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Abstract: Modeling crop water use and soil moisture availability is becoming increasingly critical,
particularly in light of recent drought events. Our study focuses on the spatial application of
the AquaCrop model, using a raster-based approach in an R-based environment. The formulated
methodology was initially applied and tested on two point-based examples in the Central region of
Hungary, followed by the spatial application of the model at the Rákos Stream catchment in the same
region. For evaluation purposes, we also utilized satellite-based NDVI data. The results showed that
there is a strong correlation between NDVI values and the model-based biomass estimation. We also
found that the model simulated the soil moisture content fairly well, with a correlation coefficient of
0.82. While our results support the validity of the applied methodology, it is also clear that input data
availability and quality are still critical issues in spatial application of the AquaCrop model.

Keywords: AquaCrop; soil moisture; NDVI; biomass; crop cover; spatial; Hungary

1. Introduction

Production from agriculture has greatly increased in the past century, mostly due to
productivity-enhancing technologies and an increase in efficiency in using natural resources
for the purpose of enhancing agricultural production, especially for food [1]. Good and
efficient management of natural resources still needs to be one of the goals of modern
agriculture, especially when taking into consideration the necessity of preserving the
natural environment [2].

As water management has become a critical issue for human well-being [3], for agri-
culture (crop production), different economic activities, and sustainable development [4],
proper management is required, having agricultural sector sustainability as an aim [1]. Wa-
ter is a renewable resource; however, due to increase in human population, water demands
have continuously increased, and the uneven distribution of water availability makes it
even harder to meet this demand [3,5]. Trends in terrestrial water storage indicate that
freshwater resources are significantly affected by climate change and are overutilized in
many regions [6], while water use has risen sixfold over the past 100 years [7]. Using
AQUASTAT, a study confirmed that the growth rate of water use is about 1% per year [8],
while Burek et al. [9] showed that by 2050, water use will further increase by 20–30%. Water
issues have thus become among the top risks in the coming decade and have become one
of the most important of the Sustainable Development Goals [3,6], leading to limits to
economic development and security risks [6].
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A cost-efficient way to test the response of agricultural systems to external changes
without real-time observations (monitoring) is the use of crop models. Such models have
been widely used and are receiving increased interest with improving data availability,
while their improvement, application, and calibration are still the focus of multiple stud-
ies [10,11]. AquaCrop, a model developed by the Food and Agriculture Organization of
the United Nations, is one of several different models that aid water management related
to crop production. AquaCrop has been widely used for the calculation of evapotranspira-
tion due to its strong equilibrium between robustness and precision [12]. AquaCrop is a
general model for a large range of agricultural production (herbaceous, forage, vegetable,
grain, fruit, oil, root, and tuber crops). In general, AquaCrop has been used to simulate
crop development, yield production, and water-related variables such as evapotranspi-
ration and water productivity, while considering different stress conditions [13] such as
leaf growth and canopy expansion, stomatal conductance and canopy senescence, and
pollination failure [13]. Different studies around the world have been conducted using
AquaCrop, with some examples being a simulation of the water footprint of rice and maize
in China [14], a calculation of irrigation technologies’ impact on cotton [15], and an evalua-
tion of tomato’s water needs in Italy [16]. Rakotoarivony et al. [17] applied the AquaCrop
model on a raster dataset using an R-based approach to determine spatial variations in
seasonal evapotranspiration of maize.

Soil moisture is a key component of the hydrologic cycle, which is extremely variable
and nonlinear in space and time [18], and it integrates interactions between the land
surface and atmospheric processes [19]. Undoubtedly, soil moisture influences how an
ecosystem responds to its physical surroundings by influencing the surface energy budget
and the partitioning of rainfall into runoff or infiltration [20]. In recent decades, global
climate change and human activities (such as overgrazing, mining, and water overuse)
have had a significant influence on terrestrial ecosystems, significantly affecting rangeland
ecosystems by altering land use/cover patterns and ecosystem water balances [8,19,21–23].
Soil moisture is influenced by different spatiotemporal variables such as diversity of
altitude, topography, climate, and human interactions [24]. Besides these variables, there are
others which can also affect soil moisture and are usually the ones taken into consideration
for profile-based one-dimensional modeling: soil properties and vegetation cover [25].

Nowadays, given the increasing amount of available spatial and remotely sensed
data, combined with the need for agricultural water management, an increased number of
applications require raster-based utilization of crop models. The purpose of the current
study is to demonstrate such a methodology. In data-scarce regions where accurate yield
and soil moisture measurements are not available, we can utilize remote-sensing-based
and model-based estimations. We developed a method that can be implemented on the
spatial level but can also be continuously improved based on reliable surface measurements
(ground truth). For this purpose, an R [26] based methodology [27] was developed to feed
raster-based data to AquaCrop and to ultimately generate a raster output for water- and
crop-related variables.

2. Materials and Methods
2.1. Experimental Data

To support this analysis and the usage of the developed R methodology [27], two
different sites—one in Martonvásár, Hungary (47◦18′18′′ N, 18◦48′49′′ E) and the other one
an experimental research field for MATE university in Gödöllő, Hungary (47◦35′41′′ N,
19◦22′10′′ E)—were used to validate the package results. For Martonvasar, values of maize
soil moisture were used for validation, and for the experimental field in Gödöllő, different
NDVI time series for the region were used for comparison with the modeled biomass data
and green canopy crop cover (CC). It is known from many studies how well the AquaCrop
model behaves, and it has been extensively validated [14–17], but for this paper, the points
that were analyzed were to show the importance of having the results given by AquaCrop
in a spatial manner.
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The primary focus of this study was the catchment area of the Rákos Stream and its
surrounding region, which contains the experimental field in Gödöllő. The area is situated
in the central region of Hungary, just east of the capital city of Budapest. The stream itself is
44 km long, with a 187 km2 catchment area, flowing from the Gödöllő Hills southward and
then turning west to flow into the Danube River. As the lower 22 km of the stream flows
through Budapest, where its catchment area is heavily urbanized, the current study only
focused on the upper section of the basin. Figure 1 presents the land cover of the area based
on the 2018 CORINE Land Cover dataset [28]. In 2018, about 32% of the area was covered
by artificial surfaces (such as urban or industrial areas), 35% was covered by agricultural
land (including pastures), 31% was covered by forests and semi-natural habitats (including
natural grasslands), and 1% was covered by wetlands [29].
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Figure 1. Land cover of the area based on the 2018 CORINE Land Cover dataset [28].

For the Gödöllő site, soil data were accessed from two sources. Field capacity (FC),
saturation (SAT), and permanent wilting point (PWP) data were downloaded from EU-
SoilHydroGrids ver1.0 [30] (https://eusoilhydrogrids.rissac.hu/, accessed on 13 July
2022) with 250 × 250 m spatial resolution, while soil texture data were derived from
the DOSoReMI.hu initiative [22] (with 100 × 100 m spatial resolution). Figure 2 presents
the spatial variability of the soil texture of the top 30 cm layer within the study area. For the
Gödöllő site, winter wheat was applied for both observed years (sowing dates: 1 December
2019 and 23 November 2020; harvest: 23 July 2020 and 26 July 2021).

The climate data (daily precipitation, maximum and minimum temperatures) used in
the simulation for the entire catchment were accessed from the Meteorological Database
of the Hungarian Meteorological Service (OMSZ) (https://odp.met.hu/, accessed 6 July
2022). Daily potential evapotranspiration was calculated using the Pennman–Monteith
equation [31]. Climatic data were available at a 0.1◦ × 0.1◦ spatial resolution and were
interpolated and resampled to the target 100 × 100 m grid.

For the other parameters, standard values (which are provided by FAO) were con-
sidered. As neither of the modelled crops (wheat and maize) are typically irrigated in the
region, irrigation was not applied; only rainfed conditions were considered.

As for the validation at the Martonvasar site, the necessary soil and meteorological
data for running the AquaCrop model were provided by the work of Sándor [32]. The maize
field trial was established in 2020 at Martonvásár under ploughing and minimal tillage
managements, aiming at the effect of cover crops sown for the winter period. The plot size
was 35 m × 17.5 m for each treatment. The treatments were set up in two replicates. The
maize (Zea mais L.) used on the field of the trial was sowed under conventional ploughing

https://eusoilhydrogrids.rissac.hu/
https://odp.met.hu/
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without a cover crop (i.e., the control treatment of the trial) as it represents the most typical
management in the region. The chernozem soil of the experiment is nonacidic loam with a
deep A horizon and 1.96–2.26 m% humus content. Maize was sown on the 16th of April
and harvested on the 21st of October. Soil parameters for the model were obtained using
field data on the soil physical properties and water retention. For the topsoil (0–30 cm), the
texture was silt loam (FAO), with SWC = 49%, FC = 31%, PWP = 9%, and Ks = 9 cm/d.
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For biomass and CC comparison, locally analyzed soil parameters and meteorolog-
ical data from the local meteorological station (situated at the experimental field of the
Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary) were utilized
(precipitation, temperature), and from these, the reference evapotranspiration was derived
utilizing the Pennman–Monteith equation [31].

Crop parameters for winter wheat and maize (for the Martonvásár site) were mostly
kept the same as the standard ones provided in the AquaCrop software (version 6.1,
FAO Land and Water Division, https://www.fao.org/aquacrop/en/, accessed 12 January
2021) (for the modeling). However, the number of days between sowing and emergence,
maximum rooting depth, senescence, flowering, and maturity were changed in accordance
with Szász [33], and winter wheat at the site (Gödöllő) was sown on the 1st of December
and harvested on the 23rd of July.

2.2. SpatialAquaCrop Overview

SpatialAquaCrop [27] is the name that was given to the developed R-based methodol-
ogy. It was designed to be a user-friendly method in R to read spatial datasets and utilize
the AquaCrop plug-in to run the AquaCrop model and then output the results as raster
files. In the current version of its script, it can read TIF and netcdf files, and it can output
the results as a TIF file. The output can be from a specific date or for the whole period of
the run. The script provides functions to prepare initial model conditions and to run the
AquaCrop plugin on a raster dataset.

The primary approach of the package is to run the external AquaCrop plugin software
for each raster cell in the dataset by automatically generating the required input text files
(based on user input data), running the model, reading the generated output files, and
combining them into a raster output.

To run the AquaCrop plugin, the model requires weather data (precipitation, maxi-
mum and minimum temperatures, reference evapotranspiration, and atmospheric CO2
concentration), crop data, field management, irrigation, groundwater table, some initial
conditions, if present, and the off-season conditions, if applicable. All of these must be
present in special text files which the AquaCrop plug-in can read.

https://www.fao.org/aquacrop/en/
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Therefore, as of now, there are three scripts which represent the three main functions
that aim to gather all the necessary information for the AquaCrop plug-in to run and output
them in a raster format, with all of this done in a user-friendly way. Figure 3 presents the
application workflow, while Table 1 shows an overall view of each of the functions.
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Table 1. Input and output of major R functions within the SpatialAquaCrop package.

Function Input Output

Initial_AQC

If the model will run utilizing: field management,
groundwater tables, or

irrigation;
If pre-determined crop files will be used or if

they will be manually filled

Different .csv files depending
on what the model will use to
run and a data_fill.csv which

has to be filled

Control_AQC

The filled data_fill.csv file;
soil texture; saturated hydraulic conductivity;

field capacity; wilting point; soil water content at
saturation; precipitation; maximum temperature;

minimum temperature; reference
evapotranspiration

Different .csv files containing
all the soil and climate data;
a General Input text file that

the AquaCrop plug-in uses to
run the model

Spatial_AQC The climate and soil .csv files
A .tif map of the seasonal and
daily outpts; .csv files of the

selected daily outputs

The initial function is called ‘Initial_AQC()’. It aims to give the user the option to
choose which inputs will be used for the model to run; as field management, irrigation,
and groundwater tables do not require specific data inputs, the model can run utilizing
some standard values for them. However, should specific information, such as irrigation
data, be available, the data can be provided similarly to the standard irrigation file of the
Aqua-Crop software. The function also provides a table to contain the paths of the different
input files.

The file preparation function is called ‘Control_AQC()’. This second function aims to
create the AquaCrop input files and other ones necessary for the main function.

The main function is called ‘Spatial_AQC()’. This last function aims to run all the
spatial input data and output different raster files of some of the outputs that the AquaCrop
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model can provide (crop yield, evapotranspiration, runoff, drainage, biomass, and irrigation
needed).

The scripts for this methodology are currently available at github [27], and in the
future, the goal is to transform them into a functioning package for R. Initial_AQC uses the
svDialogues [34] package to give different choices to the user on which optional inputs they
would want to use for the model run; after this, different .csv files are created depending
on the user’s choices. The second and third functions are more related to how they read the
raster files and process them into the text files that are needed for the AquaCrop plugin to
run. These functions utilize primarily the raster [35] and ncdf4 [36] packages.

2.3. General Methodology

The main goal of this research was to show the application of the AquaCrop model in a
raster format applied within the R environment. First, a point-based validation was carried
out for soil moisture for a maize field in Martonvasar for 2020. We can gain information
on the performance of the model using the default maize crop file, as site-specific data are
scarce in the area. Besides this validation, a comparison of the modelled biomass and green
canopy crop cover against NDVI was done for winter wheat at an experimental site in
Gödöllő for the years of 2020 and 2021; this comparison was done for the growth period
until around senescence. As field-scale yield information is considered to be sensitive data,
it is difficult to obtain from farmers; hence, we used NDVI as a proxy for biomass in the
validation years. Following the validation efforts, the developed R methodology [27] was
used to simulate wheat growth for the year of 2020 in the Rákos watershed region.

2.4. Point-Based Evaluation

Point-based evaluation of the AquaCrop model was carried out in two different sites:
on a maize field in Martonvásár, regarding the surface soil moisture, and in the experimental
field in Gödöllő (located inside the Rákos stream catchment), where an NDVI comparison
between the modeled biomass and green canopy crop cover (CC) for winter wheat was
made. Specific soil, climate, and crop data were taken in consideration for each of the sites
for better parametrization of the model.

First, the NDVI index was calculated via Equation (1).

NDVI =
NIR−RED
NIR + RED

(1)

For this comparison, Sentinel 2 images were used to calculate the NDVI in specific
band 8 for NIR (near-infrared) and band 4 for RED (red).

NDVI-based biomass values were calculated using Equation (2) [37].

Biomass = 10.728×NDVI1.4315 (2)

NDVI-based canopy cover (CC%) was calculated using Equation (3) [38]:

CC% =
NDVI−NDVIsoil

NDVIveg −NDVIsoil
(3)

where NDVIsoil is the NDVI value of the bare soil assumed on the sowing date (0.08 in the
present study), while NDVIveg is the NDVI value of a pure vegetation pixel (assumed to be
0.6 for wheat in this study).

The results were plotted to check for correlation, and the coefficient of determination
(R2) and correlation coefficient were calculated, where applicable. Statistical significance for
the correlation coefficient was also checked afterwards using the Shapiro–Welch t-test. This
comparison was not made for the whole length of the simulation (sowing until harvesting),
just until the crop’s senescence, which for winter wheat in Hungary is around the beginning
of June. This length was chosen because the chlorophyl concentration diminishes during
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senescence [39], lowering the NDVI value, while the biomass and CC still present a growing
trend.

3. Results

The model performance was evaluated through comparison with NDVI-based biomass
and crop cover estimates. This was done for winter wheat for the years of 2020 and 2021 at
the experimental site in Gödöllő. One important difference from both years is that in 2021
there were more available dates to calculate NDVI due to the weather conditions in the
region. Because of that, in 2021, the comparison was done until the beginning of senescence,
and for 2020, the last suitable-quality satellite data were available for the beginning of May.

Figures 4 and 5 present NDVI-based biomass estimates compared with model estima-
tions for 2020 and 2021, respectively, both indicating high correlation.
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Figure 4. Comparison between NDVI biomass and modeled biomass for winter wheat in 2020.
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Figure 5. Comparison between NDVI biomass and modeled biomass for winter wheat in 2021.

NDVI-based crop cover (CC%) is compared with model estimates in Figures 6 and 7.
Due to the low correlation levels and a visible change in point distribution around the time
of transition from tillering to erect growth (beginning of April), we also plotted values
and calculated correlations for these two sections of the crop growth stage, as presented in
Figures 8 and 9.
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Figure 6. Comparison between NDVI canopy cover and modeled canopy cover for winter wheat in
2020.
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Figure 7. Comparison between NDVI canopy cover and modeled canopy cover for winter wheat in
2021.
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Figure 8. Comparison between NDVI and model-based canopy cover for emergence/tillering (a) and
erect growth (b) of winter wheat, 2020.
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Figure 9. Comparison between NDVI and model-based canopy cover for emergence/tillering (a) and
erect growth (b) of winter wheat, 2021.

The results show a very good linear correlation between modelled and NDVI-based
biomass values, with R2 values of 0.97 and 0.91 for 2020 and 2021, respectively.

The comparison of canopy cover (CC%) presented significantly lower levels of correla-
tion, with R2 values of 0.69 for 2020 and 0.48 for 2021. However, when the datasets were
split up according to growth stages (Figures 8 and 9), the R2 values significantly improved,
particularly for the erect growth stages (Figures 8b and 9b).

Figure 10 presents the time series of modelled and measured soil moisture at the field
in Martonvásár. The calculated correlation coefficient was 0.82, with an RMSE of 7.61.
To check for statistical significance, we applied the Shapiro–Welch t-test; its result was a
p value of 0.001, indicating statistical significance. It is possible to see as well that after two
“significant” precipitation events, the values between the two timeseries started to change
such that the model error decreased, but this decrease did not happen during the days
on which the precipitation events occurred, where the difference between them was the
highest.
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Figure 10. Comparison between modeled and measured soil moisture in Martonvásar for 2020.
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Figure 11 presents some of the spatial seasonal outputs (Figure 11a, infiltration;
Figure 11b, runoff; Figure 11c, evapotranspiration; and Figure 11d, biomass) that the
methodology can produce. The resulting maps clearly indicate the spatial heterogeneity of
the area, showing that the different soil and climate properties were taken into consideration
for the studied area.
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Figure 11. Spatial variation maps of seasonal infiltration (a), runoff (b), evapotranspiration (c), and
biomass (d). (Projection: EPSG:23700.)

Runoff and infiltration (Figure 11a,b) show some correlation between them, as is to be
expected. When infiltration values are low, the runoff values in that region are higher, which
clearly shows that the soil spatial variability for the area was taken into consideration.

Figure 12 presents the spatial distribution of two selected variables on 10 September
2020, with the date selected arbitrarily, demonstrating the spatiotemporal information
generated by the applied methodology. Figure 12a. presents the spatial variation in the
water content for the rooting zone (0 to 60 cm), and Figure 12b. presents the percentage
relative evapotranspiration (actual evapotranspiration divided by the maximum evapo-
transpiration) of the simulated crop in the area.
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4. Discussion

From evaluating the soil moisture for maize in 2020 at Martonvásár (Figure 10), it is
possible to see some trends between both of the timeseries, including a significant and good
correlation coefficient between them. For the beginning of the timeseries, they showed a
difference of around 7%, but that value decreased as two “significant” precipitation events
occurred—one on 24 May and the other on 12 June. It is interesting to see that the values
tended to get closer after the precipitation events. Another important point to take into con-
sideration is how the AquaCrop model reacts faster to the rain in relation to what happens
in reality in the field. This can be explained by how AquaCrop calculates soil moisture [40]
and how it does not take into consideration some soil characteristics that would “smoothen”
this rise in soil moisture after precipitation. Other factors (such as topography-related fac-
tors) are also not considered. Differences in actual crop characteristics, as well as potential
errors in measurement, might also contribute to the difference.

One good conclusion that can be taken from this comparison is that the model works in
a good manner when compared to data collected in the field, adding to the many different
prior model validations [15–17,40].

We were able to demonstrate a good correlation between modeled and NDVI-based
biomass until the senescence period of winter wheat for this region in Hungary. This
correlation has been established with other crops as well in other different regions, but
they might be region dependent [37,41]. Despite this, it is possible to say that AquaCrop
can give good results for the modeled biomass, as they correlate quite well with the NDVI
values for the area.

As for green canopy crop cover, the R2 values were lower than those for biomass when
comparing NDVI and modelled values. However, the results seem to indicate a difference
between how AquaCrop calculates CC values and how they are estimated from NDVI,
particularly in the emergence/tillering stages of winter wheat. Lower correlation in these
stages might also indicate specific differences in the model and actual field conditions, such
as the occurrence/density of weeds within the field.

When looking at Figures 11 and 12, the calculated seasonal results can be seen and
are in line with what is expected; they show similar spatial variation, and values like
infiltration and runoff have a correlation with one another, which is expected since both of
those factors are dependent on the properties of the soil. However, in this scenario (also
limited by the applied model), the effects of topography and surface conditions (such as
ruggedness) have not been considered. According to Vereecken et al. [42] this approach can
have benefits, too, since the very detailed local parameters are usually not representative
enough for the whole modeled environment.

An advantage of the applied methodology is the potential generation of spatially
distributed daily output data, which essentially allows the generation of “data cubes” for
the specific study area, as demonstrated by Figure 12a,b. This opens the possibility for
comparison and validation with Earth observation data, as well as for related agronomical
applications, such as irrigation scheduling.

5. Conclusions

In general, we can conclude that the raster-based application of the AquaCrop model in
an R-based environment was successful, with apparent and known limitations of the model
still being present in the process. However, the methodology opens up new possibilities
for spatial application, primarily depending on data availability. We also found that the
modelled biomass values for winter wheat correlated well with NDVI-based estimates,
while canopy cover estimations were more prone to additional effects, such as the effect
of different growth stages of winter wheat on NDVI values. We believe that further
application, testing, and fine-tuning of the methodology could be beneficial for a larger
audience.
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