest, lower
turgor potential, and lower unitary mass. On the other hand, the combination of high
fruit turgor potential and a large gradient between the skin and flesh osmotic potentials in
cherries from the CTL treatment resulted in a higher incidence of rain-induced cracking at
harvest. The crop load also influenced the cracking incidence as well as the fruit quality.
Thus, cherries from trees with low crop loads resulted in large size and high turgor potential
and were more prompt to crack than those from trees with medium and high crop loads.
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