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Abstract: Relevant studies have demonstrated that urban green spaces composed of various types
of plants are able to alleviate the morbidity and mortality of respiratory diseases, by reducing air
pollution levels. In order to explore the relationship between the spatial pattern of urban green spaces
and air pollutant concentrations, this study takes 37 garden cities with subtropical monsoon climate
in China as the research object and selects the urban air quality monitoring data and land use type
data in 2019 to analyze the relationship between the spatial pattern and the air pollutant concentration
through the landscape metrics model and spatial regression model. Moreover, the threshold effect of
the impact of green space on air pollutant concentrations is estimated, as well. The results showed
that the spatial pattern of urban green space was significantly correlated with the concentrations of
PM2.5 (PM with aerodynamic diameters of 2.5 mmor less), NO2 (Nitrogen Dioxide), and SO2 (Sulfur
dioxide) pollutants in the air, while the concentrations of PM10 (PM with aerodynamic diameters of
10 mmor less) pollutants were not significantly affected by the green space pattern. Among them, the
patch shape index (LSI), patch density (PD) and patch proportion in landscape area (PLAND) of forest
land can affect the concentration of PM2.5, NO2, and SO2, respectively. The PLAND, PD, and LSI of
grassland and farmland can also have an additional impact on the concentration of SO2 pollutants.
The study also found that there was a significant threshold effect within the impact mechanism of
urban green space landscape pattern indicators (LSI, PD, PLAND) on the concentrations of PM2.5,
NO2, and SO2 air pollutants. The results of this study not only clarified the impact mechanism of the
spatial pattern of urban green space on air pollutant concentrations but also provided quantitative
reference and scientific basis for the optimization and updating of urban green space to promote
public health.

Keywords: public health; urban green spaces; landscape pattern; air pollution; quantitative analysis;
threshold effect

1. Introduction

The emergence and development of modern urban green spaces are closely related to
the improvement of human living environments and public health [1]. As an important
discipline for the development of human living environments, landscape architecture
provides important support in the establishment of public safety systems in urban and
rural spaces and promotes the health and wellness of residents [2]. With the accelerated
global urbanization and rapid industrial development, including the frequent occurrence
of public health incidents such as the new coronavirus pneumonia, the public health of
residents is under unprecedented threat [3]. The severe challenges posed by the pandemic
have prompted the entire society to deeply recognize the importance of public health and
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have triggered unprecedented attention to the urban built environment and the construction
of healthy urban green spaces.

As a global environmental and public health problem, air pollution has severe adverse
effects on human health. The pollutants can enter the body through the respiratory sys-
tem and affect the lungs and heart, causing cardiovascular and respiratory diseases [4].
The World Health Organization (WHO) report demonstrated that respiratory diseases
caused by air pollution in 2019 ranked fourth in the top 10 causes of death worldwide
(https://www.who.int/zh/ (accessed on 15 July 2021)). Numerous studies have verified
that short-term or long-term exposure to air pollutants, including PM2.5, PM10, NO2, and
SO2, increased the risks of mortality and morbidity, thereby posing a severe threat to the
public health of the residents [5]. As an important part of the urban ecosystem, in addition
to providing residents with green spaces for recreation and entertainment, urban green
spaces also improve air quality. The ability of different plant species, plant communities,
and green spaces along roads to retain dust and mitigate air pollution has been widely
demonstrated [6]. In addition, by optimizing the structure of urban green spaces, increasing
the areas of green spaces and green coverage could effectively reduce the concentration
of particulate matter and gas pollutants in the air, which effectively improves the urban
environment, and ultimately play an important role in promoting public health [7].

Domestic and international research on the mitigation of air pollutants in green spaces
at the micro-level has primarily focused on the ability of urban garden green spaces to
reduce air pollutant concentrations, using individual plant microstructure processes such as
sedimentation, retardation, adsorption, and absorption. For example, Latha and Highwood
demonstrated that changes in structures, such as the roughness of plant leaf surfaces, affect
the sedimentation pattern of dust particles [8]. Beckett et al. deduced that plants maintained
a higher humidity in a certain range during transpiration, and dust sedimentation is more
likely to occur when it increases in weight after absorbing moisture, while the ability of
the leaves to adsorb dust increases with an increase in their humidity [9]. In addition,
numerous studies have demonstrated the variability in the absorption of different gaseous
pollutants by different landscape plants [10–12].

The meso-level was adopted to investigate the reduction effect of the size, shape,
plant configuration, vertical structure, etc., of small- and medium-scale urban green spaces
on different pollutants. In his study on the ecological mechanism of urban open space
planning, Wang Shaozeng pointed out that the more practical the mix of green space levels,
the better the filtration effect on the atmospheric particulate matter [13]. By analyzing the
relationship between the three-dimensional green volume of green spaces along roads and
PM2.5 concentration, Sheng found that high 3D green volume did not indicate low PM2.5
concentration, and such green spaces with the uniform vertical distribution of biomass and
diverse vegetation were more effective in reducing PM2.5 concentration [14]. Fan analyzed
the correlation between the daily PM10 and PM2.5 concentrations and particulate matter
concentrations of seven typical land cover types and different scales of land cover patterns
and determined that pavement-type and low-to-medium canopy density vegetation exerted
a more significant effect on PM10 levels, while PM2.5 concentrations were more sensitive
to the response of building-type and low-to-medium canopy density vegetation [15]. In
several ways, the aforementioned studies verified that green spaces, as living media, are
one of the most important vehicles for mitigating air pollution and play a significant role in
the public health of residents and the urban environment.

Recently, studies on how to optimize the landscape pattern of urban green spaces
to reduce air pollution concentrations at the macro-level have increasingly garnered con-
siderable attention, and the current research results primarily focused on exploring the
correlation between the concentrations of PM2.5, PM10, and other pollutants, including
land use or the landscape patterns of land cover. Ye et al. [16] explored the relationship
between PM2.5 growth and land use changes in China from 1998–2015 and inferred that
PM2.5 concentrations were higher in the eastern plains and Taklamakan Desert in China,
and higher PM2.5 concentrations existed on artificial land surfaces, croplands, and deserts,
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while forests, grasslands, and unused land usually contained lower PM2.5 concentrations.
Simultaneously, the average annual increase in PM2.5 concentrations in a desert land and
artificial land surfaces was higher than that of other land types. Yue et al. [17] studied the
quantitative relationship between vegetation coverage and atmospheric particulate matter
based on remote sensing inversion and deduced that vegetation coverages of ≤10% and
>45% exhibited a significant effect on mitigating atmospheric particulate matter pollution.
Lei et al. [18] explored the effect of green spaces on particulate matter pollution by studying
the landscape patterns of urban green spaces at multiple spatial scales and determined that
increasing the biodiversity of green spaces and increasing the number of large green spaces
significantly reduced PM10 concentrations at almost all scales. Zhao et al. [19] conducted a
land use regression (LUR) analysis on the green spaces of lakes and wetlands, including
the surrounding 500-m built environment in Wuhan City, and their results demonstrated
that the lakes, wetlands, and nearby greenery exerted a positive and significant effect on
PM2.5 concentrations within a buffer zone of 300 m or closer. Via a multivariate linear
regression modeling of the daily average PM10 concentration data with land use pattern in-
formation for the cities of Vienna and Dublin, McNabola et al. [20] determined that adding
transboundary air pollution and traffic activity representations to the predictor variables
significantly improved the accuracy of LUR-based methods. Zhang et al. [21] applied the
LUR model to analyze the correlation between air pollution levels and childhood asthma
hospitalization rates, by establishing a spatial distribution LUR model of the daily pollu-
tant concentration data of PM10 and SO2 with associated influencing factors in Shenyang,
China and deduced that the number of childhood asthma hospitalizations was highly
correlated with PM10 and SO2 pollution levels. Lee and Koutrakis adopted satellite ozone
monitoring instruments together with land use parameters to develop a mixed-effects
model through which they estimated the daily NO2 concentrations in New England, and
explored the source areas of emissions (e.g., high population or traffic areas) in the study
area and elucidated the seasonal characteristics of NO2, based on NO2 spatial distribution
patterns [22]. Lu et al. [23] analyzed the landscape pattern indices and PM2.5 data in China
and demonstrated that differences exist in the significant impact indicators of different land
use types on PM2.5 concentration and that the landscape pattern indices exhibit a significant
effect on PM2.5 concentrations. De Jalón et al. [24] conducted a comparative analysis on the
effect of the dry deposition of trees on air pollution reduction for different land use types
in the Basque Country, and finally deduced that coniferous forests are the most effective
in eliminating air pollution. These research results mainly elucidated the effect of urban
land use changes on univariate air pollutants, and the pollutants were mainly PM2.5, PM10,
and other fine particulate matter. A fewer number of studies have been conducted on NO2,
SO2, and other gaseous pollutants, and these studies rarely involved any comprehensive
air pollution research on the quantification and regulation strategies of the concentration
of mixed pollutants of gases and particulate matter, including the spatial distribution of
urban landscape patterns.

On this basis, this study takes 37 garden cities with subtropical monsoon climate in
China as the research object, selects the urban air quality monitoring data and land use
remote sensing data in 2019 to analyze the relationship between the landscape pattern
index and the air pollutant concentration through the spatial regression model method.
Also, a new threshold effect estimation method based on a polynomial model is designed
to explore the threshold effect of green space landscape patterns on air quality [25,26].

2. Results

In this paper, regression modeling tools in GeoDa software are used to conduct SEM
regression analysis, and the results obtained are shown in Table 1.
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Table 1. Conclusion of thresholds for landscape pattern indices.

Variable p Threshold p Threshold p Threshold p Threshold

PM2.5 PM10 NO2 SO2

Forest
land

PLAND 0.569 0.161 0.774 0.09 * 50
PD 0.41 0.513 0.091 * 0.0718 0.003 *** 0.038
LSI 0.059 * 18.018 0.323 0.204 0.493

Grassland
PLAND 0.847 0.764 0.816 0.031 ** 3.33

PD 0.571 0.751 0.9902 0.000 *** 0.121
LSI 0.182 0.499 0.818 0.000 *** 14.13

Farm land
PLAND 0.247 0.537 0.592 0.001 *** 32.56

PD 0.652 0.921 0.624 0.925
LSI 0.309 0.592 0.774 0.139

*** p < 0.01, ** p < 0.05, * p < 0.1. Correlations significant at the level of 0.1 are marked in bold.

2.1. Regression Analysis of Landscape Pattern Indices and Air Pollutants

PM2.5 concentrations were significantly and negatively correlated with the LSI of
forestlands; each unit increase in the landscape shape index of the forestlands was followed
by a 0.68 unit decrease in the PM2.5 pollutant concentration. NO2 concentration was
significantly and negatively correlated with the PD of forestlands. With each unit of increase
in the PD of forestlands, the concentration of the NO2 pollutant was subsequently reduced
by 258.409 units. However, Grasslands and farmlands had no significant correlation
with PM2.5 and NO2 pollutant concentrations. SO2 concentrations were significantly and
positively correlated with the PD of forestlands, PLAND, and LSI of grasslands, where
the relationship between SO2 pollutant concentrations and the PD of forestlands and LSI
of grasslands was highly significant (p < 0.01). SO2 concentration was significantly and
negatively correlated with the PLAND of forestlands, PD of grasslands, and PLAND of
farmlands, where the PD of grasslands and PLAND of farmlands were highly significantly
correlated with the SO2 pollutant concentration (p < 0.01). When the PD of forestlands,
PLAND, and LSI of grasslands increased by one unit, the SO2 concentration increased by
149.939, 0.752, and 0.429 units, respectively. When each unit of PLAND of forestlands, PD
of grasslands, and PLAND of farmlands increased, the SO2 concentration was reduced
by 0.073, 214.564, and 0.172 units, respectively. In contrast, SO2 concentrations were not
significantly affected by the LSI of forestlands, and the PD and LSI of farmlands.

From the results of the spatial correlation analysis between the landscape pattern in-
dices of green spaces and air pollutants in the 37 cities, it was determined that the landscape
pattern of urban green spaces was significantly associated with the concentrations of PM2.5,
NO2, and SO2 pollutants in the air, while the concentrations of PM10 pollutants were not
significantly affected by the pattern of green spaces. Meanwhile, LSI, PD, and PLAND of
forestlands influenced the concentration of the three types of air pollutants, respectively.
In addition, the PLAND, PD, and LSI of grasslands and PLAND of farmlands exert an
additional influence on the concentration of SO2 pollutants.

2.2. Threshold Effect of the Impact of Landscape Pattern Indices on Air Quality

To further validate the relationship between the landscape pattern indices and the
concentrations of the four pollutants, this study conducted regression analysis and linear
fitting on the four pollutant concentrations and their landscape pattern indices, with EXCEL
revealing significant effects on them. After comparing the R2 of the function’s trend line,
it was deduced that the overall effect of the polynomial fit was better than several other
types of functions in the experiment; hence, the polynomial was chosen for linear fitting in
this study.

2.2.1. Threshold Effect of the Impact of Landscape Pattern Indices on PM2.5

Table 1 indicated that the LSI of forest land has a significant negative effect on the
concentration of PM2.5 (p < 0.1). Therefore, this study analyzes the influence trend of PM2.5
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concentration change to determine the threshold range of forest land LSI. It is found that the
concentration of PM2.5 will first decrease and then increase with the increase of forest land
LSI. According to the fitting calculation of the polynomial function, the coordinate value
of the polynomial vertex of the forest landscape shape index is [18.02, 37.94]. Therefore,
when the landscape shape index of the forest is 18.02, the minimum concentration of PM2.5
reaches 37.94 µg/m3. Therefore, this study found that the LSI value of 18.02 is the threshold
of forest land (Figure 1).
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2.2.2. Threshold Effect of the Impact of Landscape Pattern Indices on NO2

From Table 1, it was clear that the PD of forestland exerted a significant effect on NO2
concentration (p < 0.1); therefore, the study determined the range of both thresholds by
analyzing the trend of the effect of NO2 concentration changes. From the equation curve in
Figure 2, it can be observed that the NO2 concentration exhibited a decreasing trend, and
then started increasing with the increase in the PD of the forestland. From the function
calculation, the value of the polynomial vertex coordinates of the PD of forestland was
[0.072, 29.161]; hence, when the forestland patch density was 0.072, the NO2 concentration
reached the minimum of 29.161 µg/m3. Therefore, 0.072 was deduced to be the threshold
value for the PD of forestland in this study (Figure 2).
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2.2.3. Threshold Effect of the Impact of Landscape Pattern Indices on SO2

PD and PLAND of the forest, PD, and LSI of grassland, and PLAND of farmland will
affect the concentration of SO2 pollutants, significantly. Through linear analysis of SO2
concentration change influence trend, the threshold results of 6 indicators are determined
as follows.

For forest land, the concentration of SO2 will increase first and then decrease in the
forest. Through polynomial fitting, it is found that when the PLAND of forest value is 50%,
the SO2 concentration reaches the maximum value of 8.7 µg/m3. When the PD value of
forest land is 0.038, the SO2 concentration reaches the maximum value of 8.72 µg/m3. In
consideration of air quality and public health of residents, the optimal range of PD and
PLAND of forest land is greater than or less than 50% and 0.038.

For grassland, the concentration of SO2 will increase first and then decrease with the
increase of PD and PLAND of grassland. When the PLAND value of grassland is 3.33%,
the SO2 concentration reaches the maximum value of 8.72 µg/m3. When the PD value
of grassland is 0.121, the SO2 concentration reaches the maximum value of 9.545 µg/m3.
Also, the SO2 concentration will decrease first and then increase with the increase of LSI
of grassland, when the grassland LSI value is 14.13, the SO2 concentration reaches the
minimum value of 7.84 µg/m3.

For farmland, the concentration of SO2 will increase first and then decrease with the
increase of PLAND of farmland. When the PLAND value of farmland is 32.56, the PLAND
value of 8.78 µg/m3. Therefore, this study found that 32.56 is the threshold of the PLAND
value of farmland (Figure 3).
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3. Discussions
3.1. Impact Mechanism of Landscape Pattern Index on Air Pollutant Concentration
3.1.1. Impact Mechanism of Landscape Pattern Index on PM2.5

The results of spatial regression analysis showed that the LSI of forest land had
a significant negative effect on the concentration of PM2.5, which was consistent with
the results obtained by previous studies and indicated that increasing the contact area
between the edges of the green space patches and surrounding urban areas at large spatial
scales significantly reduces PM2.5 concentrations [18]. PM2.5 primarily originates from
industrial emissions, traffic emissions, and the burning of biomass, and is mainly present
on roads, factories, and surrounding farmland in built-up areas [27]. When the LSI of
forestland was elevated, the complexity of its patch edge also increased, and the contact
area between the forestland patch edge and urban construction land was subsequently
elevated. As the contact area between vegetation and PM2.5 particulate matter increased,
the effect of dust reduction via vegetation leaf surface villi retardation, stem adsorption, and
stomatal absorption by plants was enhanced, while the concentration of PM2.5 pollutants
reduced [28,29].

3.1.2. Impact Mechanism of Landscape Pattern Index on NO2

The results of spatial regression analysis showed that the PD of forest land had a
significant negative effect on the concentration of NO2, which indicated that increasing
the contact area of forestland with NO2 pollutants was beneficial to the reduction of NO2
pollutant concentration.
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The main sources of NO2 in the atmosphere are industrial and motor vehicle exhaust
emissions [30]. Therefore, NO2 air pollution mainly exists in urban industrial areas with
large traffic emissions. Studies have demonstrated that plants can absorb NO2 through
their leaves [31]. The forestland patches outside the urban constructed land have a large
area; however, NO2 was mainly generated in the built-up area and blocked by high-density
buildings; hence, the contact area between urban forestland and NO2 pollutant gas was
small, and increasing the forestland area exhibited no significant effect on the weakening
effect of the overall urban NO2 pollutant concentration. Increasing the density of forestland
patches in the built-up area enhanced the number of public green spaces in the city, and
measures were taken to insert greenery in the edges, especially the greening of industrial
areas, and street greenery was appropriately sufficient in moving plant leaves to come into
contact with more polluting gases while playing a more significant role in the improvement
of urban NO2 pollutant gases.

3.1.3. Impact Mechanism of Landscape Pattern Index on SO2

The results of spatial regression analysis showed that the PLAND of forest land, PD of
grassland, and PLAND of farmland had a significant negative effect on the concentration of
SO2. And the PD of forest land, PLAND of grassland, and LSI of grassland had a significant
positive effect on the concentration of SO2.

The production of SO2 in urban air pollution mainly originates from coal combustion
and industrial emissions, and studies have demonstrated that SO2 concentrations were
lower in areas with rich vegetation under different spaces in cities [32]; hence, the increase
in the area share of forestland patches effectively enhanced the efficiency of SO2 absorption
by urban plants and reduced the SO2 air content in cities. Simultaneously, as a gas, SO2
was more susceptible to wind speed, temperature, and humidity; hence, the single vertical
structure of grass greenery was more conducive to the circulation of urban winds and
the transportation of SO2 pollutants from the inner city to the outer city, to achieve a
lower average SO2 concentration [33]. The diffusion of SO2 is mainly influenced by wind
speed and direction, and in areas with high building density due to the blockage of tall
buildings resulting in low internal wind speed, SO2 concentration was not easily diffused.
Therefore, with the increase in the proportion of farmland area, the degree of SO2 diffusion
was accelerated and the concentration was reduced [34]. Meanwhile, cities with relatively
large areas of farmland generally have industries positioned as agricultural cities, such as
Henan Province, which is a largely agricultural province in China, including Xinyang and
Nanyang, and these areas have low average SO2 concentrations.

As the density of forestland patches increased, SO2 concentration increased, and
related studies have demonstrated that the larger the average area of green space patches
in urban landscapes, the lower the fragmentation index, and the greater the role of green
spaces in air pollution purification. In addition, when the degree of fragmentation of
forestland was more severe, it could not function as an effective urban green heart, and the
fragility of the landscape structure reduced the absorption capacity of SO2 [35]. As the ratio
of the area occupied by grass increased, SO2 concentration increased. It was speculated that
the reason for this result might be that the decrease in the number of plant leaves (the main
organ of SO2 absorption by plants) in grass patches resulted in the subsequent decrease
in the efficiency of SO2 absorption by green spaces [36]. Therefore, it was inferred that in
addition to improving the air purification capacity, increasing the density of grass patches
with small areas and low edge complexity also reduces economic costs.

3.2. Threshold Mechanism of Landscape Pattern Index on Air Pollutant Concentration
3.2.1. Threshold Effect of PM2.5

The LSI of forest land is related to the edge complexity and patch density of green
space patches. The increase in LSI value can enhance the energy flow and exchange between
green patches and surrounding patches and create more interaction opportunities for source
and sink landscapes, so as to absorb and settle more pollution particles and reduce the
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concentration of PM2.5 [37]. However, as the LSI of forest land continues to increase, the
patch density then increases the degree of green space fragmentation increases, and the
abatement between forest land edges and air pollutants cannot offset the increasing amount
of air pollution due to urban green space fragmentation, and PM2.5 concentrations then
continue to rise to show a trend of first decreasing and then increasing [38].

3.2.2. Threshold Effect of NO2

As the PD of forest land keeps increasing, NO2 concentration shows a trend of first
decreasing and then increasing. When the density of forested land patches increases con-
tinuously from 0, the intra-urban green space gradually transitions from single-core large
green space to multi-core green space. With the connection of streets, rivers, and other green
channels, the multi-core urban green space plays a greater ecosystem service function, more
contact area of air pollutants, and higher efficiency of material exchange and energy circu-
lation, which is conducive to the reduction of NO2 pollutant concentration [39]. However,
with the increasing density of forest land patches, the urban green space system transitions
from multi-core green space to green space patch fragmentation, and the concentration of
NO2 pollutants then increases [40].

3.2.3. Threshold Effect of SO2

Except for the LSI of grassland, with the increasing values of PLAND and PD of forest
land, PLAND and PD of grassland, and PLAND of agricultural land, the trend between the
landscape pattern index and SO2 concentrations of different green space types was first
increasing and then decreasing.

Green space is a sink landscape for mitigating urban SO2 pollution, which can adsorb
and absorb and deter SO2 through plant leaves and branches, while urban construction
land is a source landscape for SO2 pollutants [41]. The decrease in the area share of forest
land patches is often associated with cities with high levels of development. According
to relevant studies showing more, developed cities with relatively well-developed envi-
ronmental measures and more rational urban master plans, as well as industrial structures
with the upgrading and transformation of heavy industries to light industries and high-tech
industries, tend to have lower pollution levels. The opposite is often true in medium-sized
developing cities. Such cities are still at the stage of economic development, with more
types of industries and insufficient attention to the environment, resulting in the reduction
of SO2 air pollution by vegetation in such cities being much lower than the SO2 emissions,
and therefore the pollution concentration is higher. With the increasing area of forest
land emissions and reductions gradually reaching a balance or even vegetation reduction
exceeding the local pollution emissions air pollution levels are reduced again [42,43].

3.3. Implications for Urban Planning and Management Policies

In the context of optimizing and renewing the landscape patterns of urban green
spaces, several studies have demonstrated that regulating land use patterns by carefully
planning the morphology and layout of green space networks effectively improves air
quality and enhances the public health of residents. Based on the aforementioned findings,
we made the following recommendations for the improvement of air pollution in cities
with subtropical monsoon climates.

Forestland, grassland, and farmland can inhibit the concentration of PM2.5, NO2, and
SO2. The grassland area in the urban built-up area should be properly controlled, the forest
coverage should be gradually increased, the restoration and reconstruction of damaged
forest land should be accelerated, the integrity and stability of the ecosystem should
be improved, the urban green space landscape pattern should be reasonably controlled
through scientific basis, and the production and living ecological space layout should
be coordinated.

For cities with NO2 and SO2 as the main pollutants, the pollutants can be reduced
systematically by reasonably arranging the land use pattern of forest land, grassland,
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farmland, and other green areas, and cooperating with each other. When the PD value of
forest land is about 0.072, the overall value of urban NO2 pollutant concentration reaches
the optimum. When the land and PD values of forest land are away from 50% and 0.038, the
land and PD values of grassland are away from 3.33% and 0.121, and the LSI of grassland
reaches 14.13, the urban SO2 pollutant concentration reduction effect is the best. Therefore,
reasonable urban green space planning should be carried out to optimize the density of
green space patches and evenly distribute the types of green space patches, to achieve a
close relationship between various land uses and better alleviate air pollution. Through
the way of inserting green in the gap, the coverage of urban green space can be improved
economically and efficiently, and the contact area between green space and air pollutants
can be increased to better improve the air quality level.

PM2.5 mainly comes from industrial waste gas emission, traffic emission, and biomass
combustion, and mainly exists in roads and factories in built-up areas. China’s subtropical
monsoon climate zone is in the stage of rapid urban development, and it is difficult
to reduce traffic emissions and industrial emissions. However, PM2.5 pollution can be
improved by optimizing the landscape pattern of urban green space. When the LSI of
forest land reaches 18.02, the overall value of PM2.5 pollution concentration is the best. It is
suggested to reasonably arrange the urban green space area. For the streets and factories
with large traffic and industrial emissions, we will focus on improving the greening level
of the streets, appropriately increasing the contact area between the street green space
and PM2.5, improving the vertical structure of the urban green belt, block, and absorb
PM2.5 pollutants to the greatest extent, and reduce the transmission route. In addition,
the treatment efficiency of polluted gas in the factory shall be strictly controlled to reduce
air pollution.

The comprehensive management of unused land and inefficient land should be pro-
moted to form a reasonable and efficient urban green landscape pattern. At the same time,
it is suggested to promote the development of residents’ lifestyle and consumption concepts
towards green, healthy, and low-carbon. The scientific achievements in the prevention and
control of PM2.5, NO2, and SO2 pollution should be actively disseminated to the residents
so that the relevant departments can implement the relevant pollution control measures
more smoothly, and the residents can support the air pollution control.

In addition, the results of the spatial regression model in this study also show that air
pollution has obvious spatial effects, so it is not feasible to carry out internal air pollution
control for a single city. From the perspective of urban agglomerations, we should coordi-
nate and plan the air pollution control policies among cities, jointly improve the regional air
quality level and reduce the threat of air pollution to residents’ public health. At the same
time, our results show that the careful planning of urban green space landscape patterns
has brought some positive benefits to air pollution, but compared with traffic emissions,
industrial emissions, and biomass combustion, the role of pollutant gas emissions is still
limited. Therefore, improving the rationality of urban green space landscape patterns is
on the one hand. On the other hand, we should also attach great importance to energy
efficiency and traffic management, further promote the reform of industrial structure, and
eliminate backward industries with high pollution and high consumption. Finally, it aims
to increase the proportion of high-tech industries, promote China’s transformation from
incremental expansion to stock revitalization, improve development quality and resource
utilization efficiency, and reduce air pollutant emissions from the source.

3.4. Research Innovations and Limitations

As early as the end of the last century Wickham et al. [44] proposed an integrated
assessment of the environmental condition of a large region, by combining data on land
cover, population, roads, rivers, air pollution, and topography. In 2009, Rafiee et al. [45] ap-
plied a combination of remote sensing image classification, landscape indicator assessment,
and vegetation indices, to explore changes in urban landscape patterns and provide an
assessment of changes and trends in urban living environments. Recently, there has been
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an increasing interest in applying remote sensing images to investigate the role of changes
in urban land use patterns on air pollution concentrations. In 2015, Wu et al. [46] adopted
landscape indicators such as PLAND, PD, ED, SHEI, and CONTAG to explore the effect of
urban landscape patterns on PM2.5 pollution and determined that vegetation and water
bodies were significant landscape components that reduced PM2.5 concentrations. In 2016,
Xu et al. [47] explored the quantitative relationship between land use and air quality (SO2,
NO2, and PM10) through binary correlation analysis, and the results indicated that land use
had a significant effect on air quality. For each standard deviation increase in construction
land, NO2 concentrations increased by 2%. For one standard deviation increase in water
bodies, SO2 or PM10 concentrations decreased by 3–6%. Although this study quantified the
role of land use type on air pollution levels, it did not explore the quantitative relationship
between land use effects on PM2.5. In 2020, Li et al. [48] studied the non-linear effects of land
use distribution on PM2.5, using the boosted regression tree method to capture the effects
of land use scale on PM2.5 in different seasons. It was inferred that when the grassland and
forestland areas were below 8% and 20%, respectively, the air quality improved significantly
with the increase in grassland and forestland areas. When the distribution of construction
land was greater than approximately 10%, PM2.5 pollution increased significantly with the
increase in the construction land area. This study was the first to identify the threshold
for the effect of land use type on PM2.5 concentrations. However, the role of the effect on
the three air pollutants such as PM10, NO2, and SO2 is yet to be addressed. Most of the
aforementioned studies adopted linear regression models to explore the role of land use
types on air pollutants, which could not comprehensively incorporate the spatial effects
between cities into the study, and also failed to demonstrate how the effects of landscape
patterns on multiple air pollutants varied with changes in landscape pattern indices. On
this premise, this study employed a spatial regression model approach to regress air pol-
lutant concentrations and landscape pattern indices in 37 subtropical monsoon climate
garden cities of China in 2019, to explore the core landscape pattern indices that exhibited
significant effects on air pollution concentrations and the optimal core indicator thresholds
for mitigating urban air pollution, to quantify the spatial effects of the landscape pattern
indices on air pollutants, using urban spatial effects as a starting point, and then a general
framework that differed from existing studies was proposed. In addition to focusing on
quantifying the negative or positive effects of landscape pattern indices on air pollutant
concentrations, to a certain extent, this study also reflected the appropriate threshold values
of landscape pattern indices for reducing air pollution concentrations, which provides
quantitative reference and technical support for urban planning in a more targeted manner.

However, in general, this study had some limitations. Firstly, the spatial resolution of
satellite remote sensing images in this study is low, and there may be a certain misclassifi-
cation of patch types, which may cause deviation to the impact indicators of air pollution.
At the same time, because the research object is a large city with a subtropical monsoon
climate, it is not universal for other climate belt cities. In addition, the image data used
in our study provide a reference for the overall land use pattern of the whole city. The
conclusion is that it provides a reference for the overall planning of urban green space
landscape patterns from a macro perspective. The role of small-scale urban green space in
reducing pollutants needs to be further discussed. At the same time, in order to ensure the
accuracy of the urban green space landscape pattern indicators, the image data selected
in this study are all summer image data, but the air pollution data is the annual average
value of pollutants. Due to the seasonal changes, the green space coverage of a few cities in
winter is reduced, so the impact analysis of this study on air pollutants is still insufficient.
Therefore, based on the above shortcomings, in future research, we will expand the sample
number of research objects, improve the accuracy of remote sensing data, and analyze the
urban landscape pattern and air pollutant concentration in different seasons and climate
zones respectively, so as to reduce variables, improve universality and research accuracy,
and put forward more targeted urban green space landscape pattern planning strategies.
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4. Materials and Methods

In this study, firstly, we take 37 garden cities with subtropical monsoon climate as the
research unit and take the annual average concentration of PM2.5, PM10, NO2, and SO2
and the landscape pattern index of these 37 cities in 2019 as the dependent variable and
independent variable, respectively, to carry out the spatial regression model. Based on the
output of the model, the impact mechanism between landscape pattern index and PM2.5,
PM10, NO2, and SO2 pollution was explored. Finally, a new threshold effect estimation
method based on a polynomial model is designed to explore the threshold effect of green
space landscape patterns on air quality (Figure 4).
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4.1. Study Region

The subtropical monsoon climate zone is one of the four major climate zones in China,
covering approximately a quarter of China’s land area. It supports almost 600 million
people in China, is the most densely populated region in China, and mainly includes the
Yangtze River Delta region, Pearl River Delta region, and middle reaches of the Yangtze
River, including other areas of China’s economic center, where the level of economic
development and urban landscaping are at a relatively high level in the country. With the
advancement of urbanization, the original urban ecological network structure has been
destroyed, owing to the drastic changes in urban land use patterns caused by the population
concentration and rapid industrial development; in addition, the subtropical monsoon
climate region has also become the region most threatened by air pollution in China, which
exposes the public health of residents to tremendous pressure [49,50]. Considering the
substantial influence of natural climate on urban air quality, to improve the accuracy of
this study, 37 “national garden cities” with a population size of more than 4 million people
and complete air quality data for 2019 were selected from the subtropical monsoon climate
zone of China as the research objects of this study. According to the “National Garden
City Standards” adopted by the Ministry of Housing and Urban-Rural Development of
the People’s Republic of China, garden cities are cities with balanced distribution, practical
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structure, perfect functions, beautiful landscapes, fresh and comfortable human living, and
ecological environments, safe, and pleasant. In addition, they were adopted as examples to
investigate the effect of landscape patterns of urban green spaces on air pollution levels
(see Figure 5, Appendix A).
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4.2. Data Sources

Air quality index data were obtained from the “2019 National Air Quality Monthly
Report” published by the Ministry of Ecology and Environment of the People’s Republic
of China (http://www.mee.gov.cn/ (accessed on 13 September 2020)). In addition, the
specific distributions of the air pollution index data (PM2.5, PM10, SO2, and NO2) for the
37 cities are presented in Figure 6, while the population data were obtained from the
“2020 City Yearbook” for each city provided by the National Bureau of Statistics of China
(http://www.stats.gov.cn/ (accessed on 1 September 2020)), and the number of permanent
residents in 2019 was selected as the population index (Figure 6). The 37 urban land use
classification maps in this study were obtained from the MCD12Q1.006 land use type
product of the 2019 MODIS/Terra, provided by the official USGS online platform with
a resolution of 500 m (https://www.usgs.gov/ (accessed on 20 September 2020)). The
urban land use map was converted to a tiff format by ArcGIS10.3 and then imported into
FRAGSTATS for calculations, to obtain the data for patch-level landscape pattern indices
(Appendix B).

http://www.mee.gov.cn/
http://www.stats.gov.cn/
https://www.usgs.gov/
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4.3. Landscape Pattern Indices

To some extent, the landscape pattern indices capture the intrinsic spatial structure
of the environment and enhance the interpretation of spatial patterns and characteristics
of the landscape and are now widely used to measure landscape patterns [51]. Based on
the results obtained from previous related studies and validation experiments, we selected
three landscape indicators to measure the urban landscape pattern of the study region, these
indexes are patch proportion in landscape area (PLAND), patch density (PD), and landscape
shape index (LSI). The reason why these three indicators are selected is that they are not
only widely used to describe the fragmentation, irregularity, and complexity of urban
landscape patterns, but also have a more direct macro control effect on the adjustment and
optimization of urban green space landscape pattern in the later stage, which is conducive
to clarifying and standardizing the follow-up policymaking. Patch proportion of landscape
area (PLAND) is the proportion of different landscape patch types in the overall land area
percentage measurement, which can help us judge the proportion of this patch type in the
overall spatial pattern The patch density (PD) represents the number of patches of a certain
type within 100 hectares and can reflect the spatial pattern of the landscape. Its value has a
positive correlation with the fragmentation of patch types. The greater the density index,
the higher the fragmentation of the patch type. The landscape shape index (LSI) is a robust
index used to describe the complexity of urban morphology through the ratio of urban
patch perimeter. The larger the LSI value, the more irregular the patch shape, the higher
the landscape complexity, and the lower the stability. The above indicators are calculated
using FRAGSTATS 4.2 software (Table 2).
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Table 2. Landscape pattern indices.

Metrics (Abbreviation) Calculation Formula Description

Percentage of landscape
types (PLAND) PLAND = 1

A ∑n
j=1 aij

PLAND quantifies the
proportional abundance of

each patch type in the
landscape (percent)

Patch density (PD) PD = 1
A ∑M

j=1 Nj

PD expresses number of
patches on a per unit area for
considered class (number per

100 hectares)

Landscape shape index
(LSI) LSI = 1

A ∑n
j=1 E

LSI expresses the larger LSI
value is, the more complex

landscape shape is.

4.4. Spatial Regression Modeling Methods

In this study, to investigate the quantitative influence of the landscape patterns of
urban green spaces on air pollutants, the PLAND, PD, and LSI of three land use types
(forestland, grassland, and farmland) were selected as the independent variables of air
pollutant concentration that influence factors for spatial regression analysis.

First, in the selection of the model, after the regression analysis. The calculation of
Moran’s I index for air pollutants using the GeoDa software revealed that the Moran’s I
index was 0.57, and the model exhibited a significant spatial correlation. This indicated that
air pollutants exhibit spatial interactions, and their effects could spread through adjacent
regions, which confirmed that local and regional landscape pattern changes directly or
indirectly affected their surrounding air pollutant concentrations. Therefore, the spatial
regression model can better reveal the relationship between air pollutant concentration and
landscape green space pattern.

Secondly, the regression results of the spatial autoregression model (SAR) and spatial
error model (SEM) were compared in Table 3. The evaluation indicators for the goodness of
fit of the spatial regression model included the coefficient of determination R2, the natural
logarithm of the likelihood function (log-likelihood, logL), Akaike information criterion
(AIC), and Schwarz Criterion (SC). Among them, the value range of R2 is (0,1), and the
closer R2 is to 1, the better the regression fit of the model. In addition, the higher the logL
value, and the smaller the AIC and SC values, the better the regression effect of the spatial
regression model. For the selection of the optimal spatial regression model, the R2 and
logL values of the SEM model were higher than those of the SAR model in the regression
model information of the four pollutants, while the AIC and SC values of the SEM model
were smaller for the remaining three pollutants, except for PM10 of the SEM model, which
was 0.04 greater than the SAR model, thus implying that the regression results of the SEM
model simulating air pollutants were better. thus, implying that the regression results
of the SEM model simulating air pollutants were better. After comprehensive analysis
and comparison, the SEM was selected for the spatial regression of the four atmospheric
pollutants in this study. Therefore, this research established an SEM using the air pollutant
concentrations of 37 Chinese cities as the dependent variables and the landscape pattern
indices of the green spaces of each city as the independent variables [52,53].

Y = β1X1 + β2X2 + β3X3 + . . . . . . + β9X9 + ε (1)

where Y denotes the dependent variable, i.e., pollutant concentration; Wy is the spatial
weight matrix; ρ denotes the spatial regression coefficient of the spatial weight matrix WY,
which is adapted to indicate the spatial interaction of air pollution; X1–X9 represents the
impact factors of landscape pattern indexes (PLAND, PD, LSI) for three types of urban
green space: forest land, grassland, and farmland, respectively (The independent variables);
β1–β9 denote the regression coefficients of independent factors such as landscape pattern
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indices; ε denotes the random error. This was ultimately utilized to establish the SEM
spatial regression model between pollutant concentrations and landscape patterns in 2019.

Table 3. Information comparison of SEM and SAR models.

Model R2 LogL AIC SC

PM2.5
SEM 0.747 −116.730 265.46 291.662
SAR 0.716 −116.772 267.543 295.382

PM10
SEM 0.744 −123.79 279.581 305.782
SAR 0.73 −122.789 279.577 307.416

NO2
SEM 0.549 −108.694 249.39 275.591
SAR 0.525 −111.464 256.928 284.767

SO2
SEM 0.6339 −60.004 152.01 178.211
SAR 0.41 −67.446 168.894 196.733

5. Conclusions

Urban green space is an effective tool to improve air quality. Quantifying the relation-
ship between urban green space landscape patterns and air pollution concentration is of
great significance to promote the public health level and sustainable development of resi-
dents in high-density population areas. This study takes 37 garden cities with subtropical
monsoon climate in China as the research object, selects the urban air quality monitoring
data and land use remote sensing data in 2019, carries out regression analysis on urban
air pollutant concentration and landscape pattern index through spatial regression model
method, and explores the relationship between landscape pattern index and air pollutant
concentration, According to the above regression analysis results, the landscape pattern
index threshold with significant correlation with air pollutant concentration was explored.
The specific conclusions are as follows:

(1) The landscape pattern of urban green space was significantly correlated with the
concentrations of PM2.5, NO2, and SO2 pollutants in the air, while the concentrations
of PM10 pollutants were not significantly affected by the green space pattern.

(2) Among them, the patch shape index (LSI), patch density (PD), and patch proportion
in landscape area (PLAND) of forest land can affect the concentration of PM2.5, NO2
and SO2, respectively. The PLAND, PD, and LSI of grassland and farmland can also
have an additional impact on the concentration of SO2 pollutants.

(3) The study also found that there was a significant threshold effect on the impact
mechanism of urban green space landscape pattern indicators (LSI, PD, PLAND) on
the concentrations of PM2.5, NO2, and SO2 air pollutants. When the PD value of forest
land is about 0.072, the overall value of urban NO2 pollutant concentration reaches
the optimum. When the land and PD values of forest land are away from 50% and
0.038, the land and PD values of grassland are away from 3.33% and 0.121, and the
LSI of grassland reaches 14.13, the urban SO2 pollutant concentration reduction effect
is the best.

The results of this study not only clarify the impact mechanism of the landscape
pattern of urban green space on air quality but also propose a polynomial-based thresh-
old effect estimation method, which provides quantitative reference and scientific basis
for the optimization and updating of urban green space landscape patterns to promote
public health.
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Appendix A

Table A1. The effect of landscape patterns of urban green spaces on air pollution levels.

Greening
Indicators Air Quality Indicators Social

Indicators

Serial
Number Name Greening Rate PM2.5 (µg/m3) PM10 (µg/m3) NO2 (µg/m3) SO2 (µg/m3) Population

Ten Thousand

1 Guiyang 38.20 26.66 47.00 21.16 9.66 497.14
2 Taizhou 38.20 26.66 48.67 21.66 4.41 614.00
3 Nanning 34.08 30.33 52.75 29.33 9.08 734.48
4 Ningbo 37.87 28.50 47.33 35.50 7.91 854.20
5 Wenzhou 34.49 28.00 52.92 33.83 7.58 930.00
6 Jiangmen 41.62 26.66 73.83 32.08 7.00 463.03
7 Zhaoqing 37.99 31.75 48.00 33.50 9.33 415.17
8 Jinhua 38.15 32.41 54.4 34.41 7.16 562.40
9 Yichun 44.65 35.42 59.41 23.75 13.33 558.26

10 Yancheng 39.10 39.50 66.08 24.00 4.75 720.89
11 Jiaxing 36.15 25.33 56.25 32.75 6.66 480.00
12 Nantong 40.00 36.66 55.00 31.58 10.50 731.80
13 Dongguan 37.50 31.91 48.42 36.58 9.66 846.45
14 Shaoxing 37.19 38.00 61.58 31.58 6.91 505.70
15 Foshan 42.50 29.75 56.16 41.08 9.08 815.86
16 Nanchang 38.51 35.5 69.33 33.50 8.58 560.05
17 Guangzhou 39.91 30.00 52.66 44.83 6.83 1530.59
18 Changde 39.31 47.66 60.00 22.66 8.00 577.13
19 Xiaogan unavailable 43.33 72.25 21.25 7.08 492.10
20 Huanggang unavailable 40.25 73.08 24.91 9.66 633.30
21 Jiujiang 44.75 45.92 63.50 29.91 10.91 492.03
22 Yueyang 39.41 43.5 67.83 26.75 8.75 577.13
23 Taizhou 38.6 43.92 67.08 28.00 7.50 463.61
24 Changsha 35.25 47.08 57.41 33.08 7.08 839.45
25 Xinyang 38.00 48.25 76.08 23.91 6.33 646.00
26 Hangzhou 37.23 37.91 66.41 41.25 6.75 1036.00
27 Zhuzhou 34.91 47.25 65.25 33.33 10.75 402.85
28 Yichang 36.10 52.25 72.83 29.16 7.08 413.79
29 Wuxi 39.84 39.00 68.75 39.91 8.16 659.15
30 Hefei 39.75 43.58 65.75 38.08 6.16 818.90
31 Nannjing 41.00 39.75 69.16 41.75 9.83 850.00
32 Jingzhou 33.10 46.50 83.00 32.08 9.25 557.01
33 Chuzhou 42.86 48.25 72.08 35.08 9.66 414.70
34 Changzhou 39.20 46.83 71.00 41.00 10.41 473.60
35 WUhan 34.47 45.25 70.75 44.16 8.83 1121.20
36 Xiangyang 33.34 60.33 84.58 31.58 10.50 568.00
37 Nanyang 38.10 59.66 93.16 28.83 6.33 1003.00
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Appendix B

Table A2. The data for patch-level landscape pattern indices.

Number City Forest-PL Forest-PD Forest-LSI Grass-PL Grass-PD Grass-LSI Water-PL Water-PD Water-LSI Farm-PL Farm-PD Farm-LSI Construction-
PL

Construction-
PD

Construction-
LSI

1 Guiyang 67.91 0.02 14.36 0.15 0.00 5.62 0.45 0.00 3.86 27.90 0.03 18.40 3.57 0.00 7.29
2 Taizhou 78.94 0.01 13.00 0.80 0.01 11.81 2.54 0.01 10.71 9.30 0.04 23.85 8.36 0.02 13.31
3 Nanning 57.40 0.02 23.86 1.39 0.02 24.82 1.11 0.01 11.88 37.16 0.02 27.25 2.94 0.01 15.06
4 Ningbo 66.70 0.02 14.07 1.42 0.02 14.65 3.21 0.01 12.45 11.36 0.038 20.95 17.22 0.02 12.41
5 Wenzhou 85.19 0.01 8.59 1.00 0.01 14.13 1.60 0.01 10.37 4.62 0.02 18.27 7.50 0.01 10.79
6 Jiangmen 63.61 0.02 19.43 2.01 0.03 18.94 5.43 0.02 14 22.74 0.02 22.09 6.04 0.01 10.31
7 Zhaoqing 92.56 0.00 7.93 1.50 0.02 21.04 2.17 0.01 12.42 1.98 0.01 13.48 1.77 0.01 11.32
8 Jinhua 83.64 0.01 12.86 0.18 0.01 7.35 0.32 0.00 7.18 8.01 0.03 21.79 7.83 0.02 17.34
9 Yichun 72.37 0.02 18.35 1.93 0.02 24.09 0.83 0.01 12.24 23.26 0.02 24.02 1.60 0.01 11.61

10 Yancheng 5.12 0.03 27.57 1.86 0.02 20.31 5.84 0.01 10.80 83.39 0.00 8.80 3.53 0.01 11.79
11 Jiaxing 16.13 0.07 23.68 1.31 0.01 6.85 4.45 0.01 9.24 57.23 0.01 11.89 20.87 0.03 12.25
12 Nantong 10.85 0.04 24.88 0.31 0.01 7.95 1.83 0.00 5.64 78.03 0.01 9.15 8.92 0.01 10.51
13 Dongguan 26.50 0.04 11.61 5.43 0.07 14.27 4.42 0.03 9.57 0.38 0.01 4.45 62.62 0.01 6.71
14 Shaoxing 76.63 0.01 12.29 1.38 0.01 11.92 0.89 0.01 8.48 10.43 0.03 18.52 10.66 0.02 12.65
15 Foshan 44.00 0.02 13.59 2.68 0.04 14.49 8.07 0.03 14.02 0.83 0.01 5.38 42.85 0.02 9.32
16 Nanchang 21.78 0.05 22.99 4.14 0.05 22.72 17.85 0.02 11.95 49.34 0.01 16.50 6.79 0.01 7.06
17 Guangzhou 64.12 0.02 15.59 3.01 0.03 15.85 2.08 0.02 13.69 7.11 0.03 17.65 23.47 0.01 11.66
18 Changde 61.78 0.02 22.29 0.92 0.01 18.44 4.00 0.01 17.97 32.21 0.01 24.54 1.08 0.00 8.46
19 Xiaogan 22.24 0.04 22.67 4.32 0.04 22.05 3.58 0.01 8.97 67.43 0.01 14.38 2.43 0.01 8.29
20 Huanggang 22.24 0.04 22.67 1.56 0.02 21.73 4.92 0.01 16.62 34.45 0.02 28.23 2.35 0.01 11.59
21 Jiujiang 75.83 0.01 14.01 1.40 0.02 20.23 9.90 0.00 11.38 11.13 0.02 21.65 1.66 0.01 10.75
22 Yueyang 56.73 0.03 19.11 2.17 0.02 19.63 11.53 0.01 13.25 28.05 0.017 23.50 1.48 0.00 7.71
23 Taizhou 21.62 0.06 24.27 6.09 0.05 21.13 7.02 0.01 10.55 54.43 0.018 13.40 10.76 0.015 10.47
24 Changsha 82.30 0.01 12.73 0.71 0.01 11.18 0.63 0.00 7.58 11.05 0.03 23.63 5.29 0.01 8.13
25 Xinyang 28.20 0.02 13.88 0.74 0.01 16.47 1.54 0.01 10.94 68.01 0.01 9.65 1.50 0.01 9.47
26 Hangzhou 83.47 0.01 9.68 0.36 0.01 12.21 3.81 0.00 11.94 1.97 0.01 16.25 10.36 0.01 11.57
27 Zhuzhou 90.53 0.00 8.78 0.39 0.01 9.68 0.66 0.00 8.50 6.51 0.02 18.69 1.90 0.00 7.06
28 Yichang 87.35 0.01 7.36 0.57 0.01 15.34 1.21 0.00 12.80 9.81 0.00 12.80 1.03 0.00 8.33
29 Wuxi 26.43 0.05 21.93 2.47 0.02 13.26 19.74 0.01 5.33 18.94 0.03 16.54 32.39 0.02 10.37
30 Hefei 9.52 0.03 21.98 1.12 0.02 15.70 8.41 0.01 5.91 74.66 0.01 10.69 6.28 0.01 7.56
31 Nannjing 31.67 0.05 27.87 1.79 0.03 14.853 10.58 0.01 8.36 38.99 0.03 21.35 16.85 0.02 9.40
32 Jingzhou 17.56 0.05 33.33 1.81 0.03 21.83 14.92 0.01 16.36 63.47 0.01 16.36 2.21 0.01 9.52
33 Chuzhou 7.35 0.03 19.66 1.77 0.03 21.67 4.80 0.01 13.71 83.47 0.00 11.46 2.59 0.01 10.91
34 Changzhou 34.23 0.05 23.64 2.37 0.02 11.87 9.09 0.01 6.11 29.42 0.03 18.12 24.88 0.02 8.55
35 Wuhan 35.31 0.04 32.20 4.43 0.05 24.25 15.11 0.02 16.60 33.69 0.032 24.62 11.29 0.01 10.32
36 Xiangyang 52.55 0.02 12.00 1.45 0.02 21.20 1.23 0.01 12.96 41.86 0.01 14.72 2.90 0.01 17.15
37 Nanyang 33.64 0.01 12.49 2.13 0.02 25.68 1.52 0.00 6.34 59.12 0.01 15.14 3.57 0.025 28.08
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