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Abstract: Medicinal plants (MPs) are important resources widely used in the treatment and pre-
vention of diseases and have attracted much attention owing to their significant antiviral, anti-
inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous
cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seri-
ously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil,
play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indi-
rectly affects the growth and development, metabolic regulation and active ingredient accumulation
of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment
and non-toxic to organisms, have been recommended as a promising alternative to conventional
fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to
adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On
the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorp-
tion and accumulation of harmful substances and regulating the synthesis of secondary metabolites.
The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly
recognized, but the current understanding of the interaction between soil conditions, root exudates
and microbial communities and the mechanism of rhizosphere microecology affecting the secondary
metabolism of MPs is still quite limited. More research is needed to investigate the effects of the
microbiome on the growth and quality of different medicinal species. Therefore, the present review
summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil
remediation and plant growth promotion and the potential mechanism to further guide the use of
microbial resources to promote the ecological cultivation and sustainable development of MPs.

Keywords: soil degradation; medicinal plants; contamination; microbial bioremediation; growth
promotion; quality improvement

1. Introduction

Traditional Chinese medicine (TCM) is an important part of the medical and health
system with a long history [1]. Adequate and high-quality medicinal resources are the
foundation of TCM industry development, among which herbal medicine derived from
plants plays a pivotal role [2]. The growth and quality formation of medicinal plants (MPs)
are closely related to environment, climate, soil, harvest time, biological community and
field management measures [3–5]. In particular, soil conditions are considered a key factor
affecting the agricultural production of MPs [6,7]. However, current soil problems due
to continuous cropping, environmental pollution and excessive pesticide residues have
seriously restricted the growth and sustainable development of MPs [8,9]. Continuous
cropping and monoculture are the main modes of the agricultural industry worldwide.
Especially for perennial MPs, such as Panax ginseng, P. notoginseng and P. quinquefolius, it often
takes several years from sowing to harvesting. Consecutive monoculture results in soil nutri-
ent imbalance, allelopathic autotoxicity, microbial community change and soil-borne disease
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increase [10,11]. Furthermore, emissions of industrial waste, indiscriminate use of fertilizers
and pesticides and sewage irrigation accelerate soil degradation, resulting in soil hardening,
salinization and heavy metal and organic contaminant accumulation [12,13]. According to
the national survey bulletin on soil pollution in China, 16.1% of the investigated soil sites
were reported to contain excessive levels of pollutants, mainly including eight inorganic
pollutants (cadmium, mercury, arsenic, copper, lead, chromium, zinc and nickel) and
three organic pollutants (hexachlorocyclohexane, dichloro-diphenyl-trichloroethane and
polycyclic aromatic hydrocarbons) [14]. Hazardous chemicals in soil are absorbed and ac-
cumulated by MPs and eventually enter human bodies, which threatens clinical safety and
poses potential health risks [15,16]. Although some chemical and physical methods have
been tried for soil amelioration, they are not very efficient, and the process is complex and
expensive [17]. Therefore, other more effective, economical and environment-friendly meth-
ods and technologies are needed for degraded-soil remediation to promote the sustainable
development of the ecological environment and agricultural production of MPs.

Microorganisms, as major decomposers, are widely distributed in soil, the composition
and structure of which are complex and diverse. The dynamic changes of soil microecology
mediated by the interactions between plant–microbe–soil communities are ongoing all the
time, involving the regulation of soil ecosystems and plant development [18,19]. The core
functions of the microbiome in the plant–microbe–soil system are as follows: (1) regulating
soil properties and fertility; (2) forming mycorrhizal structures with plant roots; (3) par-
ticipating in the degradation, fixation and transformation of soil pollutants; (4) inducing
systemic resistance of plants; (5) decomposing plant and animal residues in soil; (6) inhibit-
ing the pathogens [20–22]. Some beneficial microorganisms, such as Bacillus, Pseudomonas
and Azotobacter, have been proven to be of great potential in plant growth promotion and
soil remediation [23]. Microbes improve soil fertility and enhance nutrient absorption
and utilization of MPs by decomposing plant residues, increasing organic matter content
and promoting nutrient availability. Some antagonistic individuals can also degrade and
remove pesticides, organic contaminants and heavy metals from the soil, to reduce the
accumulation of harmful substances and mitigate the negative impact of abiotic stress
on MPs [24,25]. For example, it was reported that after spraying Paenibacillus polymyxa
five times, the degradation rates of five pesticides (fluazinam, hexachlorocyclohexane,
pentachloronitrobenzene, chlorpyrifos and dichlorodiphenyltrichloroethane) in ginseng
roots were 66.07%, 46.24%, 21.05%, 72.40% and 54.21%, respectively [26]. Rhizosphere
microorganisms, which are in close contact with plant roots, can directly participate in the
regulation of plant growth and secondary metabolism via releasing hormones, inhibiting
pathogens and facilitating nutrient uptake [27,28].

The microbial biocontrol of degraded soil shows bright prospects in the ecological
cultivation and sustainable development of MPs [29,30] (Figure 1). However, medicinal
plants are diverse and widely distributed worldwide, with different requirements for
the growing environment. At present, the knowledge of how rhizosphere microecology
regulates the growth, development and secondary metabolism of different medicinal
species is still lacking. More research should be conducted to elucidate the mechanism and
signaling pathways of the interaction between soil conditions, root exudates and microbial
communities. In this review, we make a comprehensive summary of the main soil issues
in medicinal plant cultivation, role of microorganisms in soil remediation and MP growth
promotion, and the application prospect of microbial inoculants, to provide reference and
guidance for the further utilization of microbial resources in the ecological restoration of
degraded soil and the high-quality production of medicinal materials.
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Figure 1. Functions of microorganisms in soil remediation and MP growth promotion.

2. Review Methodology

The review and research articles were retrieved using relevant keywords (involving
soil degradation, microecology, contamination, heavy metals, pesticide residues, accumu-
lation, phytotoxicity, oxidative stress, phytoremediation, adsorption, medicinal plants,
microbial bioremediation, biodegradation, rhizosphere, nitrogen-fixing bacteria, mineral
nutrients, enzymes, growth promotion, quality improvement and active ingredients) from
the databases ScienceDirect, Google Scholar, Web of Science, ResearchGate and PubMed.
Finally, about 300 articles published mainly from 2010 to 2022 were selected. Then, the
useful information related to our topic, such as soil contamination, microbial remediation
and growth and quality improvement of MPs, was extracted and summarized from the
collected articles according to the criteria followed by Haider et al. [31].

3. Soil Problems in Medicinal Plant Cultivation
3.1. Continuous Cropping Obstacle

Continuous cropping obstacle refers to the phenomenon that when crops are consecu-
tively planted in the same fields, even under normal management conditions, they will still
result in slower plant growth, increased diseases and reduced yield and quality [32–34].
The main reasons for this situation include the deficiency and imbalance of soil nutri-
ents, allelopathic autotoxicity and soil microecological changes [10,35]. Soil nutrients are
continuously absorbed by plants, followed by fertility reduction. Moreover, the selective
uptake of different plants causes an imbalance of nutrient elements in the soil, which
gradually fail to meet the demand of their normal growth and development [36]. After
two years of Aconitum carmichaeli cropping, it was found that the content of total PO4

2−,
Ca2+, Zn2+, Mn2+ and Fe2+ in soil declined [37]. With the increase in planting time, the
yield and active component content (dihydrotanshinone I, cryptotanshinone, tanshinone I
and tanshinone IIA) of Salvia miltiorrhiza roots were reduced significantly [38]. The yield of
Fagopyrum tataricum decreased by 6.36%, 24.85%, 78.62% and 83.10% after 1, 2, 3 and 4 years
of continuous cropping, respectively, and the available nutrients, soil enzyme activities,
number of actinomycetes and content of total chlorophyll and soluble protein in the leaves
continuously decreased [39].

The allelochemicals from root exudates enter the soil and surrounding environment,
including phenolic acids, organic acids, terpenoids, alkaloids and flavonoids, and some
of them have been found to show strong autotoxic effects that inhibit plant growth and
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development. Guo et al. [40] isolated ten compounds from the rhizosphere soil of As-
tragalus hoantchy, six of which possessed autotoxic activity. Zhang et al. [41] found that
the allelochemical, benzoic acid, inhibited root elongation of Arabidopsis seedlings by
increasing auxin accumulation via stimulating the expression of auxin biosynthetic genes
and AUX1/PIN2 through the stimulation of ethylene production and an auxin/ethylene-
independent ROS (reactive oxygen species) burst. Furthermore, root exudates can change
the pH, nutrient availability, C/N ratio and enzyme activity in rhizosphere soil and further
affect the balance of rhizosphere microecology [42,43]. Li et al. [44] indicated that under
continuous cropping of strawberry, the soil pH significantly decreased, and four phenolic
acids, including cinnamic acid, p-hydroxybenzoic acid, ferulic acid and p-coumaric acid,
accumulated with time.

Numerous studies have shown that long-term monoculture induced the reduction of
beneficial microbes and the increase of pathogens in soil, causing serious soil-borne diseases
such as root rot, nematode diseases, damping-off and charcoal rot [45–47].
Wei et al. [48] reported that the increase in the relative abundance of pathogenic fungi
Cylindrocarpon, Alternaria and Fusarium may be associated with ginseng rusty roots. Soil
pH and organic matter content in the rhizosphere of the perennial herb Atractylodes macro-
cephala decreased with cropping time, and Fusarium was significantly enriched in the
individuals with root-rot disease [49]. Gao et al. [50] also found that in the rhizosphere soil
under continuous cultivation of sweet potato, the beneficial fungi Chaetomium decreased,
while the harmful Verticillium, Fusarium and Colletotrichum increased. In summary, a series
of soil problems caused by continuous cropping would severely restrict and hinder the
agricultural production of MPs.

3.2. Soil Hardening and Salinization

Soil compaction and salinization have become a worldwide issue, especially in arid
and semi-arid regions [51,52]. With intensive agriculture increasing, high mechanical load,
excessive fertilization and sewage irrigation aggravate soil degradation [53,54]. Globally,
there are over 900 million hectares of saline and sodic soils [55], and about 1–2% of soils are
being degraded every year due to excessive salinity [56]. The investigation found that in the
Yellow River Delta of China, the proportions of soil salinization in 2015 and 2019 were about 76%
and 70%, respectively [57]. After excessive application of chemical fertilizers, the contents of K+,
Na+, Ca2+, Mg2+, NO3

−, HCO3
− and SO4

2− in soil increased [58,59]. Phosphorus fertilizers
increase the PO4

3− ion in soil that gradually forms insoluble phosphate with Ca2+ and
Mg2+ [60]. When these elements cannot be quickly absorbed by plants and accumulated in
soil, the formation of salinization will be accelerated, which in turn reduces the soil nutrient
use efficiency of plants. Elhanafi et al. [61] indicated that nitrogen fertilizers promoted the
accumulation of proteins in Sesamum indicum seeds, but the oil and soluble sugars presented
a significantly low level. The contents of total phenolic and flavonoids with antioxidant
activity decreased with increasing N supply. Even for halophytes, the germination and
seedling growth are also retarded under salt-stress conditions [62]. Excessive salinity
leads to high soil osmotic pressure that can cause physiological water shortage of plants,
and even death [63,64]. Plants respond to such stress by accumulating various osmolytes
(proline, glycine betaine and sugars), secondary metabolites and antioxidants to maintain
cell turgor [65–67].

Soil structure and physical properties are destroyed due to the salinization and re-
duction of organic matter content, followed by the use of heavy-duty machinery in field
management, which further hardens the soil [68,69]. Compacted soil weakens the perme-
ability of water and air, hindering the transport and absorption of moisture and nutrients
from the soil to plants [70]. Pandey et al. [71] found that soil compaction lowered gas
diffusion through the reduction of air-filled pores, thus causing ethylene accumulation in
root tissues and triggering hormone responses that impeded plant growth. In addition,
the deficiency of oxygen in soil is not conducive to the survival of aerobic microorgan-
isms, while the enriched anaerobic bacteria release hydrogen sulfide with toxic effects
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on plants [72]. Therefore, establishing effective and economical methods to restore and
improve salinized and compacted soils should be of great concern in order to maintain
sustainable agricultural development.

3.3. Soil Acidification

Soil acidification refers to the process where the base ions are leached and acidic cations
(H+ and Al3+) increase, ultimately resulting in a decrease in soil pH [73–75]. The degree of
soil acidification is affected by both natural and human factors. SO2 and nitrogen oxides in
the air and environment settle into the soil with rainfall, accompanied by the loss of mobile
sulfate and nitrate anions and soluble alkali cations with rain and irrigation water [76]. In
natural conditions without other interference, the self-regulating and buffering capacity of
soil will greatly slow down the acidification process. However, the acid deposition is exac-
erbated by acidic gas emissions such as SO2, CO2 and NO2 from industrial production and
human activities, which accelerates the increase of H+ and the decrease of soil pH [77,78].
Excessive fertilizer application, especially nitrogen, is thought to be another cause of soil
acidification [79]. The nitration and hydrolysis of ammonium sulfate, ammonium nitrate
and urea could release lots of H+ into the soil. More importantly, excessive fertilization
reduces the content of organic matter in soil and weakens its buffer capacity to immediately
respond to rapid pH changes [80–82]. Long-term continuous cropping also contributes to
soil acidification [83,84]. The selective acceptance of nutrients by plants leads to an ionic
imbalance in the soil, coupled with the organic acids secreted from roots, which drives
pH reduction [85,86]. It was reported that the harvest of aboveground tobacco biomass
removed about 339 kg base cations from the soil per hectare per year, which was 7.6 times
higher than the anion removal, leading to a 12.5 kmol H+ production as the main reason
inducing soil acidification [87].

Under acidic conditions, the adsorption ability of soil on Ca2+, Mg2+, K+ and NH4
+

decreases, and they are more easily lost with water, resulting in a decline in soil fertility [88].
Soil acidification impairs phosphorus availability by driving the dissolution of aluminum
and iron ions, which will combine with PO4

3− to form insoluble precipitation [89,90].
Babourina et al. [91] indicated that low pH induced strong H+ influx, depolarized plasma
membrane potential and led to a significant net K+ efflux from the root cell of plants. The
bioavailability of Mn, Cd, Cu, Zn, Pb and Cr in soil was enhanced under acidic conditions.
Excessive uptake and accumulation of heavy metals can cause toxic reactions in plants,
and they eventually enter human bodies through the food chain, posing potential health
risks [92–94]. Moreover, the structure and diversity of soil microbial communities are also
affected by pH changes [95,96]. The increase in soil acidity promotes the enrichment of
acidophilic taxa such as Halanaerobiales and Rhodospirillales [97]. Muneer et al. [98] found
the relative abundance of Proteobacteria, Actinobacteria, Crenarchaeota and Firmicutes was
negatively correlated with soil pH, while Acidobacteria, Chlorofexi, Bacteriodetes, Plancto-
mycetes and Gemmatimonadetes were positively correlated with soil pH. Li et al. [99] revealed
that an acidic environment enhanced the toxicity of perfluorooctane sulfonate (PFOS) and
chromium (Cr(VI)) to soil bacteria. Acid stress reduced the metabolism of bacteria, while
PFOS and Cr(VI) pollution further strengthened the metabolic inhibition involving oxida-
tive stress and cell permeability. In conclusion, acidification has shown a variety of negative
effects on soil properties, plant growth and microecological balance.

3.4. Contamination of Pesticides, Heavy Metals and Organic Pollutants in Soil

In order to prevent and control plant diseases and insect pests, pesticides (insecti-
cides, fungicides, molluscicides, rodenticides and nematocides) have been widely used
around the world for a long time. According to the statistics of the Environmental Protec-
tion Agency of the United States, the consumption of organophosphate insecticides alone
reached up to 334 million pounds from 2001 to 2007, mainly including chlorpyrifos, dicro-
tophos, malathion, naled, diazinon, acephate and phosmet [100]. It was found that 90% of
fungicides, 60% of herbicides and 30% of insecticides were potentially carcinogenic [101].
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As for the pesticide residues in soil, they cannot be quickly decomposed in time, and are
absorbed and gradually accumulated by plants. The pesticide-contaminated crops finally
enter consumers through the food chain, posing a potential health threat. In addition,
the accumulated pesticides in soil migrate with rain and irrigation water, polluting and
destroying water sources and ecological environment [102,103].

On the other hand, the release of industrial waste, sewage and domestic garbage
aggravates soil deterioration. Heavy metals, pesticides and organic pollutants in these
wastes remain and accumulate in soil as high-risk hazardous substances to organisms and
ecosystems [104–107]. The metallic elements can disrupt normal functions of the body’s
nerves, kidneys, liver and cardiovascular systems [108]. It has been identified that Cd
accumulation in bodies could lead to bone pain and brittle bones, while Pb pollution
seriously endangers fertility [109]. Many medicinal herbs have been found containing
excessive pesticide residues and heavy metals [110–112]. Harris et al. [113] examined the
residues of arsenic, cadmium, chromium, lead and mercury in 334 samples of raw Chinese
herbal medicines and found that at least one metal was present in the 334 samples and
115 samples accumulated detectable levels of all the tested metals. Maitlo et al. [114] also
reported that the contents of heavy metals (Zn, Pb, Cr and Co) in most of the investigated
40 commonly consumed herbal medicines were higher than the maximum allowable limits
of WHO.

Heavy metals enter plants to induce oxidative stress and the production of a large num-
ber of reactive oxygen species (ROS), which destroy the membrane lipids, proteins, nucleic
acids, enzyme activities and various organelles, ultimately resulting in cell death [115–117].
Liu et al. [118] revealed that in low temperature conditions, Cd aggravated the destruction
of chloroplast ultrastructure and disturbed the ion homeostasis, which also increased ROS
accumulation and reduced antioxidant enzyme activities. The CBF-COR signaling pathway
was negatively affected by Cd treatment, which reduced the low temperature tolerance of
barley. Previous studies have also shown that the soil may be contaminated with heavy
metals due to the introduction of fertilizers [119]. For example, phosphorus fertilizer
was reported to enrich cadmium in soil, which would interfere with the physiological
metabolic activities of plants, such as photosynthesis, gas exchange and nutrient absorp-
tion [115,120,121]. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls
(PCBs) and total petroleum hydrocarbons (TPHs) are the typical organic pollutants in
effluent and industrial wastes with high teratogenic, carcinogenic and mutagenic toxicity
to humans [122,123]. They are difficult to remove and degrade and thus chronically persist
in soil while significantly changing the plasticity, porosity, permeability and water-holding
capacity [124,125].

The exogenous pollutants mentioned above have shown multiple adverse effects on soil
characteristics, plant growth, soil microecology and food safety [126–128]. Shen et al. [129]
found that heavy metals disturbed the microbial communities in different ways. As and Pb
altered the community composition and decreased microbial diversity; Cu reduced bacterial
abundance in soil; and Cd and Cr lowered the metabolic capabilities of bacteria. The fungi-
cide Chlorothalonil inhibited the activities of fluorescein diacetate hydrolysis and urease in
soil, while Pyraclostrobin inhibited dehydrogenase activity during the exposure period,
and both notably changed the diversity and structure of microbial communities [130,131].
Ren et al. [132] showed that in pyrene (a high-molecular-weight PAH)-polluted red soil, the
bacteria Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, Deltapro-
teobacteria and Crenarchaeota were decreased, while Acidobacteria, Betaproteobacteria
and Gammaproteobacteria were significantly increased. To sum up, soil contamination has
seriously hindered the healthy and sustainable development of agricultural production
(Figure 2). It is necessary to take some effective measures to deal with this problem.
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Figure 2. Main soil challenges and their negative effects in the cultivation of medicinal plants.
Nutrient deficiency and imbalance, soil compaction, salinization and acidification retard the growth
and development of MPs, accompanied by continuous cropping obstacles. The harmful substances,
including chemical pesticides, heavy metals and organic pollutants in soil, can cause phytotoxicity,
and they are absorbed and accumulated by MPs, posing serious health risks to consumers through
the food chain.

4. Roles of Microorganisms in Soil Bioremediation and the Potential Mechanisms

Soil biota acts as an indispensable factor involved in the restoration of terrestrial
ecosystems, and microbiome-dominated biological regulation is an important driving force
for the stable development of plant populations. The bioremediation of contaminated soil
relies on microbial metabolic activities to remove and degrade the external deleterious
chemicals (Figure 3). Furthermore, plant growth-promoting microorganisms also possess a
wide range of positive effects to help plants clean up soil pollutants by stimulating plant
growth and increasing the bioavailability and absorbability of contaminants to improve the
phytoremediation efficacy. Here, we summarize the microbial species with the functions of
pollution removal and soil property improvement, including those in MPs and other crops.
It is expected that it will guide the use of microbial resources to improve soil conditions
before or during the cultivation of MPs (Table 1).

Table 1. Functional microorganisms and their contributions to soil remediation.

Soil Issues Strains/Microbes Contributions Reference

Nutrient deficiency
and imbalance

Pseudomonas libanensis EU-LWNA-33 Increasing P solubilization [23]
Herbaspirillum sp. H18 and ZA15,
Burkholderia vietaminensis AR114

Increasing P solubilization and N
use efficiency [133]

Enterobacter cloacae RCA25, Klebsiella
variicola RCA26, Herbaspirillum seropedicae
z67, Sinorhizobium fredii NGR234

IAA production, improving N fixation [134]

Paenibacillus spp. Catalyzing N2-fixing [135]
Pseudomonas sp. S10-3 Increasing K solubilization [136]
Burkholderia spp. Increasing K solubilization [137]
Pantoea agglomerans, Rahnella aquatilis,
Pseudomonas orientalis

Increasing K solubilization,
IAA production [138]
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Table 1. Cont.

Soil Issues Strains/Microbes Contributions Reference

Providencia rettgeri TPM23 Increasing available N, P and K contents [139]

Enterobacter cloacae HG-1
Enhancing N fixation, producing iron
carriers, ACC deaminase and
plant hormones

[140]

Rhizobium strains NSFBR-12,
NSFBR-15 Enhancing N fixation [141]

Azospirillum brasilense Improving fertilizer-N recovery [142]

Pesticide residues

Microbacterium sp. D-2 Dicofol degradation [143]
Acinetobacter baylyi GFJ2 Chloroanilines degradation [144]
Pseudomonas sp. DDT degradation [145]
Pseudomonas putida, Acinetobacter
rhizosphaerae

Hydrolysis of organophosphate
and carbamate pesticides [146]

Chryseobacterium sp. Y16C Glyphosate degradation [147]
Arthrobacter sp. HB-5 Atrazine degradation [148]
Trichoderma atroviride T23 Dichlorvos degradation [149]
Alcaligenes faecalis NBRI OSS2-5 Chlorpyrifos degradation [150]
Bacillus pumilus W1 Organophosphate degradation [151]
Pseudomonas nitroreducens AR-3 Chlorpyrifos degradation [152]
Pseudomonas putida ATCC 49451 Chlorophenols degradation [153]
Bacillus aryabhattai VITNNDJ5 Monocrotophos degradation [154]
Sphingomonas sp. AK1 Isoproturon degradation [155]
Bacillus spp. Diuron degradation [156]
Catellibacterium sp. CC-5 Cypermethrin degradation [157]
Xanthomonas axonopodis, Aspergillus niger Alachlor degradation [158]
Bacillus cereus Y1 Deltamethrin degradation [159]

Excessive
heavy metals

Bacillus thuringiensis WS3 As removal [160]
Pseudomonas putida UW4 PAH and Pb removal [161]

Kocuria rhizophila Promoting phytoremediation of Cd, Cr,
Cu and Ni-contaminated soil [162]

Bacillus cereus HM5, Bacillus
thuringiensis HM7 Improving Mn phytoremediation [163]

Pseudomonas lurida EOO26 Improving Cu phytoremediation [164]

Bacillus subtilus MAI3 Chromium (VI) reduction and Cr (III)
immobilization [165]

Trichoderma harzianum, Bacillus subtilis Cd bioavailability reduction [166]
Pantoea conspicua MT5, Aspergillus
niger CRS3 Reduction and detoxification of Cr (VI) [167]

Organic pollutants

Hyphomicrobium sp. GHH 17α-ethinyestradiol removal [168]
Klebsiella pneumonia PL1 Pyrene and benzo(a)pyrene removal [169]
Pseudomonas mendocina, Brevundimonas
olei, Serratia marcescens Creosote PAH degradation [170]

Psuedomonas sp. USTB-RU Phenanthrene degradation [171]
Sphingobium yanoikuyae B1 PAH degradation [172]
Pseudomonas sp. SDR4, Mortierella
alpina JDR7 PAH degradation [173]

Mycobacterium spp. Pyrene degradation [174]
Ralstonia sp. U2 Naphthalene degradation [175]
Pseudomonas aeruginosa PSA5,
Rhodococcus sp. NJ2 Benzo(a)pyrene degradation [176]

Pseudomonas oleovorans DT4 Tetrahydrofuran, benzene, toluene,
ethylbenzene and xylene degradation [177]

Raoultella sp. XY-1, Pandoraea sp. XY-2 Tetracycline degradation [178]



Plants 2022, 11, 3200 9 of 33

Plants 2022, 11, x FOR PEER REVIEW 9 of 34 
 

 

Rhodococcus sp. NJ2 

Pseudomonas oleovorans DT4 Tetrahydrofuran, benzene, toluene, ethylben-
zene and xylene degradation 

[177] 

Raoultella sp. XY-1, Pandoraea sp. XY-2 Tetracycline degradation [178] 

 
Figure 3. Removal of soil contaminants (pesticide residues, heavy metals and organic pollutants) by 
microorganisms and the potential mechanism. Heavy metals are adsorbed and fixed on the cell sur-
face by microorganisms. Highly toxic metallic elements can be converted to less or non-toxic sub-
stances by redox reactions. The chemical pesticides and organic pollutants are broken down by soil 
microbes into small molecule compounds, H2O and CO2. 

4.1. Regulation of Soil Properties and Fertility 
Intensive planting of crops may lead to the depletion of soil organic matter and nu-

trient reserves which, under natural conditions, gradually cannot meet the demand for 
plant growth and development [179]. Additionally, soil degradation, including saliniza-
tion, hardening and acidification, has become a great threat to sustainable global agricul-
tural development [180,181]. The microbiota present in the soil is regarded as the game 
changers in degraded-land restoration [182]. Microorganisms regulate soil properties and 
fertility through different pathways: (1) microbes can activate soil nutrients and promote 
their availability; (2) nitrogen-fixing bacteria improve soil fertility by transforming the ni-
trogen elements; (3) the extracellular secretions of microbes can enhance the stability of 
soil aggregates; (4) they increase soil organic matter content by decomposing plant and 
animal residues [133,183,184]. The soil microorganisms with nitrogen fixation function 
convert N elements in the air and environment into NH4+-N and NO3−-N, which are avail-
able to plants through ammonification, nitrification, assimilation and denitrification, such 
as Rhizobium, Azospirillum, Burkholderia, Nitrosomonas, Nitrococcus, Nitrobacter, Paenibacil-
lus, Klebsiella and Pseudomonas [134,185,186]. The nitrogenase encoded by the nif gene fam-
ily is verified as the key enzyme to catalyze the biological N-fixation reaction, which is a 
two-component system consisting of the separable Fe protein and MoFe protein [187–189]. 
Xie et al. [135] found that Paenibacillus was initially incapable of fixing nitrogen, and the 
N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal 
gene transfer from a source related to Frankia in early evolutionary history. Rhizobia (Rhi-
zobium, Bradyrhizobium, Azorhizobium and Mesorhizobium) have a symbiosis with legume 
roots to form nodule structures, which under normal conditions can reduce inert N2 gas 
to available ammonia for plant use [190–192]. A complex amino acid cycle was found to 
drive the N-fixation process in legume–Rhizobium symbiosis [191]. 

Figure 3. Removal of soil contaminants (pesticide residues, heavy metals and organic pollutants)
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4.1. Regulation of Soil Properties and Fertility

Intensive planting of crops may lead to the depletion of soil organic matter and
nutrient reserves which, under natural conditions, gradually cannot meet the demand for
plant growth and development [179]. Additionally, soil degradation, including salinization,
hardening and acidification, has become a great threat to sustainable global agricultural
development [180,181]. The microbiota present in the soil is regarded as the game changers
in degraded-land restoration [182]. Microorganisms regulate soil properties and fertility
through different pathways: (1) microbes can activate soil nutrients and promote their
availability; (2) nitrogen-fixing bacteria improve soil fertility by transforming the nitrogen
elements; (3) the extracellular secretions of microbes can enhance the stability of soil
aggregates; (4) they increase soil organic matter content by decomposing plant and animal
residues [133,183,184]. The soil microorganisms with nitrogen fixation function convert
N elements in the air and environment into NH4

+-N and NO3
−-N, which are available

to plants through ammonification, nitrification, assimilation and denitrification, such as
Rhizobium, Azospirillum, Burkholderia, Nitrosomonas, Nitrococcus, Nitrobacter, Paenibacillus,
Klebsiella and Pseudomonas [134,185,186]. The nitrogenase encoded by the nif gene family
is verified as the key enzyme to catalyze the biological N-fixation reaction, which is a
two-component system consisting of the separable Fe protein and MoFe protein [187–189].
Xie et al. [135] found that Paenibacillus was initially incapable of fixing nitrogen, and the
N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal
gene transfer from a source related to Frankia in early evolutionary history. Rhizobia
(Rhizobium, Bradyrhizobium, Azorhizobium and Mesorhizobium) have a symbiosis with legume
roots to form nodule structures, which under normal conditions can reduce inert N2 gas
to available ammonia for plant use [190–192]. A complex amino acid cycle was found to
drive the N-fixation process in legume–Rhizobium symbiosis [191].

Some beneficial microbes can also enhance fertility by activating soil nutrients, like Enter-
obacter, Brevibacillus, Mortierella, Trichoderma and Phyllobacterium as phosphate-solubilizers, and
Paenibacillus, Agrobacterium, Acinetobacter and Bacillus for potassium solubilization [23,136,137,193].
In addition, the strains of Acetobacter pasteurianus, Stenotrophomonas rhizophila, Curtobac-
terium sp. and Rahnella sp. have been identified to be capable of both N fixation and P
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solubilization [183]. The gcd gene encoding quinoprotein glucose dehydrogenase is consid-
ered the core determinant that governs microbial phosphate solubilization [194,195]. The
organic acids and exopolysaccharides released by microbes also help increase the contents
of P and K in soil [196,197]. The phosphate-solubilizing microorganisms Trichoderma as-
perellum LZ1 and Serratia sp. LX2 were found to improve P availability by reducing soil
pH [198]. The tartaric acid, citric acid, lactic acid, malic acid, oxalic acid and gluconic
acid produced by potassium-solubilizing bacteria are able to release the fixed K from
K-containing minerals [199]. The isolates of Pantoea agglomerans, Rahnella aquatilis and
Pseudomonas orientali from paddy rhizosphere soil significantly enhanced the yield and K
uptake of crops [138]. Moreover, Jiang et al. [139] reported that the strain Providencia rettgeri
TPM23 could improve the properties of saline soil. Na+ and Cl− contents decreased in
TPM23-treated soil, while available N, P and K increased. Furthermore, the activities of
alkaline phosphomonoesterases, urease and dehydrogenase were observably promoted
by TPM23.

On the other hand, microbes help maintain the stability of soil aggregates through se-
cretions and hyphae networks [182,200]. Extracellular polymeric substances (EPSs), such as
polysaccharides, polyuronic and amino acids with adhesive properties from different bacte-
rial species, can bind clay particles to form soil aggregates, thus increasing inter-particle
cohesion [201,202]. For example, the glomalin-related soil proteins produced by AMF
play the role of particle gluing agents to increase soil aggregate stability, which supports
resistance to erosion, carbon storage and water-holding capacity [203,204]. Meanwhile, the
hyphae of fungi and actinomycete entangle particles to form a network to further stabilize
soil structure [201]. By decomposing plant and animal residues, microbes help increase the
content of organic matter, which can improve soil fertility retention capacity and buffer
performance [205,206]. The necromass of microbes themselves is also an important source
of soil organic carbon stock and is governed mainly by fungal necromass carbon [207]. In
conclusion, soil microorganisms can not only activate nutrients to directly improve fertility,
but also enhance the capacity of water storage and fertilizer conservation by regulating
soil characteristics.

4.2. Degradation of Pesticides and Organic Pollutants in Soil

Chemical pesticides and other organic pollutants such as PAHs, PCBs and TPHs
are introduced into farmlands and accumulate in soil because they are difficult to break
down rapidly [123,208]. Fortunately, microorganisms can decompose these hazardous
compounds and make outstanding contributions to agricultural production, environmental
protection and human health. For example, the Microbacterium sp. D-2 isolated from dicofol
(an organochlorine insecticide)-contaminated agricultural soil presented an effective dicofol-
degrading function, which could degrade 85.1% of 50 mg/L dicofol within 24 h [143]. Soil
microbes remove the contaminants mainly through biodegradation and enzymatic mineral-
ization [209]. They can convert the refractory organic macromolecules into water, carbon
dioxide and less toxic compounds [210]. The strains of Pseudomonas, Trichoderma, Sphin-
gomonas, Paenibacillus, Bacillus, Acinetobacter, Stenotrophomonas, Agrobacterium, Alcaligenes,
Burkholderia, Serratia, Klebsiella, Streptomyces, Enterobacter, Rhizobium and Xanthomonas have
been identified with the ability to break down the xenobiotics [132,144,145,211,212]. The
soil bacteria Pseudomonas putida and Acinetobacter rhizosphaerae were found to be able to
hydrolyze both organophosphate and carbamate pesticides [146]. A novel glyphosate-
degrading species, Chryseobacterium sp. Y16C, was isolated from soil, which could com-
pletely degrade the herbicide glyphosate at 400 mg/L concentration within four days [147].
He et al. [168] reported that Hyphomicrobium sp. GHH, in combination with the culti-
vation of Lolium perenne, posed a great potential for remediating the soil contaminated
by 17α-ethynylestradiol, a typical environmental endocrine-disrupting chemical. The
Arthrobacter sp. strain HB-5 demonstrated excellent atrazine removal capacity, and the
degradation half-life in HB-5 inoculated soil was three times less than that in natural
soil [148]. Besides, the strains of Klebsiella pneumonia PL1, Pseudomonas mendocina, Brevundi-
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monas olei, Serratia marcescens, Sphingobium yanoikuyae B1 and Pseudomonas sp. USTB-RU
have also been shown to decompose organic pollutants such as pyrene, benzo(a)pyrene,
phenanthrene and naphthalene [169–172]. The combination of biosorption and biodegra-
dation of Pseudomonas sp. SDR4 and Mortierella alpina JDR7 help achieve a remarkable
reduction of PAHs [173].

The degradation of soil pollutants by microorganisms is regulated by gene expres-
sion and multiple enzymes. Cytochrome P450 genes (CYPs) are involved in encoding a
large superfamily of heme-thiolate proteins, which catalyze the exogenous and endoge-
nous compounds through chemical modifications and stereotactic oxidation [213]. Cyp
enzymes participate in the degradation of heterologous substances via primary and sec-
ondary metabolic processes [214]. Chadha et al. [215] identified 477 cytochrome P450s
from Trichoderma spp. with the potential for environmental pollutant degradation. The
TaCyp548-2 of CYPs from Trichoderma atroviride T23 was found to reduce the chlorinated
organophosphate-based pesticide, dichlorvos, by two steps, i.e., production of the interme-
diate product, 2,2-dichloroethanol, and then conversion of 2,2-dichloroethanol to less toxic
2,2-dichloroethanol acetate [149]. The dehalogenase, dehydrogenase, dehydrochlorinase,
esterase, phosphatase, salicylate hydroxylase, paraoxonase, and dioxygenase from soil
microorganisms accelerate the removal of pesticides and high molecular weight organ-
ics [101,210,216]. Bacterial enzymes, like organophosphorus hydrolase, methyl parathion
hydrolase and OpdA regulated by opd, mpd and opdA genes, respectively, are involved in
the preliminary hydrolysis of organophosphorus pesticides [150,151]. Aswathi et al. [152]
indicated that the organophosphate hydrolase of Pseudomonas nitroreducens AR-3 eliminated
42% of 100 mg/L chlorpyrifos in just 2 h. The oxygenases, encoded by nidA, nidB, nidA3,
nidAB, nahAc, nagAc, etc., are considered key enzymes to drive the initial dihydroxylation
step of aromatic rings to promote the decomposition of PAHs [174,175,217]. The salicylate
hydroxylase, catechol 1,2-dioxygenase, 2-carboxybenzaldehyde dehydrogenase and cate-
chol 2,3-dioxygenase expressed in Pseudomonas aeruginosa PSA5 and Rhodococcus sp. NJ2
were found to catalyze the degradation of benzo(a)pyrene [176].

However, some pollutants are not suitable as the sole substrates for microbial growth,
such as high molecular weight polyaromatic hydrocarbons, aliphatic and aromatic polychlo-
rinated organics, which are not normally biodegradable. Soil microorganisms transform
and use such molecules through cometabolism, namely assimilating other growth sub-
strates together with these non-growth substrates [218]. Microbial cometabolism can
achieve the biological transformation of a non-growth substrate with non-specific enzymes,
the synthesis of which, in microbial cells, can only be induced by growth substrates that
provide energy for cell growth and maintenance [153]. For example, the cometabolic
bioregeneration of activated carbons derived from the removal of 2-chlorophenol by using
phenol as the growth substrate [219]. Benzene and toluene degradation of Pseudomonas
oleovorans DT4 were greatly enhanced by tetrahydrofuran acting as an “energy genera-
tor” [177]. The synergy between fungi and bacteria promoted the PAH mineralization
to CO2, and lignin stimulated the co-metabolic biodegradation of benzo(a)anthracene by
recruiting the bacterial taxa Methylophilaceae and Sphingomonadaceae [220]. Collectively,
microbial communities have great potential in the remediation of pesticides and organic
pollutant-contaminated soil.

4.3. Removal of Heavy Metals from Soil

Heavy metals, mainly including As, Cd, Zn, Pb, Mn, Cr, Cu and Hg, cause potential
phytotoxicity to MPs, such as oxidative damage, interfering enzyme activities, membrane
damage, stomatal closure, photosynthesis reduction and carbon metabolism retardation,
which is considered detrimental to seed germination and plant growth [221–223]. Bioreme-
diation involving soil microorganisms is proposed as a cost-effective and environmentally
friendly method to rehabilitate land contaminated by heavy metals to speed up the re-
covery of ecosystems and biodiversity [224]. The indigenous fungal strains Aspergillus
fumigatus and A. terreus isolated from contaminated soil showed excellent Pb and Hg
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removal capability [225]. Meanwhile, Aeromonas, Bacillus and Pseudomonas act as important
organisms in the remediation of heavy metal-contaminated soil [226]. Microbes can collect
heavy metals in soil by biosorption. Some ions in functional groups on the cell surface,
such as oxygen, nitrogen, sulfur and phosphorus, can be complexed with metal ions as
coordination atoms [109]. The phytochelatins, glutathione, metallothionein and glomalin
generated by AMF can also immobilize metals and promote the adaptation of host plants
to stressful environments. Altowayti et al. [160] illustrated that the arsenic-resistant Bacil-
lus thuringiensis strain WS3 could effectively achieve 10.94 mg/g of As (III) removal via
adsorption processes at optimum conditions. This process is often accompanied by ion
exchange. It was demonstrated that Saccharomyces cerevisiae released approximately 70% of
K+ and 60% of Mg2+ during Cu2+ adsorption [227].

Furthermore, soil microorganisms enhance the phytoremediation of contaminated
soil by alleviating the phytotoxicity of heavy metals and promoting their uptake by plants.
Rhizosphere exudates, such as organic acids, accelerate the solubilization of metals to
increase bioavailability [161,228]. Hussain et al. [162] showed that the synergy of Kocuria
rhizophila and citric acid increased plant biomass by 38.73% and the accumulation of Cd,
Cr, Cu and Ni by 40.63%, 56.39%, 59.1% and 39.76%, respectively. The manganese-tolerant
strains Bacillus cereus HM5 and B. thuringiensis HM7 promote Mn absorption of Broussonetia
papyrifera, whose concentration increased in the aerial parts of plants. Additionally, the two
Bacillus spp. mitigated Mn-induced oxidative stress by reducing malonaldehyde content
and antioxidant enzyme activities in leaves [163]. Kumar et al. [164] found that the isolate
Pseudomonas lurida EOO26 presented multi-metal tolerance, drought resistance and plant
growth-promoting attributes, and the inoculation with EOO26 increased Cu uptake by
8.6 times in roots and 1.9 times in leaves of Helianthus annuus than uninoculated individuals.
Microorganisms can also drive redox reactions to change the valence of heavy metals and
reduce their biological toxicity [109]. For example, Bacillus subtilus MAI3 could reduce
highly toxic Cr (VI) into less soluble Cr (III) in soil by producing chromium reductases
and antioxidants, which improved the growth and photosynthesis of plants [165]. In
summary, microorganisms can serve as powerful tools for the remediation of heavy metal-
contaminated soil through multiple pathways.

5. Function of Soil Microorganisms in Growth Promotion and Quality Improvement
of Medicinal Plants and the Potential Mechanisms

Medicinal plants are subjected to a variety of biotic and abiotic stresses throughout
their growing period. Soil microbes are known as the second genome of plants, whose
structure and functions to host plants dynamically change with stress and environmental
stimuli. The growth-promoting microorganisms improve the growth and quality of MPs
by accelerating nutrient absorption, enhancing stress resistance, inhibiting pathogenic
organisms and regulating secondary metabolism. We have summarized the positive role of
beneficial soil strains/microbes in the production of different medicinal species in Table 2.
An in-depth understanding of plant–microbe interactions will undoubtedly contribute to
the production of high-yield and high-quality medicinal resources and lay a foundation for
the vigorous development of traditional Chinese medicine industry.
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Table 2. Role of beneficial microorganisms on growth promotion and quality improvement of
medicinal plants.

Medicinal Plants Strains/Microbes Role Reference

Panax ginseng

Paenibacillus polymyxa
Simultaneous degradation of fluazinam,
BHC, PCNB, chlorpyrifos and DDT in roots,
stems and leaves

[26]

Bacillus subtilis 50-1 Replanting mortality alleviation [229]
Bacillus amyloliquefaciens SW-34 Grey mold suppression [230]
Bacillus amyloliquefaciens HK34 Foliar blight and root rot control [231]
Pseudomonas aeruginosa D4 and Bacillus
Stratosphericus FW3 Root rot fungal pathogen control [232]

Rhizobium panacihumi DCY116T Al resistance enhancement [233]

Sphingobacterium sp. PG-1
Toxic diisobutyl phthalate degradation,
replanting issue alleviation,
growth promotion

[234]

P. quinquefolius Rhizoglomus irregulare, Funneliformis
mosseae and F. caledonium

Soil-borne pathogen control, nutrient
acquisition improvement, continuous
cropping obstacle mitigation

[235]

Glycyrrhiza glabra Funneliformis mosseae Salt stress alleviation, P and K-concentration
increase, glycyrrhizin accumulation [236]

G. uralensis Glomus mosseae and G. veriforme Growth promotion, P-acquisition
improvement, glycyrrhizin accumulation [237]

Rhizophagus irregularis
Compensation for the loss of indigenous
microbial communities, growth and
secondary metabolism promotion

[238]

Acrocalymma vagum
Biomass increase under drought stress,
glycyrrhizic acid and
glycyrrhizin accumulation

[239]

Salvia miltiorrhiza Bacillus cereus Hairy root growth promotion, tanshinone
production increase [240]

Bacillus amyloliquefaciens, B. licheniformis
and Actinomyces bovis

Cd-uptake reduction, total
tanshinones accumulation [241]

S. officinalis Glomus intraradices Essential oil yield and quality improvement [242]
Artemisia annua Colletotrichum sp. Artemisinin production stimulation [243]

Rizophagus irregularis Artemisinin content and essential oil
yield increase [244]

Glomus mosseae and Bacillus subtilis Daz26 Growth, biomass yield, and artemisinin
content enhancement [245]

Sophora flavescens Actinobacteria and Chloroflexi Matrine and oxymatrine accumulation [246]

Bradyrhizobium arachidis CCBAU 051107T Oxymatrine and matrine content
enhancement [247]

Pistacia vera Staphylococcus sciuri, Zobellella denitrificans
and Arthrobacter endophyticus

Yield increase, photosynthesis promotion,
water absorption promotion, performance
improvement under salinity and
drought stresses

[248]

Bacopa monnieri

Pseudomonas plecoglossicida KM233646,
Acinetobacter calcoaceticus KM233647,
Bacillus flexus KM233648 and B. safensis
KM233652

Growth promotion, bacoside A yield
increase, saline soil reclamation [249]

Echinacea purpurea Pseudomonas fluorescens, AMF
Nutrient concentration increase, water
absorption promotion, growth improvement,
drought stress alleviation

[250]

Trigonella
foenum-graecum Bacillus subtilis LDR2

Nodulation and AMF colonization
enhancement, nutrient uptake improvement,
growth promotion, drought-stress
resistance enhancement

[251]

Azotobacter chroococcum and
Peudomoance fluorescence

Yield and trigonelline production
enhancement under deficit irrigation [252]

Foeniculum vulgare Bacillus subtilis PSB-1 and PSB-36 Seed yield and essential oil content increase,
P-availability enhancement [253]
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Table 2. Cont.

Medicinal Plants Strains/Microbes Role Reference

Rheum palmatum Bacillus amyloliquefaciens EZ99 Increase of root fresh weight, active
components content and K-availability [254]

Naravelia zeylanica Achromobacter xylosoxidans AUM54 Growth promotion, survivability and stress
tolerance increase [255]

Astragalus mongholicus Stenotrophomonas, Phyllobacterium
and Inquilinus Bioactive ingredients accumulation [256]

Polygonum cuspidatum Bacteroides, Acinetobacter,
Erysipelatoclostridium and Achromobacter Resveratrol accumulation [257]

Chrysanthemum
morifolium

Funneliformis mosseae and
Diversispora versiformis

N-uptake enhancement, growth promotion
under salt stress [258]

Papaver somniferum Pseudomonas putida Growth and yield improvement, downy
mildew tolerance enhancement [259]

Zingiber officinale Bacillus, Pseudomonas, Arthrobacter
and Serratia Al-toxicity and bacterial wilt alleviation [260]

Andrographis paniculata Bacillus sp. CIMAP-A7 Atrazine-induced toxicity amelioration,
oxidative stress amelioration [261]

Azotobacter chrococcum, Bacillus
megaterium, Pseudomonas monteilii,
Glomus intraradices

Soil dehydrogenase, alkaline and acidic
phosphatase activity improvement, growth
promotion, pharmacological
quality enhancement

[262]

Commiphora
leptophloeos

Gigaspora albida and
Claroideoglomus etunicatum Total foliar phenols and tannins increase [263]

Ocimum basilicum Glomus caledonium BEG 162 and G.
mosseae NBR 1–2

Rosmarinic and caffeic acids
production enhancement [264]

Atractylodes lancea Pseudomonas fluorescens ALEB7B Medicinal sesquiterpenoid accumulation,
photosynthesis enhancement [265]

Hypericum perforatum Stenotrophomonas maltophilia N5.18 Hypericin and pseudohypericin increase [266]

Rhizophagus intraradices, Funneliformis
constrictum, F. geosporum and F. mosseae

Photosynthetic activity stimulation,
secondary metabolites production, hypericin
and pseudohypericin
concentration enhancement

[267]

Hyoscyamus niger Pseudomonas putida and P. fluorescens Growth promotion under water deficit stress,
alkaloid production increase [268]

Crocus sativus
Rhizophagus intraradicse, Funneliformis
mosseae, Rhizophagus irregutaris and
Glomus caledonium

Photosynthesis promotion, increase of flower
number, leaf dry weight and area and yield [269]

Mentha arvensis Exiguobacterium oxidotoleran, and
Glomus fasciculatum

Growth promotion in salt-stressed soil,
essential oil yield increase [270]

Trichoderma harzianum and
Brevibacterium halotolerans

Increase in plant growth, oil content,
leaf-stem ratio, photosynthetic pigments and
nutrient uptake

[271]

5.1. Microorganisms Enhance the Environmental Stress Resistance and Growth of Medicinal Plants

Soil microbial diversity plays a crucial role in securing stable plant production in global
ecosystems and buffering against extreme climate events [272]. The microflora can promote
the growth and development of MPs mainly through the following channels: (1) improving
soil physical and chemical properties to provide a suitable growth environment for MPs;
(2) activating soil nutrients and increasing their availability; (3) symbiosis with plant
roots to form mycorrhizal structure in order to increase the contact with soil and promote
the uptake of water and nutrients; (4) inducing systemic resistance and enhancing the
adaptability of MPs to environmental stress [139,273,274]. Root-associated microbes that
participate in optimizing N, P and K capture are critical for plant growth and nutrient
acquisition [275,276]. The native phosphate solubilizing strains Bacillus subtilis PSB-1 and
PSB-36 could significantly improve the P-availability in semi-arid saline soil and increase
the yield and essential oil content of Foeniculum vulgare seeds [253]. The combination of
P fertilizers and biofertilizers (AMF and Pseudomonas florescent bacterium) was found to
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promote water absorption of Echinacea purpurea under drought stress and transfer more P
elements from roots to leaves [250]. The treatment with Bacillus amyloliquefaciens EZ99 and
sucrose amendments facilitated the potassium utilization in rhizosphere soil and increased
the root fresh weight of the medicinal herb Rheum palmatum [254]. The sesquiterpene
compound, cedrene, from Trichoderma guizhouense NJAU4742, was reported to efficiently
promote plant growth and suppress soil-borne pathogens. It could also require the TIR1 and
AFB2 auxin receptors, IAA14 downstream auxin-responsive protein and ARF7 and ARF19
transcription factors to stimulate lateral root development [277]. AMFs are recognized
as beneficial symbionts of most land plants that can strengthen plant nutrient uptake. It
was indicated that mycorrhizal colonization strongly induced the expression of nitrate
transporter genes OsNPF4.5, ZmNPF4.5 and SbNPF4.5 in roots, which served as the drivers
of mycorrhizal NO3

−-N acquisition [278]. In addition, Chen et al. [279] revealed that the
DNA methylation modifications induced by plant growth-promoting bacteria mediated
the promotion process in roots, and the epigenetic modifications remained functional after
the elimination of the inoculum from the microbiome.

Microbial communities can also maintain the normal growth of MPs by alleviating
the adverse effects caused by continuous cropping obstacles. The inoculation with Bacillus
subtilis 50-1 isolated from soil made Panax ginseng replanting mortality and pathogenic
Fusarium abundance decrease by 63.3% and 46.1%, respectively [229]. Phenolic acids are
one of the main allelopathic autotoxic substances that result in replanting problems of
many MPs [280]. It has been reported that phenolic acids are positively associated with
beneficial Pseudomonas, Streptomyces, Nitrobacter, Nitrospira and Bacillus in rhizosphere
soil [281]. Gauri et al. [282] suggested that the Azotobacter sp. strain SSB81 could degrade
the accumulated phenolic acids by oxidative and non-oxidative pathways to reduce the
toxic level and increase soil fertility. Meanwhile, Pseudomonas aeruginosa with catalpol-
degrading capacity was considered to have great potential in mitigating the autotoxicity of
medicinal Rehmannia glutinosa [283].

Ethylene is an important phytohormone known to regulate fruit ripening, leaf abscis-
sion and plant senescence. However, ethylene at high concentrations triggers the inhibition
of root and stem growth together with premature senescence, leading to poor plant perfor-
mance [284]. Stress conditions can induce high levels of ethylene in plants and halt root
elongation and nitrogen fixation [21]. Sadeghi et al. [285] found that water deficiency led to
ethylene accumulation in leaves, lowering the biomass, leaf area and plant height of the
medicinal herb Cichorium intybus. 1-aminocyclopropane-1-carboxylate (ACC) is the vital
precursor for ethylene synthesis. Numerous studies have confirmed that plant growth-
promoting microbes produce ACC deaminase to equilibrate the ethylene content to an
optimum level in plants. ACC deaminase catalyzes the cleavage of ACC to ammonia and
α-ketobutyrate to facilitate plant growth and development under environmental stresses,
such as flooding, drought, high temperature, cold, radiation and insect predation [286–288].
Bacillus subtilis LDR2 alleviated the ethylene-induced damage under drought conditions
and enhanced nodulation and AMF colonization to improve nutrient uptake and growth of
Trigonella foenum-graecum [251]. The rhizobacteria Staphylococcus sciuri, Zobellella denitrif-
icans and Arthrobacter endophyticus improved photosynthesis of Pistacia vera subjected to
salinity and drought stresses and significantly increased the shoot and root dry weight, leaf
number, leaf area, shoot and root K+ concentration, and relative water content [248]. It was
also illustrated that the halophilic and halotolerant bacteria from salt-contaminated soil
belonging to Bacillus, Staphylococcus, Oceanobacillus, Exiguobacterium and Halobacillus could
enhance plant growth under salt stress [289].

5.2. Microorganisms Promote the Accumulation of Active Ingredients in Medicinal Plants

The content of active ingredients is considered the key to determining MPs’ clinical
efficacy. Among them, secondary metabolites are the main substances with pharmacody-
namic functions [290,291]. Chen et al. [246] demonstrated that rhizosphere microbiota was
closely related to the contents of oxymatrine, sophoridine and matrine in Sophora flavescens
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roots. Microbes can synthesize and secrete chemical molecules, which are called elicitors,
to trigger the plant defense responses to biotic or abiotic stress [292,293]. For instance,
Pankaj et al. [249] suggested that the efficient halotolerant isolates Pseudomonas plecoglos-
sicida (KM233646), Acinetobacter calcoaceticus (KM233647), Bacillus flexus (KM233648) and
B. safensis (KM233652) strikingly improved the growth and bacoside A yield of medicinal
Bacopa monnieri planted in natural salt-affected soil. Artemisinin production in Artemisia
annua roots was increased after the elicitor treatment of mycelial extracts from Colletotrichum
sp. [243]. Microbial elicitors, including proteins, oligosaccharides and polyunsaturated
fatty acids, can bind to plant cell receptors to activate the signaling pathways that induce
the secondary messenger production and transcription factor activation, which further
promote the gene expression of specific enzymes to regulate the secondary metabolites syn-
thesis [294]. The elicitor-mediated secondary metabolites cover a wide range of chemical
components, such as flavonoids, terpenoids, alkaloids, tannins and phenolic acids [265,295].
The polysaccharide-protein fractions from the rhizobacterium Bacillus cereus significantly
stimulated hairy root growth and tanshinone accumulation of Salvia miltiorrhiza [240]. Pseu-
domonas fluorescence elicited the production of hyoscyamine and scopolamine in Hyoscyamus
niger and hypericin and pseudohypericin in Hypericum perforatum [266,268]. Aspergillus
niger, Coriolus versicolor and Ganoderma lucidum were used as the elicitors to enhance the
salidroside synthesis of Rhodiola sachalinensis hairy roots [296].

Previous studies have also shown that microorganisms promote the formation of
secondary metabolites in MPs by facilitating the uptake of mineral nutrients, especially
nitrogen and phosphorus [297]. For example, tyrosine and phenylalanine are important pre-
cursors of rosmarinic and caffeic acids. AMF symbiosis can catalyze amino acid synthesis
by promoting N absorption to drive the accumulation of specific metabolites [264]. Fun-
neliforms mosseae, Glomus mosseae and G. veriforme were observed to improve P acquisition
of Glycyrrhiza uralensis and promote proline accumulation and glycyrrhizin concentration
in stems and roots [236,237]. The inoculation with Claroideoglomus etunicatum or Gigaspora
albida increased total foliar phenols and tannins in the Brazilian medicinal species Com-
miphora leptophloeos [263]. Additionally, microbes could change and optimize the chemical
composition of MPs. Glomus intraradices altered the relative quantity of essential oil pat-
terns and significantly increased bornyl acetate, 1,8-cineole, α- and β-thujones in Salvia
officinalis [242]. Li et al. [256] found that bacterial and fungal community composition
around the rhizosphere varied over the cultivation years of Astragalus mongholicus. The
richness of Stenotrophomonas was positively correlated with astragaloside content, while
Phyllobacterium and Inquilinus were positively correlated with calycosin content in roots. In
conclusion, microorganisms promote the accumulation of active ingredients by eliciting
the secondary metabolism of MPs, thus enhancing pharmacological efficacy.

5.3. Soil Microorganisms can Enhance the Disease Resistance of Medicinal Plants

Disease and insect pests are another great challenge that seriously inhibits the growth
of MPs, especially in perennials. For example, Panax ginseng is prone to root rot, root rust,
black spot, grey mold, root-knot nematodes and so on during a generally more than a 4-year
growing period, causing low yield and poor quality [48,230]. Microbial species improve
plant health condition by enhancing their defense system, which triggers the induced
systemic resistance (ISR) by regulating the salicylic acid, abscisic acid, jasmonic acid,
ethylene and hormonal signaling pathways [298,299]. The functional genes participating in
detoxification, biofilm formation and plant-microbiome signaling pathways are significantly
enriched in diseased plants [300]. The expression of jasmonic acid- and ethylene-regulated
genes, including Lipoxygenase 2, Plant defensin 1.2 and Hevein-like protein, were strengthened
by the treatment of rhizobacteria, which was verified to enhance the ISR process [301]. ISR
stimulates the host defense response to protect plants from bacterial and fungal pathogens,
root-knot nematodes, blue mold, damping off and systemic viruses [302,303]. The beneficial
soil fungus Mortierella verticillata NRRL 6337 was found to exert highly potent anthelmintic
activities that could efficiently shield the host from nematode attacks [304]. The small and
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cysteine-rich proteins secreted by Trichoderma virens enhanced the symbiotic relationship
between soil microbes and plants. The molecules served a positive role in supporting
plant’s defense against parasites as well as pathogens [305]. Photosynthetic bacterium
Rhodopseudomonas palustris GJ-22 improved Nicotiana benthamiana growth by producing
indole acetic acid and 5-aminolevulinic acid, which also strengthened plant resistance
against tobacco mosaic virus by priming pathogenesis-related genes [306]. Patel et al. [307]
indicated that the lipopolysaccharide from Alcaligenes faecalis was a potential biocontrol
agent to enhance plant immune response to fusarium wilt.

On the other hand, more and more evidence has suggested that plant rhizosphere
recruits beneficial microbes to suppress soil-borne pathogens [308]. Host plants attract ben-
eficial microbes through the modulation of plant-microbiome signaling pathways, which
evolve LysM receptors to recognize and parse microbial elicitors and trigger intracellular
signaling to restrict or facilitate microbial colonization [309]. Yuan et al. [310] showed
that the incorporation of pineapple residues in soil increased antagonistic fungal richness
to alleviate the pathogen pressure. The signaling molecules in root exudates serve as a
link for plant–microbe communication, which could induce the microbiota to respond to
the environment and the host states. Glutamic acid, either secreted by plants or added
exogenously, could protect plants against pathogens by reshaping the core microbial com-
munity. The supply of glutamic acid increased the abundance of beneficial populations
of Streptomyces, Bacillaceae and Burkholderiaceae and reduced pathogenic Botrytis and
Fusarium to control and alleviate diseases [311]. The transporters control the root-to-soil
delivery of specialized metabolites to manipulate the rhizosphere microbiota and thereby
affect plant fitness. For example, cucurbitacins, synthesized by operon-like gene clusters,
are the bitter triterpenoids peculiar to cucurbit plants. Two Multidrug and Toxic Compound
Extrusion (MATE) proteins were verified to be involved in the transport of cucurbitacins
from roots into the soil to modulate the rhizosphere microbiome by selectively enriching
Enterobacter and Bacillus, which in turn triggered robust resistance against the wilt fungal
pathogen Fusarium oxysporum [312].

The aggregated beneficial microorganisms around plant rhizosphere also help restrict
the access of harmful pathogens whose growth and survival are inhibited by specific mi-
crobes with antibiotic properties [313]. The plant growth-promoting Bacillus spp. were
identified to increase the abundance of potentially beneficial bacterial genera Sphingopyxis,
Sphingomonas, Lysobacter, Nitrospira, Bradyrhizobium, Chitinophaga, Pseudomonas, Dyadobac-
ter, Gemmatimonadetes, Streptomyces and Rhizomicrobium, and fungal genera Cladosporium,
Cladorrhinum and Aspergillus, accompanied by reducing potentially pathogenic Fusarium
and Talaromyces in the rhizosphere [314,315]. The lytic enzymes (e.g., glucanase and cellu-
lase) from antagonistic bacteria can destroy the cell membranes of pathogenic fungi, and
Bacillus species secrete lipopeptides (fengycin, surfactin and iturin) to block the growth
and colonization of pathogens [316]. The ACC deaminase-containing Pseudomonas putida
(WPTe) prevented Papaver somniferum from downy mildew and significantly promoted
growth and yield [259]. AMF biofertilizers alleviated replanting diseases of American gin-
seng by reducing deleterious Fusarium oxysporum, F. solani and Candidatus Solibacter [235].
Furthermore, Jiang et al. [317] revealed that the rhizosphere edaphon of resistant varieties
could recruit distinct bacterial taxa associated with disease suppression. It was advocated
that microbial transplantation from resistant donors should be promising to modulate soil
microecology and plant health.

5.4. Microbes Alleviate the Toxicity and Accumulation of Soil Pollutants in Medicinal Plants

The accumulation of pesticides, heavy metals and other organic pollutants in soil has
become a serious ecological problem. Large quantities of these harmful substances pose
a severe threat to humans and other organisms in the environment, and their residues
in medicinal materials adversely affect clinical safety. Soil microorganisms can act as the
restorers of contaminated soil, removing the exogenous chemicals and reducing their ac-
cumulation and toxicity in plants [318–320]. The enzymatic systems, including hydrolytic
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enzymes, esterases, nitrilases, oxygenases, dehalogenases amidases, and carbon–carbon
lyases, facilitate the biodegradation of pesticides and organic macromolecular pollutants
to non-toxic or low toxic small molecules [321]. Enterobacter ludwigii sp. CE-1 was re-
ported to rapidly transform the herbicide chlorimuron-ethyl with lasting toxicity into
2-amino-4-chloro-6-methoxypyrimidine and non-toxic saccharin, decreasing the phyto-
toxicity and inhibition to plant growth [322]. The bacterial strain Pseudomonas sp. RPT
52 isolated from agricultural fields could catalyze the metabolism of three different chlo-
rinated pesticides, imidacloprid, endosulfan and coragen, with a toxicity reduction of
the parent compounds [323]. Soil microbiome also moderates the suppression of toxic
pollutants on physiological metabolism by reducing their residues and accumulation in
MPs. Tripathi et al. [261] demonstrated that Bacillus sp. CIMAP-A7 significantly reduced
atrazine content in the important medicinal plant Andrographis paniculata and ameliorated
the induced oxidative stress, the inoculation of which increased the content of total chloro-
phyll, carotenoid, proteins and secondary metabolites. The mixed microbial culture PCS-1
from continuous cropping fields was able to degrade seven kinds of pesticides and reduce
their residues in the roots, stems and leaves of Medicago sativa. Pseudomonas, Enterobacter, As-
pergillus and Rhodotorula were determined to be the dominant genera with biodegradation
ability in PCS-1 [324].

Metal-antagonistic and tolerant bacteria are recruited and enriched in rhizospheres
to alleviate the phytotoxicity caused by heavy metals and maintain the normal growth of
plants. The rhizobacteria scavenge ROS and avert the oxidative stress induced by heavy
metals via stabilizing malondialdehyde content and enhancing the gene expression and
activities of antioxidant enzymes, such as catalase, peroxidase and superoxide dismu-
tase [325]. Glutathione (GSH) is another crucial non-enzymatic antioxidant to remove ROS
in plants via sulfhydryl groups, which can also directly chelate metals to form GSH-metal
complexes for detoxification. It was suggested that Bacillus altitudinis WR10 derived the
down-regulation of Glutathione S transferases gene expression for a high GSH level in
response to metal stress. Furthermore, WR10 regulated phenylpropanoid biosynthesis
that might promote phenolic acid production for protecting plant cells from metal toxic-
ity [326]. Aluminum stress stimulated the enrichment of Bacillus, Pseudomonas, Arthrobacter
and Serratia that mitigated Al-toxicity and bacterial wilt to Zingiber officinale in especially
acidic soil [260]. Wei et al. [241] found the microbial inoculant and garbage enzyme greatly
reduced Cd absorption of Salvia miltiorrhiza, with the accumulation of total tanshinones
increasing. Additionally, Chen et al. [327] revealed two potential mechanisms of AMF-
mediated arsenate resistance, i.e., AMF colonization may restrict the phosphate/arsenate
transport system in roots to reduce As uptake, and AMF may accelerate As efflux from
mycorrhizal roots.

In summary, the microbiome plays an important role in degraded-soil restoration
and MP growth promotion. However, it has to be admitted that biological regulation
based on soil microorganisms also has some limitations. Firstly, it is a time-consuming
process. In the early stage, microbial communities need to undergo a long course of
colonization, proliferation and physiological metabolic activities to gradually improve
soil properties. As for pollutant removal, not all the materials in the soil can be absorbed
and transformed by microorganisms. Some harmful substances are not bioavailable or
are also toxic to microbes [219]. Accordingly, to further enhance the effectiveness of land
improvement, microbial resources may be used in combination with other soil amendments
such as organic fertilizers and biochar [166]. In addition, the composition and structure of
microbial communities are affected by surrounding environment and root exudates of MPs.
Some beneficial bacteria may only exist and survive in certain specific medicinal species.
More studies should be conducted to explore the effects of rhizosphere microecology on
different MPs so as to better exploit and utilize microbial resources for specific objects.
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6. Development and Application of Microbial Inoculants for Medicinal Plants

Microbial inoculants, referring to products consisting of proven beneficial microor-
ganisms, have been recommended for artificial addition to the soil in field manage-
ment [248,328]. The dominant bacteria in the products mainly include Pseudomonas, Bacillus,
Burkholderia, Azotobacter, Azospirillum, Paenibacillus and so on [254,282,329]. These microbial
individuals with rapid reproduction, strong vitality, safe and non-toxic characteristics
can quickly colonize plants and soil, which occupy a dominant position to resist other
pathogens [330,331]. The treatment with Bacillus amyloliquefaciens HK34 effectively induced
systemic resistance in Panax ginseng against Phytophthora cactorum, the main pathogen
causing foliar blight and root rot [231]. Sun et al. [332] proposed that the inoculant Bacillus
velezensis SQR9 recruited indigenous beneficial bacteria Pseudomonas stutzeri in the rhi-
zosphere to promote plant growth, and the synergistic biofilm formation helped plants
relieve salt stress. The branched-chain amino acid biosynthesis pathways were suggested
to contribute to the syntrophic cooperation between SQR9 and P. stutzeri.

The development of microbial agents is generally in accordance with the following
steps: (1) analysis of soil microbial composition and structure; (2) screening, isolation and
identification of plant growth-promoting strains; (3) preparation of microbial seed fluid;
(4) formation of microbial agent products; (5) field experiments to test the inoculation
effect [154,232]. It has also been found that microbial consortium sometimes performs
better than a single strain owing to the stable and comprehensive metabolic function [324].
For example, different microbial species have their own specific pesticide degradation
spectrum covering only one or several pesticides. Individual microorganisms cannot
evolve a full-scale metabolic mechanism to cope with multiple chemical compounds.
Under such circumstances, the mixed microbial system shows greater advantages in the
complete degradation of toxic molecules relying on the synergistic effect among various
strains [26,333]. The bacterial consortium of Raoultella sp. XY-1 and Pandoraea sp. XY-2
isolated from tetracycline-contaminated soil presented better growth improvement and
tetracycline degradation efficiency compared with the single individuals [178]. Li et al. [155]
also showed that microbial consortia were more efficient than single degrader strains in
the clean-up of organic chemicals such as isoproturon in soil. A positive association was
revealed between the phylogenetic patterns of biosynthetic gene clusters (BGCs) and
phylogenetic distance within Bacillus. The targets with closer genetic distance tended
to share more BGCs, and the antagonism intensity was positively correlated with the
phylogenetic distance and BGC distance between strains Xia et al. [334]. These findings offer
a deeper insight into the driving force and intrinsic mechanism of microbial interactions,
which is of great significance in guiding the design of synthetic microbial communities
for practical purposes. The compatibility and synergy of Glomus mosseae and nitrogen-
fixing Bacillus subtilis were indicated to dramatically enhance the growth, biomass yield
and content of secondary metabolite artemisinin of Artemisia annua [245]. To sum up,
microbial agents can be used as an excellent alternative to chemical fertilizers and pesticides
to maintain the ecological cultivation of MPs and the sustainable development of the
traditional Chinese medicine industry.

7. Conclusions and Future Prospects

Sufficient and high-quality medicinal materials are the basis for promoting health
industry development and safeguarding people’s life safety. However, soil issues caused
by continuous monoculture, excessive and long-term application of chemical fertilizers
and pesticides and exogenous pollutants have become a serious ecological problem and
restrict the growth and quality formation of MPs. Microbial bioremediation has attracted
more and more attention because of the advantages of economic efficiency, harmless to
environment and non-toxic to organisms. As ideal alternatives to conventional fertilizers
and pesticides, the introduction of beneficial microbes has a bright application prospect in
repairing degraded soil and improving the growth and officinal value of MPs. Nevertheless,
current concerns about soil–plant–microbe interactions are mainly focused on food crops
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such as soybean, rice, maize and wheat. Compared with these crops, the species of MPs
are more diverse and complex, but the mechanism research of microbial influence on their
growth and pharmacological effects is still lacking. In addition, some beneficial microor-
ganisms were validated as biocontrol agents only under laboratory conditions, but most of
them have not been widely popularized and applied in large-scale agricultural production.
Therefore, to better exploit and utilize the microbial resources in soil, future studies aimed
at the interactions between MPs and soil microbes can be conducted in the following
areas: (1) establishing microbial germplasm banks to lay the foundation for the collection,
classification, preservation and further application of microbial resources; (2) isolating and
identifying the core microbial species with the functions of pollutant removal and pesticide
degradation in soil as potential bioremediation agents; (3) exploring the mechanism of
microorganisms enhancing the growth, stress resistance and disease resistance of MPs to
promote the sustainable development of traditional Chinese medicine industry; (4) eluci-
dating the signaling pathways of soil microbes regulating the secondary metabolism of
MPs in order to facilitate the production of medicinal materials with high and stable con-
tent of active ingredients; (5) developing more efficient plant growth-promoting microbial
inoculants for different medicinal species to produce high-yield and high-quality herbs. Fur-
thermore, the development of metagenomics, metabolomics, proteomics, transcriptomics
and other omics technologies provides strong support for the in-depth exploration of the
interaction mechanism and signaling pathway in the soil–microbial–medicinal plant system
through multi-method combinations. The correlation analysis between plant metabolites
and metagenomes of rhizosphere microbes can reveal the effects of toxic allelopathic sub-
stances secreted by roots on soil microecology. Exploring the interaction between chemical
signals and microbial communities can help clarify the regulatory mechanism of reducing
successive cropping obstacles by the microbiome. Furthermore, soil amendments and
biological control can be applied to guide the amelioration of the rhizosphere environment
of medicinal plants so as to improve their yield and quality. It can be predicted that micro-
bial resources in the soil will act as a powerful driving force in ecological restoration and
promote the production of high-quality medicinal materials.
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