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Supplementary methods 

1. Sampling scheme 
The field site (total area of 0.1 ha) encompassed 400 apple trees, the planting density 

was 4000 plants/ha. The shoots for indoor incubation experiments were taken from five 
trees standing in row. These five trees included (i) the two trees from which the Chl fluo-
rescence data were recorded and (ii) one tree between those trees and (iii) the two flanking 
trees (see Fig. S1).  

 
Figure S1. The scheme of experimental tree placement on the field site. 
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2. The in-house made chlorophyll fluorimeter 
Chlorophyll fluorescence signals were monitored by means of a laser fluorimeter 

built at the department of biophysics, Faculty of Biology, Faculty of Biology, Lomonosov 
MSU. The device has a transparent watertight measuring chamber made of acryl, and it 
is implemented with the use of the Fast-Repetition-Rate technology, FRR [61] to induce 
and to record OJIP fluorescence transients. In our experience, FRR-fluorimetry demon-
strates the highest signal-to-noise ratio under the presence of ambient light. 

Fluorescence excitation is carried out at a distance of 5 cm from the branch and pro-
vided by a red laser diode module with an internal collimating lens (650 nm, 80 mW peak 
power, Figure S1). We used red excitation light that penetrates deeper into the bark as 
compared to green or blue light. 
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Figure S2. The key components of laser FRR-fluorimeter. 

 
OJIP transient (400 ms long) is induced by a series of identical sub-saturating light 

pulses (1.25 µs width) following each other at a constant frequency of 200 kHz (Fig-
ure S2а). Taking into account a duty cycle of 0.25, the average excitation photon flux den-
sity is equal to 20,000 µmol·m-2·s-1. An auxiliary photodiode and fast optical feedback (Fig-
ure S1) are used to stabilize peak laser output power. This feedback compensates lasing 
threshold current of the diode as well as the influence of reactive components of its elec-
trical impedance which results in good rectangular shape of a single light pulse and suf-
ficient long-term output power stability within an ambient temperature range of –
20…+40 °C. 

Chlorophyll fluorescence pulses are detected behind a long-pass colored glass filter 
(two pieces of KS-18 colored glass, Krasnogorsk, Russia) by a silicon p-i-n photodiode 
with a photosensitive area of 7.5 mm2. Photocurrent is converted to voltage by a low-noise 
DC amplifier (f-3dB = 400 kHz). Output voltage level is digitized at a 16-bit resolution. For 
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synchronous fluorescence detection output signal is sampled twice: at the end of each ex-
citation pulse (1.25 µs after switching on) and prior to the next excitation pulse (≈ 2.5 µs 
after switching off, Figure S2b). An active fluorescence is quantified as a difference be-
tween these two voltage samples (Figure S2b). Synchronous detection completely elimi-
nates the influence of internal voltage offsets of DC amplifier and of ADC, as well as the 
influence of photodiode dark current and noisy offsets arising from ambient near-infrared 
light and «passive» chlorophyll fluorescence excited by the sunlight. 

The initial point of OJIP curve was used as an approximation of Ft value. F′m value 
was found after smoothing the OJIP curve as the maximum fluorescence value within the 
time interval of 1…400 ms. Effective PS2 photochemical quantum yield under an ambient 
illumination (Φ’PS2) was calculated as a ratio: 

 Φ௉ௌଶᇱ = 𝐹௠ᇱ − 𝐹௧𝐹௠ᇱ  
(S1) 
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Figure S3. FRR-technology and synchronous fluorescence detection. Schematic timing diagrams of 
excitation (a) and fluorescence (b). 
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Table S1. JIP-test parameters according to (Strasser et al., 2004 [48]) 

Parameter Description 

F0 
minimal fluorescence, when all PS II RCs are 

open 

FK = F300μs 
fluorescence level at the K-step (300 μs) of the 

transient  

FJ = F2ms 
fluorescence level at the J-step (2 ms) of the 

transient 

FI = F30ms 
fluorescence level at the I-step (30 ms) of the 

transient 

FP (= Fm) 
maximal recorded fluorescence, at the peak P of 

the transient 

Fv = Fm–F0 maximal variable fluorescence  

Vt = (Ft–F0)/(Fm–F0) relative variable fluorescence at time t  

VJ = (FJ–F0)/(Fm–F0) relative variable fluorescence at the J-step  

M0 
approximated initial slope (in ms–1) of the fluo-

rescence transient Vt 

Area area between fluorescence curve and Fm 

ϕPo = Fv /Fm 
maximum quantum yield of primary photo-

chemistry (at t = 0)  

ψ0 = 1–VJ 

probability (at t = 0) that a trapped exciton 

moves an electron into the electron transport 

chain beyond QA 
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ϕEo = ET0/ABS =  

= (1 – F0/Fm) ψ0 
quantum yield of electron transport (at t = 0) 

δRo = (1–VJ) (1-VI) 

probability with which an electron from the in-

tersystem electron carriers moves to reduce end

electron acceptors at the PSI acceptor side 

Sm = (Area)/(Fm–F0) 

normalized total complementary area above the 

O-J-I-P transient (reflecting multiple-turnover 

QA reduction events) 

ABS/RC =  

= M0 (1/VJ) (l/ϕPo) 
absorbed light flux per PSII RC 

TR0/RC = M0 (1/VJ) 
trapped energy flux further than QA– per PSII 

RC (at t = 0) 

ET0/RC = M0 (1/VJ) ψ0 electron transport flux per PSII RC (at t = 0) 

DI0/RC = (ABS/RC) –  

– (TR0/RC) 
dissipated energy flux per PSII RC (at t=0) 

RE0/RC =  

= M0 (1/VJ) (1–VI) 

electron flux reducing end electron acceptors at

the PSI acceptor side per PSII RC 

PIABS = (RC/ABS) × 

× (ϕPo/(1–ϕPo)) (ψ0/(1–ψ0)) 
performance index on the absorption basis 
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Figure S4. The average CF transients (lines) and their standard deviation (shaded area) measured 
at night (ten transients recorded around midnight were selected from diel datasets and averaged 
monthly). 
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Figure S5. The average CF transients (lines) and their standard deviation (shaded area) measured 
under daylight conditions (ten transients recorded around midday were selected from diel datasets 
and averaged monthly). 
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Figure S6. Pearson’s r value matrix computed for pairs of the parameters studied in this work and 
calculated on the basis of the CF transients measured under daylight conditions. Thick lines delin-
eate fluorometry from meteorological data. For more detail on JIP test parameters, see also (Strasser 
et al., 2004 [48]) and Table S1. 

 

 



Plants 2022, 11, 2811 9 of 14 
 

 

 

 

Figure S7. Pearson’s r value matrix computed for pairs of the parameters studied in this work and 
calculated on the basis of the CF transients measured under dark conditions (at night). Thick lines 
delineate fluorometry from meteorological data. For more detail on JIP test parameters, see also [48] 
and Table S1. 
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Figure S8. Autocorrelation plots for select JIP-test parameters and insolation estimates. Of note is 
the comparison between almost perfectly periodic daily cycles of insolation and measured humid-
ity, temperature and Fv/Fm. Autocorrelation was calculated over the entire observation period, thus 
parameters like temperature are relatively weakly modulated over a timescale of a month. By con-
trast, PI and DI0/RC do not exhibit a periodic pattern at all. 
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(a)  

(b)  

Figure S9. Multilinear regression fitted curves for (a) Fv/Fm (b) DI0/RC using only the meteorolog-
ical data (ambient temperature and insolation).  
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Theoretical background: time series processing 
A vast amount of systems evolving in time could be mathematically described using 

systems of linear differential equations of first or second order. Solutions to those equa-
tions - oscillations, waves, exponential growth and decay - are at the core of nearly every 
single natural process. Spectral analysis deals with these oscillations in an attempt to re-
construct the system that has produced them. Crucially, the instantaneous values of a pe-
riodic process bear little significance, but the overall pattern of vibrations, as described by 
frequencies and amplitudes, is closely connected to the inner workings of their origin. 
This information is not readily available in the original signal, however, and has to be 
extracted first; the most common tool for that, by far, is the Fourier transform. 

The Fourier transform converts the function from the time domain to the frequency 
domain - the temporal information becomes obfuscated and the frequency information 
revealed. That is, it is readily known when something happens in the original signal, but 
not what its frequency characteristics are, and for the Fourier-transformed signal the op-
posite is true. More fundamentally, there is a theoretical limit on simultaneously resolving 
time and frequency, called the uncertainty principle or the Heisenberg-Gabor limit [69,70]: 

 𝜎௧ ∗ 𝜎௙ ≥ 14𝜋 (S2) 

For the time-domain signal, 𝜎௧ → 0 and 𝜎௙ → ∞, while for the frequency-domain 
signal𝜎௧ → ∞ and 𝜎௙ → 0. 

To both capture the frequency components and localize them in time, a time-fre-
quency representation (TFR) is required. It trades off time resolution for frequency reso-
lution and vice versa: intuitively, it becomes possible to localize, say, hourly changes 
within a day and daily changes within a week, a feat next to impossible with the Fourier 
transform. Notable approaches to this problem include short-time Fourier transform 
(STFT), Hilbert-Huang transform (HHT), Wigner transform (Wigner distribution func-
tion, WDF) and wavelet transform [71]. We are using a wavelet-based approach in this 
work, which is a time-scale method rather than a time-frequency one, and it could be par-
ticularly useful to describe transient processes (idem, p. 21). The Fourier transform could 
be conceptualized as decomposing the signal into a series of periodic signals, extending 
indefinitely and unchangeably in time. By contrast, wavelet transform considers a single 
oscillation or a wave packet, the basis function (also called the mother wavelet), which is 
localized in time. This function is then scaled and convolved with the original signal - by 
moving a localized signal in time and comparing it to the initial signal, a measure of the 
oscillation at the current scale and a given moment in time is taken. Thus, both spectral 
and temporal components are retained, albeit at a cost of the precision loss. Repeating this 
procedure allows for describing processes occurring at different time scales. 

Mathematically, the Fourier transform of a discrete signal (DFT) is given by 𝐹௞ = ෍ 𝑥௡𝑒ି௜ଶగ௞௡/ே, 𝑘 = 0. . 𝑁 − 1,ேିଵ
௡ୀ଴  

(S3) 

where xn is the n-th value of the discrete signal, and Fk is the transformed value cor-
responding to the frequency k. Fk is complex-valued and normally described in terms of 
the amplitude and phase, with amplitudes being the prime target for an analysis. 

Continuous wavelet transform is given by 𝑋௪ሺ𝑎, 𝑏ሻ =  1|𝑎|ଵ/ଶ න 𝑥ሺ𝑡ሻ𝜓∗ ൬𝑡 − 𝑏𝑎 ൰ஶ
ିஶ 𝑑𝑡, (S4) 

where Xw is the transformed value, a is the scale factor and b is the translation – po-
sition in the signal the scaled wavelet is shifted to for piecewise multiplication; ψ is a con-
tinuous function called the mother wavelet and a star symbol represents the complex con-
jugate. 

To better illustrate how the two approaches compare to each other, let us consider a 
toy problem distantly related to the task at hand. Let us assume there are two periodic 
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processes that can be described as sine waves with different frequencies, and two scenar-
ios involving those processes. In the first instance, both processes are continuous and un-
changing, spanning the entire observation. In the second instance, one of the processes 
only takes place for a fraction of the timespan in which they are being considered. Original 
signals, as well as their frequency and time-frequency "portraits", are depicted on Supple-
mentary Fig. S9. 

 
Figure S10. A comparison between Fourier transform and wavelet transform for signal analysis. 
Top row: a fragment of the original signal. Middle row: Fourier transform of the data. Bottom row: 
wavelet transform of the same data. Horizontal dashed lines correspond to the frequencies in the 
model signal (10 Hz and 40 Hz). 

 
The structure of a spectrogram plot begs an additional description. Vertical axis is 

expressed in either units of frequency or period, and in long-term observations commonly 
has logarithmic scale. A cone of influence is also plotted (dashed line) - areas outside of it 
and next to the edges of the plot are affected by processing artifacts and must be excluded 
from the analysis. These areas exist because the convolution starts operating on incom-
plete data as the wavelet extends past the boundaries of the original signal - in other 
words, a description of a weekly trend drawing from only a single day worth of data could 
not possibly be reliable. 

It is clear that for the purposes of qualitative description of the system, time-fre-
quency analysis holds a significant advantage: in fact, there is no easy way to describe the 
difference between two signals in this example from their Fourier images alone. The main 
drawback of the wavelet approach could also be clearly seen: a narrow frequency band in 
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the Fourier spectra appears orders of magnitude wider in the spectrogram, not allowing 
for as accurate quantitative parameter extraction. In comparison with short-time Fourier 
transform, wavelet transform provides finer time resolution and coarser frequency reso-
lution for high frequencies and the opposite for low frequencies. 

A separation of signal component using the frequency domain is also possible. This 
allows, among other things, for denoising by filtering out high-frequency component. 
This kind of filters is called low-pass filters, and typically, they introduces some amount 
of delay into the filtered signal, which should be compensated for. Among the most com-
monly used low-pass filters are moving average and moving median filters. Mathemati-
cally, they are very efficient at filtering out noise [72], but suffer from the introduced delay 
being non-deterministic – that is, depending on the frequencies comprising the initial sig-
nal, a singular shift value might under- or over-compensate. Since the exact position in 
time is of concern, we are using finite impulse response (FIR) filters in this work instead: 
they share many similar characteristics, are slightly less efficient, but fully deterministic 
(see idem., pp. 229-303). 


