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Abstract: Foliar fertilization with calcium (Ca) and boron (B) at flowering can promote flower reten-
tion and pod fixation, thereby increasing the number of pods per plant and, in turn, crop productivity.
The objective of this work was to investigate the effects of Ca + B fertilization during flowering
on the nutritional, metabolic and yield performance of soybean (Glycine max L.) The treatments
consisted of the presence and the absence of Ca + B fertilization in two growing seasons. Crop
nutritional status, gas exchange parameters, photosynthetic enzyme activity (Rubisco), total soluble
sugar content, total leaf protein concentration, agronomic parameters, and grain yield were evaluated.
Foliar Ca + B fertilization increased water use efficiency and carboxylation efficiency, and the im-
provement in photosynthesis led to higher leaf sugar and protein concentrations. The improvement
in metabolic activity promoted a greater number of pods and grains plant−1, culminating in higher
yields. These results indicate that foliar fertilization with Ca + B can efficiently improve carbon
metabolism, resulting in better yields in soybean.

Keywords: soybean; foliar fertilization; flowering

1. Introduction

Foliar fertilization is an alternative for nutritional management, mainly used as a
nutritional supplement [1]. In soybean, foliar nutrient management was common during
the reproductive period, when plants have high nutrient requirements due to the high
transfer rates of nutrients and sugars for the formation of reproductive structures and,
ultimately, grain production [2–5].

Foliar application of calcium (Ca) and boron (B) is widely used in Brazil [6,7], as they
are essential nutrients for the growth and development of plants, in addition to regulating
various physiological processes. The application of Ca and B, isolated or combined, has
been exhaustively studied by several authors [6,8–12]; however, there are few studies under
field conditions evaluating the combined effect of Ca + B on photosynthetic aspects in
soybean crops.

Calcium is a structural component of cell walls and membranes, an intracellular
messenger and necessary for the formation of new cells [13,14]. Ca is also an important
signaler of auxins, which in turn reduce the abscission process of leaves, flowers, and
fruits [15,16]. Boron is a structural element of cell walls and membranes [17] and functions
in sugar transport and metabolism, lignification, meristem tissue cell division, flower and
seed formation, and protein synthesis [18]. Several studies have shown that the combined
application of Ca + B promoted greater vegetative development, increased grain and fruit
quality and production in different crops compared to the isolated application of these
elements [19–23]. These results suggest that these nutrients are co-limiting—when nutrients
are provided in combination, they tend to have a greater response than when provided
isolated, where, Ca + B > Ca or Ca + B > B as explained by Sadras et al. [24].
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The supply of combined Ca and B in soybean flowering is an increasingly common
practice among producers, due to its benefits in fruiting, as they are essential for the germi-
nation of pollen grains and pollen tube elongation, favoring fertilization and a reduction in
flower abortion [6,9]. The associated supplementation of foliar Ca and B has promoted an
increase in the number of pods per plant, resulting in higher productivity [7,8,11,25–27].
These effects are mediated by increased physiological and photosynthetic efficiency in
terms of carbon assimilation and carbohydrate synthesis [28,29]. Thus, Ca and B are im-
portant not only in the reproductive phase but also throughout plant life, as they affect
photosynthetic capacity, photoassimilate transport [29–31] and water absorption [17].

Weaver et al. [32] verified that applications of calcium nitrate and boric acid in bean
flowering, provides better pod fixation and a high increase in grain yield. Bevilaqua et al. [33]
and Souza et al. [34] also verified the increase in soybean grain yield with a combined
application of Ca and B.

In this study, we proposed to evaluate whether the management performed by
Brazilian farmers is effective in the fruiting process. We hypothesized that the combined
application of Ca + B can improve photosynthetic metabolism and, consequently, increase
fruit set, culminating in an increase in grain yield. Therefore, our study aimed to investigate
the combined application of Ca + B that can improve the photosynthetic, nutritional, and
productive metabolism of soybean.

2. Results
2.1. Climate Characteristics

Rainfall in the 2018/2019 and 2019/2020 growing seasons was 569 and 434 mm,
respectively (Figure 1). During the 2018/2019 growing season, there were two periods
of low rainfall during the development of the soybean crop: the first occurred between
the end of the vegetative stage and the beginning of flowering, while the second occurred
between the end of flowering and the beginning of pod formation. Drought stress was
less intense in the 2019/2020 season than in the previous season and occurred during the
vegetative stage and between the end of phenological stage R3 and the end of phenological
stage R5.

2.2. Nutritional Status, Gas Exchange and Carbon Metabolism

Foliar application of Ca + B did not affect the nutrients (N, P, K, Ca, Mg, S, Cu and
Zn) (Figure 2a and Figure S1) but increased the leaf concentration of B by 14% (Figure 2b).
Foliar application of Ca + B improved photosynthetic activity compared with the control.
The net photosynthetic rate (A) and stomatal conductance (gs) increased by 25% and 18%,
respectively (Figure 3a,b). As a result of the increase in A, water use efficiency (WUE)
and carboxylation efficiency (A/Ci) increased by 34% and 35%, respectively, compared
with untreated plants (Figure 3e,f). The internal concentration of CO2 (Ci) decreased by
2% (Figure 3c) in plants receiving foliar Ca + B application, further contributing to the
improvement in A/Ci.

The application of Ca + B increased leaf protein content by 12% (Figure 4a) and Rubisco
activity by 54.4% compared with untreated plants (Figure 4b). Rubisco activity is closely
associated with photosynthetic parameters, and thus the concentration of total soluble
sugar in soybean leaves also increased by 14% compared with the control (Figure 4c).

2.3. Yield Components and Grain Yield

In general, the application of Ca + B increased soybean yield components. Fertilization
with Ca + B increased the number of pods per plant and number of grains per plant by
10% and 13%, respectively (Figure 5b,d), but did not affect plant height, number of grains
per pod, or W100G (Figure 5a,c,e). Consistent with the increase in the number of pods per
plant, Ca + B application increased grain yield by 0.4 Mg ha−1 (Figure 5f) compared with
untreated plants.
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3. Discussion

Calcium and Boron play several important roles in plant metabolism [35] with struc-
tural and reproductive functions. Even when soil Ca and B levels are adequate for crop
development, combined foliar application of these nutrients can enhance photosynthesis
and increase the setting of flowers and pods, thereby increasing productivity. However, the
underlying processes are not fully understood [36].

In the present study, foliar fertilization with Ca + B did not change the concentrations
of leaf macronutrients but effectively increased the leaf B concentration. This increase was
the result of rapid absorption of the applied B by soybean leaves, as cuticular membranes
are highly permeable to uncharged, undissociated boric acid (H3BO3) [37–39]. Thus, foliar
application of B can improve growth parameters by supplying this element to regions of
growth, thus minimizing the effects of the low rate of redistribution of B in the plant. The
range of B considered adequate for the development of dicotyledons is 20–70 mg kg−1

dry weight [40,41], and for soybean, the range of adequate B supply is 21–55 mg kg−1 [36].
According to these guidelines, the leaf concentrations of B observed in the present study are
within the range of sufficiency for soybean. However, the ranges used for the interpretation
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of leaf analysis may not reflect the actual nutritional necessity of the crop, as they are old
and require updating.

By contrast, foliar application of Ca + B did not change the soybean leaf concentra-
tion of Ca. Nutrient absorption studies show that soybean accumulates approximately
50 kg ha−1 at the beginning of the reproductive stage (R1) and an average of 120 kg ha−1

throughout its entire cycle [42,43]. Therefore, the application of small doses, as in the case
of this study, 400 g ha−1, would hardly change the foliar contents of soybean as stated by
Moreira et al. [44]. Therefore, the great benefit of applying Ca in small doses would be its
stimulating effect, as some studies report positive effects on photosynthesis and produc-
tivity through the application of foliar Ca, although foliar Ca levels were not significantly
altered [45–48]. The lack of change in the leaf Ca concentration may also be related to the
low ability of the plant to redistribute this nutrient [10,49]. However, the values obtained
were within the range of sufficiency for soybean (4.0–20 g kg−1) [36].

In response to foliar fertilization with Ca + B, an increase in photosynthetic activity
was observed, induced by an improvement in gas exchange parameters and an increase
in Rubisco activity. In this work, the improvement in photosynthetic activity is related
to an increase in net photosynthesis and stomatal conductance and a decrease in the
internal concentration of CO2 in the substomatic chamber (Ci). The net photosynthesis
(A) is the result of the balance between simultaneous processes in which CO2 is fixed
(carboxylation) and released (photorespiration, diurnal respiration) [50]. The gs indicates
the stomatal opening and closing capacity, which consequently influences the flow of water
and gases between the plant and the atmosphere, while E is characterized by the loss of
water from the plant to the atmosphere as a function of the stomatal opening to diffusion
of CO2 for photosynthesis. A reduction in Ci indicates that the CO2 that diffused into the
substomatal chamber was assimilated into the mesophyll cells. Thus, higher values of A
and gs, combined with low values of Ci and E, indicate greater efficiency in the assimilation
of carbon and its consequent conversion into carbohydrates. Furthermore, the increase A
promoted WUE, which is determined by the A/E ratio. This indicates that the plant was
able to assimilate more carbon while consuming the same amount of water, since E was not
changed [51].

In addition to gas exchange, the increase in A may have been influenced by the increase
in rubisco activity, which may have been affected by the increase in the concentration of
proteins in the leaves [38], considering that approximately 50% of the total soluble protein
content in the leaves is composed of Rubisco [52].

Although the leaf concentration of Ca did not increase in treated plants, foliar fertil-
ization with Ca likely stimulated improvements in plant photosynthetic activity, sugar
translocation, and crop productivity [45–48,53,54] because Ca functions in photosynthetic
pathways as a stomatal regulator controlling gas exchange [55,56]. There is evidence that B
indirectly affects photosynthetic capacity, since several studies suggest that B can regulate
the levels of chlorophyll, soluble proteins in leaves, photosynthetic enzymes, stomatal fre-
quency and opening, the structure of chloroplasts and thylakoids and the electron transport
chain (ETC) [37,57–61]. In addition, by acting on the transport of phloem of the plant, it
improves the draining capacity and decreases the accumulation of sugar in the leaves, thus,
B can act in the positive regulation of photosynthesis [17,62–64].

The improvement in photosynthesis may have been responsible for the observed
increase in sugar concentration. This increase in the sugar concentration in the period
before floral differentiation and pod formation directly reduces the abortion of reproductive
structures and grain filling [65,66]. Thus, foliar application of Ca + B can stimulate plant
physiological processes such as photosynthesis and increase grain production. The plants in
the treatments that received foliar Ca + B had more pods and consequently more grains per
plant [25–27]. Interestingly, Ca and B act in several processes that modulate the production
and translocation of carbohydrates in plants [67,68]. The increase in total leaf sugar content
before grain filling was efficiently redistributed to the developing organs, contributing to
greater numbers of pods and grains per plant and higher yield.
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In this study, the levels of Ca and B in the soil and in the plant [36] presented adequate
levels for the soybean crop, but the supplementation with Ca + B improved the carbon
metabolism, culminating in increases in productivity. This observation corroborates the
concept of stimulating fertilization, because soybean productivity was increased even
when these plants were already well nourished. These results support the management
performed by Brazilian farmers, in which the supply of small doses of nutrients via foliar
at strategic phenological stages can substantially contribute to the increase in yield in the
high productivity of field crops.

4. Materials and Methods
4.1. Field Description

The experiment was conducted during the 2018/2019 and 2019/2020 soybean grow-
ing seasons at the Experimental Lageado farm of São Paulo State University (UNESP) in
the southeastern region of São Paulo State, Brazil (22◦51′ south, 48◦26′ west, and 786 m
above sea level). The soil in the experimental area is classified as a Latosol, clay-textured,
kaolinitic, thermic typic Haplorthox [69]. The climate of the region is classified as Cwa
(hot mesothermic temperate) [70], with rain in summer and drought in winter. The mean
precipitation is 1.360 mm year−1, and the average annual temperature is 20.7 ◦C (mean
of 50 years) [71]. Maximum and minimum temperature, precipitation and evapotranspi-
ration data were collected from a meteorological station near the experimental area. The
climatological balance was calculated according to the method proposed by Rolim [72].

Before establishing the experiment, the granulometric and chemical properties of the
soil were determined at a depth of 0–20 cm (Table S1). Based on the soil chemical analysis,
dolomitic limestone was used to increase the base saturation (V%) to 70%. The dolomitic
limestone contained 280 g kg−1 calcium oxide (CaO), 200 g kg−1 magnesium oxide (MgO)
and 81% calcium carbonate equivalent (CaCO3) as determined using the methodology of
Quaggio and van Raij [73].

4.2. Experimental Design and Treatment Establishment

A randomized block design (RBD) was used with twelve blocks. The treatments
consisted of foliar application or not of Ca + B in two seasons. The plots were composed
of 10 rows with a length of 10 m each and an inter-row spacing of 0.45 m, resulting in an
area of 45 m2. In both growing seasons, Ca + B application was performed at soybean
phenological stage R1 (beginning of flowering) [74] as 400 g ha−1 Ca (Calcium chloride,
CaCl2.2H2O) and 40 g ha−1 B (boric acid, H3BO3) plus organosilicon adjuvant at a dose of
30 mL ha−1 (polydimethylsiloxane, d = 1.1 g cm−3) (Ubyfol, Uberaba, Brazil). Applications
were performed using a CO2 pressure box sprayer equipped with a 3.0 m boom and six
flat fan nozzles (TTI 1102 VP, TeeJet, United States) regulated at an operating pressure of
1.8 bar, resulting in a spray volume of 150 L ha−1. The treatments were applied during the
morning at temperatures of 25–29 ◦C, relative humidity of 75–80%, moist soil and wind
speed of 6.0–8.0 km h−1.

4.3. Soybean Cultivation

Mechanized sowing was performed on 11 November 2018, and 17 November 2019.
In both growing seasons, the soybean cultivar was TMG 7062 IPRO (Tropical Breeding &
Genetics®). Seeds were treated with the fungicides carboxin (1 g i. a. kg−1 of seed) and
thiram (1 g i. a. kg−1 of seed) (UPL, Campinas, Brazil) and inoculated with Semia 5079
(Bradyrhizobium japonicum) and Semia 5080 (Bradyrhizobium diazoefficiens) before sowing.
Sowing was performed at a density of 14 seeds m−1, corresponding to a population
of approximately 310,000 plants ha−1. Sowing fertilization was 60 kg ha−1 P2O5 and
60 kg ha−1 K2O in both growing seasons. Crop management during the experimental
period followed the recommendations based on soybean phenological stage proposed by
Cosmo et al. [75].
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4.4. Assessment of Soybean Chemical and Physiological Parameters
4.4.1. Crop Nutritional Status

To determine the nutritional status of the soybean plants, the third fully expanded
leaf with petiole from the apex to the base was collected from 20 plants per plot according
to Ambrosano et al. [76] at phenological stage R3 (beginning of pod formation) [74]. The
concentration of nitrogen (N) in the plant material was determined by sulfur digestion and
the Kjeldahl distillation method. The leaf concentrations of potassium (K), Ca, magnesium
(Mg), B, copper (Cu) and zinc (Zn) were determined by atomic absorption spectrometry
after extraction by nitroperchloric digestion, whereas the leaf concentrations of phosphorus
(P) and sulfur (S) were determined by colorimetry using the methodology proposed by
Malavolta et al. [77].

4.4.2. Gas Exchange Parameters

Gas exchange measurements were performed only in the 2019/2020 growing season
using a model CIRAS-3 portable gas exchange device (PP Systems Inc., Amesbury, MA,
USA). The readings started after the stabilization of the equipment with the temperature of
the lead chamber adjusted to 28 ◦C, 380 ppm of CO2 and 1.000 µmol m2 s−1 of photosynthet-
ically active radiation (PAR) provided by LED lamps. All readings were obtained between
8:00 and 10:00 a.m. The following parameters were measured in phenological stage R3: net
photosynthetic rate (A, µmol CO2 m−2 s−1), stomatal conductance (gs, mol H2O m−2 s−1),
internal CO2 (Ci, µmol mol−1), transpiration (E, mmol mol H2O m−2 s−1), water use
efficiency (WUE, µmol CO2 (mmol H2O)−1) determined from A/E, and carboxylation
efficiency determined from A/Ci.

4.4.3. Total Concentration of Soluble Sugar

The total concentration of soluble sugar was measured at phenological stage R3 in both
growing seasons using the phenol-sulfur method proposed by Dubois et al. [78], in which
sugars are dehydrated in concentrated acid and subsequently complexed with phenol. In
brief, 20 µL of supernatant was added to 0.5 mL of 5% phenol and 2 mL of sulfuric acid.
The total concentration of soluble sugar was determined by reference to a standard sucrose
curve and expressed in g kg−1.

4.4.4. Total Leaf Protein Concentration

The total leaf protein concentration was determined at phenological stage R3 in both
growing seasons. Proteins were extracted from 1.5 g of frozen plant material ground with a
mortar and pestle under liquid nitrogen and suspended in 20% PVPP and extraction solu-
tion (100 mM potassium phosphate pH 7.5, 1 mM EDTA and 1 mM DTT). The homogenized
material was centrifuged at 10,000 rpm for 25 min at 4 ◦C, and the supernatant was stored
in Eppendorf tubes at −80 ◦C. The soluble protein concentration was determined bovine
serum albumin (BSA) as a standard according to the method proposed by Bradford [79].
Aliquots of 100 µL of protein extract were mixed with 5 mL of Bradford reagent and ana-
lyzed in a spectrophotometer at 595 nm. Total protein content was determined by reference
to a standard curve constructed using BSA and expressed as mg g−1 of fresh weight (FW).

4.4.5. Photosynthetic Enzyme Activity

Ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme activity (Rubisco) was
measured in the third fully expanded leaf without petiole collected at the R3 stage in the
2019/2020 growing season only. The methodology described by Reid et al. [80] was used.
Frozen plant material (3 g) was ground with a mortar under liquid nitrogen and suspended
in 1.5 mL of extraction buffer (58 mM potassium phosphate and 1 mM EDTA). The homog-
enized material was centrifuged at 14,000 rpm for 25 min at 4 ◦C, and the supernatant was
stored at 4 ◦C. The Rubisco incubation buffer consisted of 100 mM bicine-NaOH pH 8.0,
25 mM KHCO3, 20 mM MgCl2, 3.5 mM ATP, 5 mM phosphocreatine, 0.25 mM NADH,
80 kat glyceraldehyde-3-phosphate dehydrogenase, 80 kat 3-phosphoglyceric phosphoki-
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nase and 80 kat creatine phosphokinase. A 70-µL aliquot of supernatant was incubated with
900 µL of incubation buffer at 30 ◦C for 5 min in the absence of ribulose-1,5-bisphosphate
(RuBP) to allow Rubisco carboxylation. The oxidation of NADP was initiated by adding
30 µL of 16.66 mM RuBP to the cuvette. The absorbance at 340 nm was measured in a
spectrophotometer. Enzyme activity was determined by the difference between absorbance
readings obtained at 0 and 1 min (without moving the instrument cuvette) and expressed
in µmol min−1 mg protein.

4.4.6. Agronomic Parameters and Grain Yield

After the plants reached physiological maturity, a useful area of 4.05 m2 was manually
harvested in each plot (3 rows with a length of 3 m each) to evaluate plant height (cm),
number of pods per plant, number of grains per pod, number of grains per plant, weight of
100 grains (W100G), and grain yield (Mg ha−1). Plant height was measured with a tape
measure from the base of the plant near the ground to the top. The number of pods per
plant and number of grains per pod were measured from the average of 10 plants, while
the number of grains per plant was determined by dividing the number of grains per
pod by the number of pods per plant. W100G was determined by weighing 100 grains,
and grain yield was determined by weighing all grains harvested from the crop area and
extrapolating to Mg ha−1. W100G and grain yield were corrected to 13% moisture on a dry
basis. Moisture was determined using an automatic mini GAC meter [81].

4.5. Statistical Analysis

The ordered data obtained in the evaluations were subjected to the Shapiro–Wilk
normality test [82] and the homoscedasticity test [83] (p ≤ 0.05), [84], followed by analysis
of variance (ANOVA) by the F test (p ≤ 0.05) using the statistical package SAS [85]. Foliar
application and growing season were not significant at p ≤ 0.05 for any of the variables (S2).
Therefore, data were combined across growing seasons. Results are reported as means.

5. Conclusions

Foliar application of Ca + B increased the efficiency of C assimilation and sugar
production in soybean leaves, resulting in increased pod production and grain yield. These
effects also reflect the importance of Ca and B during the reproductive phase of soybean.
The present study confirms that foliar fertilization with Ca + B at the beginning of soybean
flowering is a viable practice for increasing C metabolism and ensuring pod formation
and fixation, which directly increase soybean grain yield. Future research should focus on
the isolated and combined effects of the two elements (Ca and B) on the plant, given their
importance in the reproductive phase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11212937/s1. Figure S1: Foliar contents of N (a), P (b),
K (c), Mg (d), S (e), Cu (f) and Zn (g) in soybean as a function of foliar application of calcium (Ca) plus
boron (B); Table S1: Physicochemical attributes (0.0–0.2 m depth) before sowing; Table S2: Nitrogen
(E), phosphorus (P), potassium (K), calcium (With), magnesium (Mg), sulfur (S), boron (B), copper
(Cu), zinc (Zn), leaf protein, total soluble sugar (TS), plant height (PH), number of pods per plant
(NPP), number of pods per grain (NGPod), number of grains per plant (NGP), 100 grains weight
(W100G) and grain yield (Gy) as affected by cropping cycles and Ca + B foliar application.
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