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Abstract: While wheat (Triticum aestivum L.) is a widely grown and enjoyed crop, the diverse and
complex global situation and climate are exacerbating the instability of its supply. In particular,
pre-harvest sprouting (PHS) is one of the major abiotic stresses that frequently occurs due to irregular
climate conditions, causing serious damage to wheat and its quality. In this study, transcriptomic
analysis with RNA-seq and proteomic analysis with LC-MS/MS were performed in PHS-treated
spikes from two wheat cultivars presenting PHS sensitivity and tolerance, respectively. A total of
13,154 differentially expressed genes (DEGs) and 706 differentially expressed proteins (DEPs) were
identified in four comparison groups between the susceptible/tolerant cultivars. Gene function and
correlation analysis were performed to determine the co-profiled genes and proteins affected by PHS
treatment. In the functional annotation of each comparative group, similar functions were confirmed
in each cultivar under PHS treatment; however, in Keumgang PHS+7 (K7) vs. Woori PHS+7 (W7),
functional annotations presented clear differences in the ”spliceosome” and ”proteasome” pathways.
In addition, our results indicate that alternative splicing and ubiquitin–proteasome support the
regulation of germination and seed dormancy. This study provides an advanced understanding of the
functions involved in transcription and translation related to PHS mechanisms, thus enabling specific
proposals for the further analysis of germination and seed dormancy mechanisms and pathways
in wheat.

Keywords: wheat (Triticum aestivum); abiotic stress; pre-harvest sprouting (PHS); RNA-seq; transcrip-
tome; proteome analysis; DEGs; DEPs; functional annotation; Gene Ontology; seed germination; seed
dormancy; metabolite mechanisms

1. Introduction

Wheat (Triticum aestivum L.) is one of the most widely produced major food crops,
being the most-cultivated species among the Triticum genus, and it is typically called
common wheat or bread wheat [1–5]. Wheat has various genetic characteristics, such as
hardness, autumn/spring wheat, spikes, and seed coat color, which are considered as
important factors in the processed food product [6,7]. Because it has high value as a major
food, wheat also satisfies personal preferences through various functional factors [8–10]. As
wheat usually requires a milling step, the grain quality in the harvest season is considered
to be a major factor in the end-use quality of wheat. The current global climatic conditions
cause a variety of abiotic stresses. In particular, biotic and abiotic stress damage can lead
to a drastic reduction in wheat grain quality as a food, as well as wheat yield [11–13].
Excess moisture, as an abiotic stress, causes increased damage to wheat grains. PHS occurs
frequently under excessive moisture conditions, causing great damage to wheat, in terms
of grain quality [14,15].
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Pre-harvesting sprouting (PHS) is a phenomenon in which germination inhibitors are
dissolved in the kernels or spikes under frequent rainfall and excessive moisture conditions,
breaking seed dormancy and resulting in germination before harvest [16–19]. PHS is a
major problem that severely decreases the quality of wheat seeds, and this representative
abiotic stress has caused critical damage worldwide, notably in East Asia [20–22]. In the
Korean wheat cultivation environment, a drastic increase in temperature in the rainy season
during the harvest period leads to PHS. Therefore, understanding the PHS mechanism
during the grain development stage is one of the most important research aspects in the
wheat breeding field [23]. Additionally, a physiological and genetic understanding of
seed development, germination, and dormancy is necessary to address the problem of
moisture stress.

Plant genome studies remain challenging, due to their genome size, ploidy, and
frequent genome duplication [24]. The genome of Arabidopsis, a widely used model plant, is
diploid and small, at only 125 Mb [25]. However, the genome of common wheat has three
separate sub-genomes (ABDs) with a large number of repeating elements (hexaploids),
such that whole-genome sequencing still has not been completed [26,27]. Transcriptome or
partial genome sequencing have recently been considered as alternative analysis methods
for wheat genome research. RNA-seq can be helpful in the development of breeding
materials, as it allows for the selection, not only of the already known transcriptome,
but also of crops in which genome sequencing has not been completely interpreted, such
as wheat [28,29]. Additionally, RNA-seq enables the identification of candidate genes
and expression analysis through quantified mRNA sequencing, along with microarray
technology in RNA analysis research [30]. Moreover, gene of interest (GOI) searches and
gene expression analysis are being actively used in the study of abiotic stresses, such as
drought, heat, salinity, cold damage, and moisture stress [31–35]. The identification of
DEGs (differentially expressed genes) though RNA-seq under different stress conditions
may provide evidence for an understanding of the genetic effect and metabolic mechanism
of wheat. However, RNA-seq data still require validation, as the transcriptome provides a
dynamic range of data, according to the plant conditions [36–38].

Proteins play a major role in regulating almost all cellular processes. The proteome
creates a highly diverse biological network and enables the normal operations of the phe-
notype, cellular morphology, and function of plant organisms [39]. Recent proteomic
technologies mainly aim to measure proteins, both qualitatively and quantitatively [40,41].
Quantitative proteomic analysis has been conducted in an attempt to screen proteins be-
tween GM soybeans and non-GM soybeans, and the quantitative proteomic analysis of
DEPs between potato cultivars treated for disease infection has also been performed [42,43].
On the other hand, qualitative proteomic studies on crotonylation allow for the determina-
tion of attributes that are specifically related to plant growth and development, and as such,
they are being actively discussed in various crops [44–46]. Advances in chromatography-
coupled mass spectrometry (MS) are closing the gap in proteomic plant research. MS
analysis is another essential element for the validation of gene expression, as it confirms
the actual presence of proteins [47]. Additionally, utilizing MS/MS spectra for predictable
protein sequences, sequence variants, or indeed, whole-genome translations can further
improve gene annotation or identify genes that have been missed in transcriptome analysis
or in silico annotation [48]. Therefore, proteogenomics provides value, which is helpful
in the analysis of plant gene annotation, and it can be expected that the utilization of
proteogenomics in plant research will expand [48,49]. Compared to humans and animals,
plants have only recently begun to be the subject of active proteomic research [50]. Sev-
eral abiotic stress studies based on proteomic research have been reported in plants. In
particular, a study on the improvement of drought resistance through the inhibition of
enzymes related to the biosynthesis of lignin, flavonoids, and fatty acids caused by drought
stress in tea trees has been conducted [51]. A comparative analysis of protein expression
between maize cultivars identified that the accumulation of antioxidant enzymes could
be affected by increased drought tolerance, and it was confirmed that the difference in
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drought resistance was in accordance with the lignin content of roots [52]. An increase
in S-adenosylmethionine synthetase 2 (SAMS2) confirmed that the inhibition of ethylene
production due to polyamine accumulation delayed leaf aging [53]. Intracellular protein
changes caused by gradual drought stress has recently been investigated in a model plant,
Arabidopsis thaliana (L.) Heynh. [54]. Differentially expressed protein (DEPs) analysis and
metabolism studies under drought, salinity, and water stress conditions have been per-
formed to assess wheat seed protein expression [55]. Furthermore, complementary studies
of the transcriptome associated with the proteome are considered valuable studies with
advanced reliability and reproducibility for the determination of plant responses under
stress conditions [56].

In this study, molecular mechanisms under PHS were analyzed in two Korean cul-
tivars, ”Keumgang” (common wheat, a PHS-sensitive cultivar) and ”Woori” (common
wheat, a PHS-tolerant cultivar). RNA-seq analysis was performed to identify the DEGs
associated with the PHS response and tolerance mechanism. Proteomic analysis using
LC-MS/MS analysis was also performed in Keumgang and Woori independently, in order
to identify DEPs at the protein level. Gene Ontology analyses were carried out, followed
by a comparative analysis on the function and expression of genes in RNA and protein.
Through the approach described in this study, we attempted to identify key gene annota-
tions and understand the pathways affecting PHS and seed dormancy. This study provides
the possibility of complementary and elucidated functional analyses through proteomic
research data, along with the existing transcriptome research. Additionally, the expression
mechanisms and pathways under PHS-induced conditions are expected to enable the
causal analyses of PHS stress and a further understanding of the mechanisms underlying
germination and seed dormancy.

2. Results
2.1. PHS Treatment and Germination Phenotype Analysis

A PHS induction experiment was performed in the PHS-sensitive cultivar Keumgang
and the PHS-tolerant cultivar Woori. The experiment focused on implementing an environ-
ment where PHS frequently occurs in the field. The growth temperature was maintained
at 28 ◦C/15 ◦C, and moisture was supplied for 12 h, such that the relative humidity was
90%. In the germination rate analysis, 171 germinated from a total of 202 Keumgang seeds,
showing high PHS sensitivity (at 84.65%). On the other hand, in Woori, only 6 of 206 seeds
germinated, resulting in a germination rate of 2.91%, confirming that its PHS tolerance
was significantly higher than that of Keumgang (Figure 1). The results of this experiment
corresponded to the results of various PHS experiments performed previously [57–59].

2.2. Transcriptome and Differential Expression Gene (DEG) Analysis

Transcriptome analysis was performed with Keumgang (K0) and Woori (W0) samples,
before PHS treatment, and Keumgang (K7) and Woori (W7) samples, 7 days after PHS treat-
ment. At first, reads for each sample were mapped to the reference genome using Tophat
(v2.0.13). The total number of mapped reads in the four samples was 69,035,752 reads.
Among them, 57,708,213 reads were mapped, showing 83.56% mapping coverage (Table S1).
Cuffdiff v2.2.0 was used to perform a normalization of the sorted mapping counts, fol-
lowed by DEG analysis. Additionally, scatter and volcano plot analyses were carried out
between comparative samples, in order to view the overall changes and gene expression
(Figure 2A–D). DEGs with statistically significant differences were compressed using the
cut-off under the condition of 2-fold change and a p-value <0.005. The four groups, K0 vs.
K7, W0 vs. W7, K0 vs. W0, and K7 vs. W7, revealed 5550, 2324, 386, and 4864 compressed
DEGs, respectively (Table S2). Heatmaps were used to analyze the gene expression patterns
of each comparison group for the filtered DEGs. The DEG expression profiling showed
that there were 3645/1905, 1373/951, 186/200, and 1561/3303 up-/downregulated DEGs,
respectively, for the K0 vs. K7, W0 vs. W7, K0 vs. W0, and K7 vs. W7 groups, respectively
(Figure 2E–H).
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Figure 1. Phenotypic changes were induced in Keumgang and Woori spikes under pre-harvest
sprouting (PHS) treatment. (A) The experiment was carried out for 7 days in an artificial growth
control room to maintain optimal PHS induction conditions. (B) Wheat spikes on the 5th day of PHS
induction; active germination is progressing by treatment. (C) Keumgang phenotype assay 7 days
after PHS induction. (D) Woori phenotype assay 7 days after PHS induction.

2.3. GO and KEGG Enrichment Analysis of Four Comparison Groups

Gene Ontology (GO) and KEGG analyses were carried out in order to obtain a func-
tional understanding of the DEGs that were altered and expressed under PHS treatment.
Gene Ontology is considered to be effective when one or more genes are detected in
functional annotation, and the functional classification is divided into three categories:
biological processes (BP), cellular components (CC), and molecular functions (MF). GO
annotation profiling was performed for all DEGs, and only in cases corresponding to
the four comparison groups of interest. In terms of the up-/downregulated GO terms,
there were, respectively, 57,664 and 27,072 DEGs in the K0 vs. K7 group, 26,597 and
15,366 DEGs in the W0 vs. W7 group, 4,426 and 4,501 DEGs in the K0 vs. W0 group, and
25,810 and 45,386 DEGs in the K7 vs. W7 group. Afterward, GO terms were cut-off with a
p-value < 0.005 for statistical validity. As a result, the number of up- and downregulated
GO terms in the four comparison groups were 17,806, 12,291, 797, and 19,429 DEGs, re-
spectively. Finally, the 10 most annotated up- and downregulated functional annotations
for each comparison group were considered. All GO terms annotated for each group are
listed in Table S3. In the K0 vs. K7 group, germination-associated “carbohydrate metabolic
process”, “hydrogen peroxide catabolic process”, “response to oxidative stress”, and the
“glutathione metabolic process” was confirmed as an upregulation comment. On the other
hand, “ubiquitin-dependent protein catabolic process”, “mRNA splicing via spliceosome”,
“protein ubiquitination”, “SCF—dependent proteasomal ubiquitin”, and “SCF ubiquitin
ligase complex” were noticeably downregulated. In the W0 vs. W7 group, the upregu-
lated GO terms were commonly annotated with common functions, where the GO terms
included the regulation of transcription, “DNA-templated”, “translation”, “developmental
process”, “DNA repair”, and “ATP binding”. On the other hand, several downregulated
functions were interesting in contrast to K0 vs. K7. “Glutathione metabolism”, “lipid
metabolism”, and “response to water deprivation” (25 DEGs) were annotated. In partic-
ular, germination-related functions, such as “oxidoreductase activity”, “monooxygenase
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activity”, and “UDP-glycosyltransferase activity” were downregulated (Figure 3B). The K0
vs. W0 group had smaller scales of DEGs for functional annotation analysis than K0 vs. K7,
W0 vs. W7, and K7 vs. W7. Nevertheless, the upregulated GO terms showed the highest
number of annotations in the “developmental process”, “DNA-templated transcription
termination”, and “chloroplast organization”. Meanwhile, in the K0 vs. W0 group, the
annotated GO terms for the downregulated DEGs included “defense response”, “carbo-
hydrate metabolic process”, “response to hydrogen peroxide”, “glutathione metabolic
process”, “oxidoreductase activity”, “serine-type endopeptidase inhibitor activity”, and
“glutathione transferase activity”. Some germination-related functions were confirmed
to be upregulated in the K0 vs. W0 group. However, in many of the downregulated GO
terms, germination-related GO terms also ranked high in the annotation (Figure 3C). Inter-
estingly, the K7 vs. the upregulated GO term in the W7 group showed the opposite result
compared to the K0 vs. K7 group. In the K0 vs. K7 group, “mRNA splicing via spliceo-
some”, “SCF-dependent proteasomal ubiquitin-dependent protein catabolic process”, “SCF
ubiquitin ligase complex”, and “ubiquitin protein ligase activity” were the main functional
annotations. The downregulated GO terms included “fatty acid biosynthesis process”,
“carbohydrate metabolism process” and “NAD binding”, which were mainly involved in
the germination system. “NAD binding” plays a pivotal role in the metabolic pathway
of the TCA cycle (Figure 3D). The linkage GO terms identified via PHS treatment in the
two cultivars are considered meaningful data for researching linkage candidate genes.

Figure 2. Scatter plot, volcano plot, and heatmap analysis of differentially expressed genes (DEGs) in
K0 vs. K7, W0 vs. W7, K0 vs. W0, and K7 vs. W7 groups. (A) Scatter plot and volcano plot of the K0
vs. K7 group, (B) scatter plot and volcano plot of the W0 vs. W7 group, (C) scatter plot and volcano
plot of the K0 vs. W0 group, (D) scatter plot and volcano plot of the K7 vs. W7 group, (E) heatmap



Plants 2022, 11, 2807 6 of 24

analysis for DEGs in the K0 vs. K7 group, (F) heatmap analysis for DEGs in the K0 vs. K7 group,
(G) heatmap analysis for DEGs in the K0 vs. W0 group, and (H) heatmap analysis for DEGs in the
K7 vs. W7 group. The X-axis and Y-axis of the scatter plot represent a control group and a case
group, respectively, and the value of the axis is the average of the values normalized on a log2 scale.
Red dots indicate more than a doubling of upregulated DEGs, and blue dots indicate more than
a doubling of downregulated DEGs. Gray dots indicate no differential expression. The volcano
plot is expressed as a p-value derived from the log2 fold change of the expression value for each
comparison group and the average comparison between the two groups. The X-axis represents log2

fold change; Y-axis represents −log10 p-value. Heatmap analysis was performed on differentially
expressed genes in each comparison group, and the expression was adjusted to p-value < 0.005. Red
indicates upregulation and green indicates downregulation.

Figure 3. Gene Ontology analysis in DEGs for the K0 vs. K7, W0 vs. W7, K0 vs. W0, and K7 vs. W7
groups. Upregulation (red) and downregulation (green) are shown for each group, and GO terms
belonging to the categories of biological processes, cellular components, and molecular functions
are indicated. The X-axis represents the number of annotated DEGs, and the Y-axis lists the 10 most
annotated GO functions by category. (A) Annotated up-/downregulated GO terms in K0 vs. K7.
(B) Annotated up-/downregulated GO terms in W0 vs. W7. (C) Annotated up-/downregulated GO
terms in K0 vs. W0. (D) Annotated up-/downregulated GO terms in K7 vs. W7. The volcano plot is
expressed as a p-value derived from the log2 fold change of the expression value for each comparison
group and the average comparison between the two groups. The X-axis represents log2 fold change;
the Y-axis represents −log10 p-value. Heatmap analysis was performed on differentially expressed
proteins in each comparison group.
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KEGG pathway analysis showed that many genes involved in multiple molecular
pathways were up- or downregulated after PHS treatment (Figure 4). Although activated
or inhibited pathways in Keumgang and Woori mostly showed similar tendencies, there
were also pathways with distinct differences. In the K0 vs. K7 group, “Benzoxazinoid
biosynthesis”, “Photosynthesis-antenna protein”, “Phenylpropanoid biosynthesis”, “Pheny-
lalanine metabolism”, “Carbon metabolism”, and “Starch and sucrose metabolism” were
upregulated, whereas “Autophagy”, “Proteasome”, “Spliceosome”, and “MAPK signaling
pathway” were downregulated (Figure 4A). In the W0 vs. W7 group, “Phenylalanine
metabolism”, “Phenylpropanoid biosynthesis”, and “Benzoxazinoid biosynthesis” path-
ways were identified as activated annotations, similar to those in the K0 vs. K7 group.
Furthermore, in the suppressed pathway, “Autophagy” and “MAPK signaling pathway”
showed similar expression in the K0 vs. K7 group. On the other hand, a notable result in the
W0 vs. W7 group was that “TCA cycle” was significantly inhibited (Figure 4B). Although
the pathway was not commented out between K0 and W0, a remarkable difference was
observed between K7 and W7. In K7, “Photosynthesis”, “Phenylpropanoid biosynthesis”,
and “Carbon fixation in photosynthetic organisms” showed higher expression levels than
in W7. On the other hand, upregulated pathways in K7 vs. W7 showing higher expression
were identified as “Spliceosome”, “Folate biosynthesis”, “Proteasome”, and “Ubiquitin-
mediated proteolysis”. Especially, in the “Spliceosome” and “Proteasome” pathways, more
than 70% of the genes in each pathway were upregulated in W7 (Figure 4C). From the
proteomics data, we discovered 42 alternative splicing variants identified by their cor-
responding unique peptides, which are significantly increased in the W7 and K7, with
87 and 45, respectively (Figure S3; Table S4). In order to observe the alternative splicing
pattern of PHS-related genes, the Integrative Genomics Viewer was utilized according to
Thorvaldsdóttir et al. [60] (Figure S4). It was shown that MFT (Mother of FT and TFL1)-3B-1
and MFT-3B-2 had different alternative splicing patterns between Keumgang and Woori.
Although no differences were observed between K0 and W0, the second and the third
exon of K7 and the fourth exon of W7 were not present in MFT-3B-1, and the first exon of
MFT-3B-2 was only present in K7.

Figure 4. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis for PHS-treated K0
vs. K7, W0 vs. W7, and K7 vs. W7 groups. GeneRatio on the X-axis is the ratio of the enhancement
targets in the pathway to all targets annotated with KEGG, and the Y-axis lists the relevant functions.
Each control group was divided into “activated” and “suppressed”. The size of the dot indicates the
number of targets that could be annotated in the KEGG database, and the significance of the analysis
was indicated by the p.adjust value. (A) KEGG analysis associated with identified DEGs in the K0
vs. K7 group. (B) KEGG analysis associated with identified DEGs in W0 vs. W7. (C) KEGG analysis
associated with identified DEGs in the K7 vs. W7 group.
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2.4. Analysis of Differentially Expressed Proteins and GO Annotation for DEPs

In the differential expression proteins (DEPs) analysis, a total of 910 DEPs were
obtained from the K0 vs. K7, W0 vs. W7, K0 vs. W0, and K7 vs. W7 groups (Table S5). For
the identified DEPs, the expression pattern was confirmed using volcano plot and heatmap
analyses (Figure 5). In terms of up-/downregulated GO terms, there were 260 DEPs in the
K0 vs. K7 group, 180 DEPs in the W0 vs. W7 groups, 179 DEPs in the K0 vs. W0 group,
and 87 DEPs in the K7 vs. W7 groups, respectively. GO analysis in DEP had a relatively
small number of annotations compared to the transcriptome. However, similar functional
annotations were correlated with the results of the GO analysis, considering DEGs.

In the K0 vs. K7 group, the BP categories “response to abscisic acid”, “defense re-
sponse”, “glycolytic process”, and “embryo development ending in seed dormancy” and
response germination-related GO functions such as “response to water deprivation” and
“lipid storage” were upregulated. In the CC category, “integral component of membrane”,
“nucleus”, and “cytosol” accounted for most of the entries. In the MF category, “serine-type
endopeptidase inhibitor activity” and “alditol: NADP+ 1-oxidoreductase activity” were up-
regulated. On the other hand, the downregulation of “ATP binding”, “3-hydroxypalmitoyl-
[acyl-carrier-protein] dehydratase activity”, and “malate synthase activity” were annotated
(Figure 6A). In the W0 vs. W7 group, the BP categories “response to abscisic acid”, “embryo
development ending in seed dormancy”, “response to water deprivation”, “lipid storage”,
and “lipid droplet formation” were upregulated, while “defense response”, “regulation of
transcription, DNA-templated”, and “protein ubiquitination” were downregulated. In the
CC category, only “membrane” was downregulated, while “nucleus”, “integral component
of membrane”, and “cytosolic subunit” were upregulated. In the MF category, only the
“structural constituent of ribosome” was upregulated, while GOs related to “ATP binding”,
“protein kinase activity”, and “ADP activity” were downregulated (Figure 6B). In the K0 vs.
W0 and K7 vs. W7 groups, small numbers of DEPs were annotated, compared to the K0 vs.
K7 and W0 vs. W7 groups. Among the K0 vs. W0 group, in the BP category, “reproductive
process” was confirmed to be upregulated, and “mitochondrial glycyl-tRNA aminoacyla-
tion” was downregulated. In the CC category, the annotated upregulated GO terms were
“integral component of membrane” and “monolayer-surrounded lipid storage body”, while
the annotated downregulated GO terms were “nucleus” and “plasma membrane”. In the
MF category, upregulated functions such as “serine-type endopeptidase inhibitor activity”
and “alpha-L-fucosidase activity” were annotated. On the other hand, downregulated
functions were “ATP binding”, “DNA binding”, “chitinase activity”, and “protein kinase
activity”. In particular, functions related to “ADP activity” were also annotated in the
W0 vs. W7 group (Figure 6C). In the K7 vs. W7 group, “response to abscisic acid”, “cold
acclimation”, and “response to water deprivation” functions were upregulated in the BP
category. Only the “glyoxylate cycle” function, which is involved in the anabolic pathway
of glucose production from fatty acids, was downregulated. The CC category was upreg-
ulated in “integral component of membrane”, while “nucleus” and “plasma membrane”
were downregulated, in the same pattern as the K0 vs. W0 group. In the MF category,
“ATP binding” and “malate synthase activity” were confirmed as downregulated functions
(Figure 6D). The annotated results of the GO terms for DEPs are detailed in Table S6.
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Figure 5. Volcano plot and heatmap analysis of differentially expressed proteins (DEPs) in K0 vs. K7,
W0 vs. W7, K0 vs. W0, and K7 vs. W7 groups. (A) Volcano plot of the K0 vs. K7 group, (B) volcano
plot of the W0 vs. W7 group, (C) volcano plot of the K0 vs. W0 group, (D) volcano plot of the K7 vs.
W7 group, (E) heatmap analysis for DEGs in K0 vs. K7 group, (F) heatmap analysis for DEGs in the
W0 vs. W7 group, (G) heatmap analysis for DEGs in the K0 vs. W0 group, and (H) heatmap analysis
for DEGs in the K7 vs. W7 group.
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Figure 6. Gene Ontology comparisons with respect to cultivars and duration of PHS treatment in
proteome analysis. GO analysis was performed on DEPs identified in the K0 vs. K7, W0 vs. W7, K0 vs.
W0, and K7 vs. W7 groups, and GO terms belonging to the categories of biological processes, cellular
components, and molecular functions are indicated. The upregulated (red) and downregulated
(green) terms were divided by group. The X-axis represents the number of annotated DEPs, and the
Y-axis lists GO functions by category. The number of GOs performed with DEPs was comparatively
smaller than that of the GOs performed with DEGs, and so both the up- and downregulated entries
are displayed in one graph. (A) Annotated GO terms in K0 vs. K7, (B) annotated GO terms in W0 vs.
W7, (C) annotated GO terms in K0 vs. W0, and (D) annotated GO terms in K7 vs. W7.

2.5. Analysis of Correlation between RNA–Protein under PHS Treatment

The transcriptome and proteome crossover analysis under PHS conditions revealed
that 35, 10, and 6 genes/proteins were cross-detected in the K0 vs. K7, W0 vs. W7, and
K7 vs. W7 groups, respectively (Figure 7A–C, Table 1). However, there were no cross-
detected DEGs/DEPs in the K0 vs. W0 group. The transcriptome–proteome comparison
showed very low Pearson’s correlation coefficient values, with 924, 901, and 904 matched
transcriptome/proteome genes in each group, respectively (Figure 7D–F). K0 vs. K7 showed
a negative correlation (r = −0.37), while K0 vs. W0 showed a relatively weak correlation
(r = −0.04). On the other hand, in the K0 vs. W7 group, a positive correlation was observed
(r = 0.19). These results indicated that up-/downregulated DEGs were reversely translated
at the protein level with down-/upregulated DEPs in K0 vs. K7, while the K7 vs. W7 group
revealed a similar expression profile in transcription and translation (Figures 3A,B and S1).

Table 1. A list of genes that can be simultaneously identified in DEGs and DEPs selected for
each group.

Gene ID Protein ID Description Gene* log2
(fold_change)

Protein* log2
(fold_change)

Gene Functional
Classification

DEGs + DEPs K0 vs. K7

TraesCS6D02G040600 A0A3B6QC63 Histone H2B 7.454697426 3.913866667 protein heterodimerization
activity

TraesCS1D02G087600 A0A3B5ZPT5 Carboxypeptidase 4.256589483 −0.844066667 serine-type
carboxypeptidase activity

TraesCS5B02G078300 A0A3B6LFH5

Pyrophosphate–fructose
6-phosphate

1-phosphotransferase
subunit alpha

3.945638767 1.7209
ATP binding,

phosphofructokinase
activity

TraesCS5A02G238100 A0A3B6KJH0 Alpha-amylase 3.945638767 −1.524566667
carbohydrate metabolic
process, alpha-amylase

activity
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Table 1. Cont.

Gene ID Protein ID Description Gene* log2
(fold_change)

Protein* log2
(fold_change)

Gene Functional
Classification

TraesCS4D02G022300 A0A3B6JCR8 Dirigent protein 3.697823539 −1.883066667 apoplast

TraesCS7D02G369400 A0A3B6TMP4 Peroxidase 3.494350899 −2.1036
hydrogen peroxide

catabolic process, response
to oxidative stress

TraesCS4A02G246100 A0A0C4BJE5 Serine
hydroxymethyltransferase 3.352185251 −2.068633333

carbon metabolic process,
pyridoxal phosphate

binding

TraesCS4B02G069300 A0A0C4BJE5 Serine
hydroxymethyltransferase 2.681982576 −2.068633333

carbon metabolic process,
pyridoxal phosphate

binding

TraesCS4D02G068100 A0A0C4BJE5 Serine
hydroxymethyltransferase 2.371852235 −2.068633333

carbon metabolic process,
pyridoxal phosphate

binding

TraesCS7A02G172700 A0A3B6RBU0 NAD(P)H dehydrogenase
C1 2.286001127 −0.597666667 chloroplast

TraesCS7D02G030700 Q8RW00 Glutathione transferase 1.702418296 −1.2913 cytoplasm

TraesCS2D02G075000 A0A1D5UXN7 Amine oxidase 1.338600011 1.4274 amine oxidase activity,
amine metabolic process

TraesCS7B02G315600 A0A3B6SQU7

Dolichyl-
diphosphooligosaccharide–
protein glycosyltransferase

48 kDa subunit

1.210570417 0.941966667 oligosaccharyltransferase
complex

TraesCS2A02G277100 A0A3B6AYU7 Peptidylprolyl isomerase 1.158355889 −1.445033333 cytoplasm

TraesCS4A02G445300 D3K1B4 Ozone-responsive
stress-related protein 1.111810845 −1.262133333 response to ozone

TraesCS3A02G521500 P29557 Eukaryotic translation
initiation factor 4E-1 −1.085773524 0.854366667 RNA 7-methylguanosine

cap binding
TraesCS2B02G567600 A0A3B6CFS9 Superoxide dismutase −1.08821619 1.462 mitochondrion

TraesCS2B02G148400 A0A3B6C126 Cysteine proteinase
inhibitor −1.170117935 1.340766667

cysteine-type
endopeptidase inhibitor

activity
TraesCS1B02G142000 A0A3B5YUP3 Phosphotransferase −1.543828061 0.699933333 cytosol, glucose binding
TraesCS1D02G369300 A0A024CKY0 LEA protein −1.580477896 2.0741 protein targeting

TraesCS1B02G237400 A0A3B5YXU6 Em-like protein GEA1 −1.683504359 2.719933333 cytosol, response to abscisic
acid

TraesCS7A02G558300 A0A3B6RT93
4-Hydroxy-4-methyl-2-

oxoglutarate
aldolase

−1.684719777 −1.087933333 Metal-binding, metal ion
binding

TraesCS1D02G101700 A0A3B5ZQA1 TSPO −1.884546698 3.839566667 integral component of
membrane

TraesCS7A02G070900 A0A3B6R8P8 Peroxidase −2.316372851 2.466533333 metal ion binding

TraesCS2D02G114100 A0A3B6DAQ7 Glycosyltransferase −2.522142222 1.4226 UDP-glycosyltransferase
activity

TraesCS5D02G379300 A0A0H4MAT1 Dehydrin −2.5490366 1.051233333 cytosol, cold acclimation
TraesCS2B02G402500 W5B7W5 Caleosin −2.72237768 2.053666667 calcium ion binding
TraesCS2B02G384600 W5B8D6 Caleosin −2.789346082 2.7154 calcium ion binding
TraesCS2A02G385600 W5AY74 Caleosin −2.841920013 2.209666667 calcium ion binding
TraesCS2D02G382300 A0A1B5GE57 Caleosin −3.018950089 0.895933333 calcium ion binding

TraesCS5B02G046000 D9ZLW0 Outer membrane channel
protein OEP16-2 −3.060325217 1.923266667

integral component of
chloroplast outer

membrane

TraesCS5D02G188400 A0A3B6MQN2 Oleosin −3.167389471 1.485
lipid storage,

monolayer-surrounded
lipid storage body

TraesCS3D02G467300 A7UME2 Xylanase inhibitor
725ACCN −3.297615658 1.548766667 xylan catabolic process

TraesCS5B02G181700 A0A3B6LLH7 Oleosin −3.484907598 2.133566667
lipid storage,

monolayer-surrounded
lipid storage body

TraesCS6A02G077000 Q4W6G2 Xylanase inhibitor XIP-III −3.778453786 0.982 xylan catabolic process
DEGs + DEPs W0 vs. W7

TraesCS5B02G078300 A0A3B6LFH5

Pyrophosphate–fructose
6-phosphate

1-phosphotransferase
subunit alpha

4.161210781 1.848733333 ATP binding, nucleus

TraesCS2A02G277100 A0A3B6AYU7 Peptidylprolyl isomerase 1.915260225 −1.1109 peptidyl-prolyl cis-trans
isomerase activity
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Table 1. Cont.

Gene ID Protein ID Description Gene* log2
(fold_change)

Protein* log2
(fold_change)

Gene Functional
Classification

TraesCS5D02G182500 A0A3B6MRT6
Phosphoenolpyruvate/

phosphate translocator 1,
chloroplastic

1.226990527 0.993233333 chloroplast membrane

TraesCS2B02G350500 A0A3B6C8B8 ATP-dependent
6-phosphofructokinase −1.12833302 −1.382833333 magnesium

TraesCS2B02G402500 W5B7W5 Caleosin −1.171315189 1.729333333 calcium ion binding
TraesCS2B02G429100 A0A3B6CB61 Glutathione peroxidase −1.271800178 −0.7268 cytosol

TraesCS1D02G327200 A0A3B5ZYU5 Thioredoxin −1.486027075 −1.1557 thioredoxin peroxidase
activity

TraesCS7A02G558300 A0A3B6RT93
4-Hydroxy-4-methyl-2-

oxoglutarate
aldolase

−1.680230898 −0.745633333 metal-binding

TraesCS3D02G467300 A7UME2 Xylanase inhibitor
725ACCN −2.989213884 2.6337 aspartic-type

endopeptidase activity
TraesCS1D02G369300 A0A024CKY0 LEA protein −3.620246235 2.238733333 protein targeting

DEGs + DEPs K7 vs. W7

TraesCS4B02G225400 Q9SBB7 Chloroplast small heat
shock protein 5.40441398 2.0434 rRNA processing

TraesCS1B02G237400 A0A3B5YXU6 Em-like protein GEA1 3.420870011 1.094333333 response to abscisic acid,
cytosol

TraesCS3A02G510600 A0A3B6ESH8 Peroxidase 2.705166293 1.952333333 metal ion binding

TraesCS4A02G332100 A0A3B6HYW3
Nascent

polypeptide-associated
complex subunit beta

1.164770655 0.752066667 cytosol

TraesCS7B02G170000 A0A1D6CXF2 Proteasome subunit alpha
type 1.015394237 2.3666 nucleus, cytoplasm

TraesCS2A02G571300 A0A3B6B862 Peroxidase 1.015085068 0.8543 metal ion binding

TraesCS5A02G142200 A0A3B6KDG2 Homoserine
dehydrogenase −1.226585437 1.568266667

homoserine dehydrogenase
activity, homoserine

metabolic process
* Red represents upregulation and green represents downregulation.

Figure 7. Correlation analysis between proteome and transcriptome by DEG/DEP expression
correlation Venn diagram (A–C). DEG_comparison group and DEP_comparison group indicating
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DEGs/DEPs identified at p-value < 0.005, respectively. (A) Intersecting DEGs/DEPs for K0 vs.
K7, (B) intersecting DEGs/DEPs for W0 vs. W7, and (C) intersecting DEGs/DEPs for K7 vs. W7.
Correlation analysis between identified DEGs/DEPs in each comparison group (D–F). The X-axis
is the number of undistributed proteins, and the Y-axis is the number of undistributed genes. The
correlation coefficient and p-value between the transcriptome and the proteome are also shown, and
each dot represents a DEG/DEP. (D) Correlation of DEGs/DEPs in K0 vs. K7, (E) correlation of
DEGs/DEPs in W0 vs. W7, and (F) correlation of DEGs/DEPs in K7 vs. W7.

2.6. Validation of Selected DEGs via Quantitative Real-Time PCR

Validation of DEGs was performed by randomly selecting a total of 20 DEGs from
PHS treatment between two cultivars (Figure S2). Six DEGs intersecting with DEPs were
selected and verified using qRT-PCR (Figure S1). Additionally, nine DEGs related to the
spliceosome and proteasome pathways were verified (Figure 8C,D). The relative expression
levels via qRT-PCR were highly consistent with RNA-seq results. Moreover, the qRT-PCR
validation demonstrated the reliability of the transcriptome and proteome profile results.

Figure 8. The relative expression profiles and validation of spliceosome and proteasome. The
spliceosome pathway was reconstructed based on the KEGG database using Bioreder software.
The expression of transcriptome related to the upregulated pathway is represented by red intensity.
(A) The spliceosome pathway and its related genes represented using KEGG pathway analysis, (B) the
proteasome pathway and its related genes represented using KEGG pathway analysis, (C) validation
of genes related to the spliceosome pathway by qRT-PCR, and (D) validation of genes related to the
proteasome pathway by qRT-PCR.



Plants 2022, 11, 2807 14 of 24

3. Discussion

Seed germination is affected by various morphological, ecological, and environmen-
tal factors. As seed germination is not processed uniformly, the expression during seed
germination under water stress often shows remarkable variation. We compared spike
morphology between the two cultivars. The comparison revealed that there was no signifi-
cant difference in spike structure between Keumgang and Woori (Figure S5). In this study,
the PHS-sensitive cultivar Keumgang and the PHS-tolerant cultivar Woori were used to
investigate the PHS resistance mechanism. PHS resistance is endowed by a number of
factors, including the morphological characteristics of the seed coat and spike structures,
and by genetically controlled traits. Among those, seed dormancy is considered to be the
major factor that determines PHS resistance [61]. In our previous study, we observed that
the two cultivars showed remarkably different transcripts after ABA treatment, which
is a seed dormancy hormone, and suggested there might be genetic differences in the
control of seed dormancy [58]. Therefore, RNA-seq analysis was performed in order to
identify PHS-related candidate genes and to investigate molecular responses under PHS.
Additionally, differential expression analysis at the protein level and GO annotation were
also performed. To improve the reliability of these results, we conducted a co-expression
study between the transcriptome and proteome.

Song et al. [62] suggested that differences in water exposure are a major factor in-
fluencing transcript changes between treated samples. PHS stress is greatly affected by
environmental circumstances; as such, it was difficult to maintain perfect reproducibility
during the experiment. However, the modified sand bury method [63] that was utilized in
this study showed significant PHS phenotype differences between the tolerant and sensitive
cultivars (Figure 1). The conducted PHS experiment helped us to determine the phenotypic
differences and differentially expressed genes between Keumgang and Woori under PHS.
These results were similar to those presented in previous studies. Kim et al. [57] have
conducted a PHS resistance profiling study on 28 Korean wheat varieties using artificial
rainfall, the sand bury method, and a germination index (GI) test. Considering their re-
sults, we expected that our experiment would be highly reliable. Our modified sand bury
method could be applied for PHS experiments, as well as artificial rainfall [58], the original
sand bury method [63], and intended water loading [59], which are usually applied for
PHS treatment.

GO and KEGG pathway annotation are useful methods for elucidating the functions
of DEG groups in terms of the controlled vocabularies for gene functions or the interactions
of DEGs in metabolic pathways, respectively [64]. Gene Ontology analysis can obtain
functional annotations in the categories of gene-related biological processes, molecular
functions, and the cellular components for individual genes, facilitating the study of gene
function. The GO and KEGG annotation of the DEGs from K0, K7, W0, and W7 revealed
that similar DEGs were represented during up- and downregulated conditions, in both
the K0 vs. K7 and W0 vs. W7 groups (Figures 3A,B and 4A,B). However, in terms of the
downregulation of the two comparison groups, some functions confirming the difference in
sensitivity and tolerance of the two cultivars under PHS were annotated. Representatively,
ubiquitination-related GO, spliceosome, and abscisic acid were observed in K0 vs. K7. The
Skp1-cullin 1-F-box (SCF) E3 ligase complex is the largest family of E3 ligases, among which
the SCF E3 ubiquitin ligase promotes the degradation of cellular proteins such as signal
transducers, cell cycle regulators, and transcription factors [65–67]. In particular, SCF-
ubiquitin ligase is closely related to seed development and germination, and is also known
as a regulator of the plant hormone auxin [68]. The plant genome bulk encodes the F-box
protein (FBP), a substrate recognition sub-unit of the SKP1-CULLIN-F-box (SCF) ubiquitin
ligase; TIR1 is one of the best-studied plant FBPs. TIR1 is associated with the CULLIN1
(CUL1) sub-unit and functions as a receptor for auxins [69]. In Arabidopsis over-expressing
TIR1 gene, primary root elongation was suppressed and lateral root development was
observed, while hypocotyl elongation was suppressed and dehydration was promoted,
even in a dark environment, similar to the exogenous auxin response [68]. Interestingly,
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in the K7 vs. W7 group, the ubiquitin-related functions were in agreement with the
results of Gray et al. [68], but showed an opposite profile to K0 vs. K7 (Figure 3A,D).
Conversely, in the W0 vs. W7 group, germination-related functions such as oxidoreductase,
UDP-glycosyltransferase, lipid metabolism, and glutathione tended to be suppressed.
Glutathione and hydrogen peroxide activity have been shown to affect the dormancy
of barley seeds and promote germination [70]. Reactive oxygen species (ROS) play an
essential role in seed dormancy and germination. The maintenance of ROS homeostasis
is a major function affecting seed germination. Glutathione peroxide mitigates oxidative
damage by activating an internal antioxidant defense, which is partly responsible for the
ROS erasing system [71]. Woori is a cultivar that is tolerant to germination; therefore,
it can be interpreted that glutathione, which plays a main role in ROS detoxification,
was suppressed at a higher level. The lipid metabolism process is a mechanism that
accompanies germination and the degradation of storage lipid accumulation during seed
germination, which is involved in the process of producing sucrose by lipid degradation in
germination [72]. In addition, functions such as “UDP-glycosyltransferase activity” and
“oxidoreductase activity” were linked with a high rank. Based on these results, it can be
inferred that the GO functions of Woori involve various expressions of genetic factors that
may be involved in PHS tolerance (Figure 3B). Furthermore, in K0 vs. W0, only a small
number of GOs and no KEGGs were annotated, which indicates that significant expression
differences were not observed between the two cultivars before PHS treatment (Figure 3C).
However, a number of GOs and KEGGs were observed in K7 vs. W7, indicating that each
cultivar had distinct expression levels in the same gene groups (Figures 3D and 4C). In
particular, “metal ion binding” was the most abundantly annotated in all groups, but it
was only upregulated in the K7 vs. W7 group. The “metal ion binding” function has
been scarcely researched in the context of wheat germination or PHS stress. It has only
been studied regarding seed germination in Lepidium sativum L. belonging to the Brassica
family, where it was shown that it had an inhibitory effect on the seed germination process,
according to metal ion concentration [73]. Consideration of the GO functions with DEPs
increased the reliability of the transcriptomic analysis. As the K0 vs. K7 group presented a
negative R value (−0.37) in the Pearson correlation analysis, several GO functions were
reversely classified between DEGs and DEPs, including ATP binding, DNA binding, protein
kinase, chloroplast, cytosolic large complex, cytosol, and nucleus (Figures 3A and 6A).
However, K7 vs. W7 was not found to have correlated GO functions, even though it
presented a positive R value (0.19); this was due to only approximately 2.6% of DEPs
being classified with GO functions in the K7 vs. W7 group (Table S5). Considering the
small number of DEPs, the Pearson correlation might have been calculated with a low
value. During the seed germination and breaking dormancy stage, transcription begins
and the accumulation of transcriptomes first occurs. Only after sufficient transcription may
proteins be detected at the seed germination stage. This may support why the DEGs were
detected at a much higher rate than the DEPs, as shown in the Venn diagram (Figure 7).
Few studies have co-profiled RNA and protein levels to assess the reliability of selected
DEGs. Zhou et al. [74] carried out a 2-DE analysis in wheat callus after RNA-seq analysis
in order to elevate the reliability for DEGs. Feng and Ma [56] have reported transcriptome
and proteome profiling in bread wheat, where the transcriptome and proteome presented
R correlation coefficients ranging from −0.007 to 0.081. Co-profiling between DEGs and
DEPs shows the potential for increasing the reliability of the selected DEGs. Additionally,
the DEP data were expected to play a complementary role in the functional annotation of
selected DEGs under PHS treatment. Validation with qRT-PCR for “EM-like protein GEA1
(TraesCS1B02G237400)”, “Peroxides (TraesCS3A02G510600)”, and “Proteasome subunit
alpha type (TraesCS7B02G170000)”, among the intersecting DEGs and DEPs in K7 vs. W7
group showed similar expression trends (Figures 7C and S1). This approach could be
helpful for understanding the mechanisms of PHS, germination, and seed dormancy.

Interestingly, “Spliceosome” and “Proteasome” were particularly highly expressed
in K7 vs. W7 (Figure 8A,B). Alternative splicing is known as a mechanism regulating
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transcriptome and/or proteomic diversity, and is carried out through intron retention, exon
skipping, and alternative 5’ or 3’ splice sites [75]. Generally, when one of the splicing sites
is used, a single mRNA is generated from a multi-exon gene via constitutive splicing. How-
ever, it has been shown that alternative splicing is also frequently performed in multiple
ways to produce multiple mRNAs of different sizes [75]. Thus, the transcript diversity
is greatly increased, such that alternatively spliced transcripts contribute to the diversity
and complexity of the proteome by encoding distinct proteins [76]. Proteins derived from
alternative splicing may exhibit unintended expression, including additional functions,
changed expression, and loss of function [76,77]. The role of these spliceosomes is involved
in the response to various abiotic stresses and germination in plants [78]. Previous studies
have shown that PHS tolerance is regulated by the alternative splicing of the viviparous
gene (Vp-1), an important regulator of late embryonic development that is highly conserved
in wheat and other species [78–80]. Zhang et al. [81] have revealed that alternative splicing
hormone response genes are correlated with genes involved in protein biosynthesis and
sugar metabolism genes in barley embryos, indicating that alternative splicing may play
an important role in seed germination. In addition, the protein levels of ABI5, an ABA
signaling component, have been associated with different PHS tolerance in sorghum [82].
In Pyrus pyrifolia (Burm.) Nak. and Arabidopsis, plant germination and flowering de-
lay were observed to be affected by the structural change and functional inactivation of
germination-related proteins due to substitutional conjugated isoforms [83]. In particular,
pre-mRNA splicing in Arabidopsis is known to regulate ABA signaling, while SmEb—a
key protein of the spliceosome component Sm—has been demonstrated to act as an ABA-
positive regulator [84]. Figure 8C indicates upregulated expression for spliceosome-related
transcriptome, including “sm-like protein LSM5 (TraesCS1B02G254400)”, “small nuclear ri-
bonucleoprotein SmD1a-like (TraesCS2A02G331400)”, “splicing factor U2af large subunit B
isoform X1 (TraesCS4D02G143400)”, and “pre-mRNA-processing protein 40C-like isoform
X1 (TraesCS1B02G176100)” in Woori. Overall, these results suggested that the regulation of
germination mechanism by the spliceosome might be more highly upregulated in the PHS-
treated Woori than in Keumgang (Figure 8C). In particular, we observed different alternative
splicing patterns in MFT-3B-1 and MFT-3B-2 between Keumgang and Woori (Figure S4).
MOTHER OF FT AND TFL1 (MFT) is a member of the phosphatidylethanolamine-binding
protein (PEBP) gene family in plants. MFT mainly identified effects on seed development
and germination [85,86]. Quantitative trait loci (QTLs) related to PHS and seed dormancy
have been reported at multiple locations on all chromosomes, and in particular, dominant
QTLs have been identified on chromosomes 3AS and 4AL [87,88]. Among them, a can-
didate gene of QPhs.ocs-3A was identified as MFT, and germination delay due to SNP
differences in the promoter region between varieties was confirmed [89]. In addition to
MFT-3A1, MFT-3B-1 was also identified as a locus related to PHS resistance through QTL
analysis in a recent study [90]. The qRT-PCR results for alternative splicing also supported
our hypothesis, as the selected DEGs were dominantly expressed in W7. An investigation
into how the spliceosome regulates the MFT gene, and the role of differentially spliced
MFT gene products might be key to understanding PHS resistance in wheat.

Plant responses in different developmental stages and abiotic stress are highly de-
pendent on protein plasticity and regulation through various protein degradation path-
ways [91–93]. In plants, the 20S proteasome is responsible for the degradation of carbony-
lated proteins, whereas the 26S protease complex, belonging to the ubiquitin–proteasome
pathway (UPP), is a representative component of the GA, ABA, and light signal transduc-
tion pathway [94]. The number of genes mediating UPP is tremendous in plant genomes,
and different types of genes are involved in specific hormone signaling [95]. Furthermore,
they can play opposite roles in the signal transduction of the same hormone (e.g., ABA), in-
dicating the existence of complex relationships among hormones and various proteins [96].
In our study, proteasome-related pathways were significantly downregulated in Keum-
gang after PHS treatment, while no changes were observed in Woori (Figures 3 and 4).
It was also observed that all genes involved in the 26S proteasome were upregulated in
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W7 when compared to K7, such as the expression of “Proteasome sub-unit alpha type
(TraesCS7B02G170000)”. These results might indicate the gap of expression of UPP under
PHS treatment, leading to the difference in PHS sensitivity/tolerance. The roles of the
UPP system in PHS have not yet been extensively investigated, and to the best of our
knowledge, only a single related study has been reported in wheat. TaAIP3 and TaABI2
(ABI3-interacting proteins), which are part of the ubiquitin–proteasome system (UPS),
induce poly-ubiquitination and proteasome degradation of target proteins, and their inter-
action with TaVp1 led to differential expression levels in PHS-sensitive and -tolerant wheat
cultivars [97]. Our research might provide fundamental knowledge toward understanding
the role of UPS in PHS and PHS tolerance in wheat. The various questions related to the
role of post-transcriptional mechanisms will continue to attract attention in the search for
theories of the regulation of the complex processes in germination and dormancy.

4. Materials and Methods
4.1. Plant Materials and Treatments

This experiment was conducted using the Korean representative and PHS-sensitive
cultivar Keumgang (K), and the PHS-tolerant cultivar Woori (W), both provided by the
National Institute of Crop Science, RDA, Republic of Korea. Each cultivar was grown for
40 days after fertilization (DAF+40), based on the main tiller. PHS induction experiments
were performed using a previously modified study method. The experimental period
was 7 days in a growth control room. PHS induction conditions were created by filling a
765 × 485 × 105 mm plastic box with 4 L of golden vermiculite, and rainfall conditions
were maintained for 12 h using a sprinkler that sprayed 2 L of mist per hour. Spikes of
Keumgang (K0) and Woori (W0) before PHS induction were considered as control groups,
while Keumgang (K7) and Woori (W7) on the 7th day of PHS induction were used as the
experimental groups. Five independent whole spikes per cultivar were harvested before
and after PHS induction treatment, which were stored at −70 ◦C until RNA extraction.

4.2. RNA Isolation, RNA-Seq Library Preparation, and Sequencing

Total RNA was extracted using a GeneAll RibospinTM Seed/Fruit Kit (GeneAll®

Biotechnology, Seoul, Korea), according to the manufacturer’s protocol. RNA purity and
concentration were analyzed using a NanoDrop8000 spectrophotometer (Thermo Fisher
Scientific, MA, USA). The total RNA integrity was measured using a Technologies 2100 Bio
Analyzer (Agilent Technologies, Santa Clara, CA, USA), and the RNA quality criteria for
library construction was adjusted (cut-off) to maintain an RNA integrity number (RIN)
value of 7 or higher and an rRNA ratio of 1.5 or higher. A library for RNA-seq analysis
was constructed using a TruSeq™ RNA library prep kit (Illumina, San Diego, CA, USA),
and 100 bp paired-end sequencing was performed on the Illumina NovaSeq6000 platform
(Illumina, San Diego, CA, USA).

4.3. Identification of DEGs Functional Annotation Analysis

Following the quality control of the sequencing data, the raw reads were mapped to
the reference sequence of wheat RefSeq v1.0 in EnsemblPlant (https://plants.ensembl.org/
Triticum_aestivum/Info/Index, accessed on 28 January 2022) using Tophat v2.0.13 (http://
daehwankimlab.github.io/hisat2, accessed on 11 February 2022). For library normalization
and dispersion estimation, geometric and pooled methods were applied, followed by DEG
analysis using Cuffdiff (http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/, accessed
on 16 February 2022). Scatter and volcano plots were created for all DEGs. Scatter plots
showed trends in the overall changes, and gene expression between comparative samples.
Selected DEGs were limited to have high significance for candidate gene and functional
annotation analysis. DEGs with statistically significant differences were compressed using
the cut-off under the condition of >2-fold change and a p-value <0.005, and we considered
the log2-fold change values of 1 and −1 as cut-off values for up-/downregulated genes,
respectively. Amap, gplot, and heatmap analyses of R were performed, in order to identify

https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://plants.ensembl.org/Triticum_aestivum/Info/Index
http://daehwankimlab.github.io/hisat2
http://daehwankimlab.github.io/hisat2
http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/
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the gene expression patterns of significantly expressed genes. Clustering analysis was
performed using a compressed DEGs library, and expression similarity was analyzed using
Pearson’s correlation coefficients. Further, the DEGs were functionally enriched in Gene
Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) terms. The Gene
Ontology database (http://www.geneontology.org/, accessed on 1 April 2022) was used
for the functional classification of all DEGs, according to the GO terminology [98], which
was performed on DEGs with a p-value < 0.005. For KEGG pathway analysis, the IDs of
DEGs were converted into the RefSeq assembly (GCF_018294505.1) gene IDs in the KEGG
genome database (https://www.genome.jp/kegg-bin/show_organism?org=taes, accessed
on 11 July 2022), and the annotated pathways were enriched and visualized using the
cluster-Profiler package [99] in R v4.2 with a p-value < 0.05.

4.4. Protein Purification and Tandem Mass Tag (TMT) Labeling

Protein purification was performed using acetone precipitation from the wheat spikes
used in the RNA-seq analysis. A sample of wheat spikes stored in SDS (10%) was added
with 4 times the sample volume of ice-chilled acetone and stored at −20 ◦C. After sonication
of the acetone-mixed sample, the tube was vortexed. The sample was incubated for 60 min
at −20 ◦C and centrifuged for 10 min at 13,000–15,000× g. The supernatant was disposed
carefully, in order to not dislodge the protein pellet. The acetone in the pellet was allowed to
evaporate at room temperature for 30 min. Trypsin digestion was performed on the purified
protein. An S-Trap mini spin column (Protifi, New York, NY, USA) was used to digest
each sample, according to the manufacturer’s instructions. Three hundred milligrams
of protein were reduced with 5 mM TCEP at 55 ◦C for 15 min and then alkylated with
20 mM of iodoacetamide at room temperature for 10 min in the dark. Phosphoric acid was
added to the alkylated proteins at a final concentration of 1.2%, and six volumes of binding
buffer (90% methanol; 100 mM TEAB; pH 7.1) were added to the acidified proteins. The
sample was applied to the S-Trap column and centrifuged at 4000× g for 30 s, in order
to trap protein. Afterwards, 400 µL of wash buffer (90% methanol and 100 mM TEAB;
pH 7.1) were added three times to clean the protein. Finally, the protein was digested
with trypsin gold at 37 ◦C overnight, at a protein-to-enzyme ratio of 10:1 (w/w). Digested
peptides were eluted in three steps, using 80 µL of 50 mM TEAB in water, 0.2% formic acid
in water, and 50% acetonitrile in water at 4000× g for 1 min. The pooled peptide solution
was dried in a speed vacuum. Peptide samples were dissolved in 100 µL of 100 mM TEAB.
A Ten-plex TMT kit was used to label the six samples. A total of 100 ug protein was labeled,
according to the manufacturer’s protocol. TMT-labeled peptides were combined prior
to offline basic reverse-phase liquid chromatographic (bRPLC) fractionation. The linear
gradient was performed using Buffer A (10mM TEAB in water) and Buffer B (10 mM TEAB
in 90% acetonitrile), and a total of 10 fractions were analyzed using an LC-MS/MS system.

4.5. LC-MS/MS Analysis

LC-MS/MS analysis was performed on 10 samples dissolved in 0.1% formic acid using
an UltiMate 3000 RSLCnano system and an Orbitrap Eclipse Tribrid mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). Using an auto sampler, the sample solution
was loaded onto a C18 trap column (Acclaim PepMap™ 100, 75 µm × 2 cm, Thermo Fisher
Scientific, Waltham, MA, USA) and concentrated on the trap column for 9.5 min at a flow
rate of 4 µL/min. The mobile phase consisted of 99.9% water (A) and 99.9% ACN (B), each
containing 0.1% formic acid. The LC gradient was run starting with 5% B for 10 min, 13% B
for 40 min, 25% B for 65 min, and 95% B for 5 min. Thereafter, it was held at 95% B for
5 min and at 5% B for an additional 1 min. The column was re-equilibrated to 5% B for
14 min before the next run, and a voltage of 1900 V was applied to generate ions. During
chromatographic separation, an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) was operated in data-dependent mode with automatically
switching between MS1 and MS2. Full-scan MS1 spectra (400–2000 m/z) were acquired
by Orbitrap, with a maximum ion implantation time of 100 ms at a resolution of 120,000,
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and an automatic gain control (AGC) target value of 4.0 × 105. MS2 spectra were acquired
using an Orbitrap mass spectrometer at a resolution of 30,000 using HCD (36% normalized
collision energy, maximum ion implantation time of 50 ms, AGC target value of 5.0 × 104).
Previously fragmented ions were excluded for 30 s within 10 ppm.

4.6. Proteome Search and Bioinformatics Analysis

All MS raw files were converted into mzML and ms2 file formats using the MSConvert
software (version 3.0.20033, Stanford University, Stanford, CA, USA; https://proteowizard.
sourceforge.io/tools/msconvert.html, accessed on 10 June 2022). In order to determine the
wheat proteome, we downloaded a protein FASTA file of Triticum aestivum from Uniprot
(http://uniprot.org, accessed on 28 June 2022), including 169,427 reviewed (Swiss-Prot)
and unreviewed (TrEMBL) proteins entries, and we generate a proteome search database
with reversed sequences and contaminants in the Integrated Proteomics Pipeline (IP2,
version 5.1.2, Integrated Proteomics Applications Inc., San Diego, CA, USA). The proteome
search from 20 ms2 files was performed with IP2 and its following parameters: Both ms1
and ms2 search tolerances were allowed within 20 ppm, a peptide length of 6 or more
amino acids, static modifications of 229.1629 at the N-terminal and Lysine (K) and 57.02146
at Cysteine (S), a variable modification of 15.9949 at Methionine (M), Trypsin digestion
enzyme, and a maximum allowable mis-cleavage of 2. The proteome search results were
evaluated, considering a false discovery rate (FDR) at spectra and a protein level of less
than 1.0%, using IP2 and Proteininferencer (version 1.0, Integrated Proteomics Applications
Inc., San Diego, CA, USA), respectively. Protein quantification and statistical analysis for
the discovery of DEPs was performed from the ms2 files with TMT reporter ions using
an in-house program coded using Python 3.8, where a t-test and Pearson’s correlation
analysis between the comparison samples was performed using the scikit-learn (version
0.23.2, accessed on 26 July), Scipy (version 1.6.0, accessed on 26 July 2022), and statsmodels
(version 0.12.1, accessed on 26 July 2022) Python libraries. DEPs with statistically significant
differences were compressed via cut-off under the condition of a 1.5-fold change using the
log2 change value and a p-value of <0.05. Gene Ontology (GO) analysis with DEPs in each
comparison was performed with the GO information from the Uniprot database, where
Fisher’s exact test of a two-sided hypothesis was conducted. Finally, the sum of difference
values for each GO term with its corresponding proteins was calculated using an in-house
program coded in Python 3.8.

4.7. Validation Gene Expression Analysis

Quantitative real-time PCR (qRT-PCR) was performed using a QIAGEN Rotor-Gen Q
(QIAGEN, Hilden, Germany) with a Rotor-Gen SYBR Green PCR kit (QIAGEN, Hilden,
Germany) according to the qRT-PCR process described by Kim et al. [100]. The selected
DEG- and DEP-specific primer pairs were designed using Primer3 (https://www.primer3
plus.com/) software, and the qRT-PCR conditions followed the thermal cycling conditions
suggested by the manufacturer. All experiments were performed in three biological and
technical replicates, and relative transcription levels were normalized using TaActin. Rel-
ative expression levels were analyzed via normalization using the 2−∆∆Ct method [101].
Further information for the validated primer sequences for DEGs and DEPs is provided in
more detail in Table S8.

5. Conclusions

The PHS trait in wheat has been studied for a long time; however, the mechanism
underlying PHS remains unclear. We conducted a PHS treatment experiment on two wheat
cultivars, Keumgang and Woori, and then analyzed how PHS sensitivity/tolerance relates
to transcriptomic expression. The expression of DEGs/DEPs between the two cultivars
under PHS treatment was simultaneously profiled. In addition, the pathways for the related
functions were identified and screened through KEGG pathway analysis. DEG/DEP
functional annotations for each comparison group showed similar expressions, where
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functions related to ”spliceosome” and ”proteasome” were increased by more than 70% in
Woori (W7) compared to Keumgang (K7). The results reported in this study suggest the
possibility of the difference in PHS sensitivity/tolerance being related to the ”spliceosome”
and “ubiquitin-proteasome”, which have various effects in response to abiotic stresses.
Moreover, co-profiling analysis between the transcriptome and proteasome enhanced the
reliability of our transcriptome study. These results can be used as fundamental information
to further improve our understanding of seed germination and dormancy mechanisms
in wheat.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants11212807/s1. Figure S1: Validation by qRT-PCR for DEGs/DEPs
identified simultaneously in K7 vs. W7 group. Figure S2: Gene expression analysis for randomly
selected DEGs to verify RNA-seq analysis. Figure S3: Volcano plot and heatmap analysis of DEPs for
alternative splicing in K7 vs. W7 group. Figure S4: Alternative spliced pattern and gene model of
MFT3B-1 and MFT3B-2 genes in K0, K7, W0, and W7. Figure S5: Comparison and confirmation of
morphological differences between Keumgang and Woori. Table S1: Mapping reads and mapping
rates of RNA-seq performed on K0, K7, W0, and W7 samples. Table S2: DEGs by comparison group
were detected at log2 fold change and p-value <0.005. Table S3: Gene Ontology analysis for DEGs
by comparison group and GO term arrangement by category Table S4: Protein ID and expression
of DEPs associated with spliceosome in the K7 vs. W7 group. Table S5: DEPs by comparison group
confirmed using proteome analysis. Table S6: Gene Ontology analysis for DEPs by comparison group
and GO term arrangement by category. Table S7: Gene ID and expression of DEGs associated with
spliceosome and proteasome pathway in the K7 vs. W7 group. Table S8: DEG/DEP primer design
list for verification using qRT-PCR.
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43. Lebecka, R.; Kistowski, M.; Dębski, J.; Szajko, K.; Murawska, Z.; Marczewski, W. Quantitative proteomic analysis of differentially
expressed proteins in tubers of potato plants differing in resistance to Dickeya solani. Plant Soil 2019, 441, 317–329. [CrossRef]

44. Sun, H.; Liu, X.; Li, F.; Li, W.; Zhang, J.; Xiao, Z.; Shen, L.; Li, Y.; Wang, F.; Yang, J. First comprehensive proteome analysis of lysine
crotonylation in seedling leaves of Nicotiana tabacum. Sci. Rep. 2017, 7, 3013. [CrossRef] [PubMed]

45. Xu, M.; Luo, J.; Li, Y.; Shen, L.; Zhang, X.; Yu, Z.; Guo, Z.; Wu, J.; Chi, Y.; Yang, J. First comprehensive proteomics analysis of
lysine crotonylation in leaves of peanut (Arachis hypogaea L.). Proteomics 2021, 21, e2000156. [CrossRef]

46. Wu, J.; Meng, X.; Jiang, W.; Wang, Z.; Zhang, J.; Meng, F.; Yao, X.; Ye, M.; Yao, L.; Wang, L.; et al. Qualitative Proteome-Wide
Analysis Reveals the Diverse Functions of Lysine Crotonylation in Dendrobium huoshanense. Front. Plant Sci. 2022, 13, 822374.
[CrossRef]

47. Glinski, M.; Wechwerth, W. The role of mass spectrometry in plant systems biology. Mass Spectrom. Rev. 2005, 25, 173–214.
[CrossRef]

48. Chen, M.-X.; Zhu, F.-Y.; Gao, B.; Ma, K.-L.; Zhang, Y.; Fernie, A.R.; Chen, X.; Dai, L.; Ye, N.-H.; Zhang, X.; et al. Full-Length
Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiol. 2020, 182, 1510–1526.
[CrossRef]

49. Chapman, B.; Castellana, N.; Apffel, A.; Ghan, R.; Cramer, G.R.; Bellgard, M.; Haynes, P.A.; Van Sluyter, S.C. Plant proteogenomics:
From protein extraction to improved gene predictions. Methods Mol. Biol. 2013, 1002, 267–294. [CrossRef]

50. Mergner, J.; Frejno, M.; Messerer, M.; Lang, D.; Samaras, P.; Wilhelm, M.; Mayer, K.F.X.; Schwechheimer, C.; Kuster, B. Proteomic
and transcriptomic profiling of aerial organ development in Arabidopsis. Sci. Data 2020, 7, 334. [CrossRef]

51. Gu, H.; Wang, Y.; Xie, H.; Qiu, C.; Zhang, S.; Xiao, J.; Li, H.; Chen, L.; Li, X.; Ding, Z. Drought stress triggers proteomic changes
involving lignin, flavonoids and fatty acids in tea plants. Sci Rep. 2020, 10, 15504. [CrossRef]

52. Zeng, W.; Peng, Y.; Zhao, X.; Wu, B.; Chen, F.; Ren, B.; Zhuang, Z.; Gao, Q.; Ding, Y. Comparative Proteomics Analysis of the
Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Int. J. Mol. Sci. 2019, 20,
2793. [CrossRef]

53. Chen, Y.; Chen, X.; Wang, H.; Bao, Y.; Zhang, W. Examination of the leaf proteome during flooding stress and the induction of
programmed cell death in maize. Proteome Sci. 2014, 12, 33. [CrossRef]

54. Heinemann, B.; Künzler, P.; Eubel, H.; Braun, H.P.; Hildebrandt, T.M. Estimating the number of protein molecules in a plant cell:
Protein and amino acid homeostasis during drought. Plant Physiol. 2021, 185, 385–404. [CrossRef]

55. Yan, M.; Zheng, L.; Li, B.; Shen, R.; Lan, P. Comparative proteomics reveals new insights into the endosperm responses to drought,
salinity and submergence in germinating wheat seeds. Plant Mol. Biol. 2020, 105, 287–302. [CrossRef]

56. Feng, X.; Ma, Q. Transcriptome and proteome profiling revealed molecular mechanism of selenium responses in bread wheat
(Triticum aestivum L.). BMC Plant Biol. 2021, 21, 584. [CrossRef]

57. Kim, K.H.; Kang, C.S.; Park, J.C.; Shin, S.H.; Hyun, J.N.; Park, C.S. Evaluation of Pre-harvest Sprouting in Korean Wheat Cultivar.
Korean J. Breed. Sci. 2012, 44, 526–537.

58. Lee, Y.J.; Park, S.Y.; Kim, D.Y.; Kim, J.Y. Differential expression analysis of phytohormone-related genes of Korean wheat (Triticum
aestivum) in response to preharvest sprouting and abscisic acid (ABA). Appl. Sci. 2021, 11, 3562. [CrossRef]

59. Park, S.Y.; Choi, C.H.; Kim, K.H.; Jung, W.J.; Kim, J.Y. Expression Analysis of Pre-Harvest Sprouting Tolerant Korean Wheat via
Transcriptomic Analysis. Korean J. Breed. Sci. 2022, 54, 104–118. [CrossRef]

60. Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualiza-
tion and exploration. Brief. Bioinform. 2013, 14, 178–192. [CrossRef]

http://doi.org/10.1186/s12870-022-03654-1
http://doi.org/10.1080/13102818.2022.2081516
http://doi.org/10.1101/gr.079558.108
http://doi.org/10.1038/nbt.2957
http://doi.org/10.1016/j.jid.2016.06.003
http://doi.org/10.1007/s00425-018-3018-3
http://doi.org/10.1038/nature19949
http://doi.org/10.1186/s13007-019-0515-8
http://www.ncbi.nlm.nih.gov/pubmed/31832077
http://doi.org/10.1038/s41598-018-35996-y
http://www.ncbi.nlm.nih.gov/pubmed/30518773
http://doi.org/10.1007/s11104-019-04125-7
http://doi.org/10.1038/s41598-017-03369-6
http://www.ncbi.nlm.nih.gov/pubmed/28592803
http://doi.org/10.1002/pmic.202000156
http://doi.org/10.3389/fpls.2022.822374
http://doi.org/10.1002/mas.20063
http://doi.org/10.1104/pp.19.00430
http://doi.org/10.1007/978-1-62703-360-2_21
http://doi.org/10.1038/s41597-020-00678-w
http://doi.org/10.1038/s41598-020-72596-1
http://doi.org/10.3390/ijms20112793
http://doi.org/10.1186/1477-5956-12-33
http://doi.org/10.1093/plphys/kiaa050
http://doi.org/10.1007/s11103-020-01087-8
http://doi.org/10.1186/s12870-021-03368-w
http://doi.org/10.3390/app11083562
http://doi.org/10.9787/KJBS.2022.54.2.104
http://doi.org/10.1093/bib/bbs017


Plants 2022, 11, 2807 23 of 24

61. Zhou, Y.; Tang, H.; Cheng, M.P.; Dankwa, K.O.; Chen, Z.X.; Li, Z.Y.; Gao, S.; Liu, Y.X.; Jiang, Q.T.; Lan, X.J.; et al. Genome-Wide
Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. Front.
Plant Sci. 2017, 8, 401. [CrossRef]

62. Song, T.; Das, D.; Ye, N.H.; Wang, G.Q.; Zhu, F.Y.; Chen, M.X.; Yang, F.; Zhang, J.H. Comparative transcriptome analysis of
coleorhiza development in japonica and Indica rice. BMC Plant Biol. 2021, 21, 514. [CrossRef] [PubMed]

63. Baier, A.C. Pre-harvest sprouting. Annu. Wheat Newsl. 1987, 33, 274.
64. Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35.

[CrossRef]
65. Santner, A.; Estelle, M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010, 61, 1029–1040.

[CrossRef] [PubMed]
66. del Pozo, J.C.; Manzano, C. Auxin and the ubiquitin pathway. Two players–one target: The cell cycle in action. J. Exp. Bot. 2014,

65, 2617–2632. [CrossRef]
67. Xie, J.; Jin, Y.; Wang, G. The role of SCF ubiquitin-ligase complex at the beginning of life. Reprod. Biol. Endocrinol. 2019, 17, 101.

[CrossRef]
68. Gray, W.M.; del Pozo, J.C.; Walker, L.; Hobbie, L.; Risseeuw, E.; Banks, T.; Crosby, W.L.; Yang, M.; Ma, H.; Estelle, M. Identification

of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 1999, 13, 1678–1691. [CrossRef]
69. Yu, H.; Zhang, Y.; Moss, B.L.; Bargmann, B.O.; Wang, R.; Prigge, M.; Nemhauser, J.L.; Estelle, M. Untethering the TIR1 auxin

receptor from the SCF complex increases its stability and inhibits auxin response. Nat Plants 2015, 1, 14030. [CrossRef]
70. Fontaine, O.; Billard, J.P.; Hualt, C. Effect of glutathione on dormancy breakage in barley seeds. Plant Growth Regul. 1995, 16,

55–58. [CrossRef]
71. Li, W.; Niu, Y.; Zheng, Y.; Wang, Z. Advances in the Understanding of Reactive Oxygen Species-Dependent Regulation on Seed

Dormancy, Germination, and Deterioration in Crops. Front. Plant Sci. 2022, 13, 826809. [CrossRef]
72. Borek, S.; Ratajczak, W.; Ratajczak, L. Regulation of storage lipid metabolism in developing and germinating lupin (Lupinus spp.)

seeds. Acta. Physiol. Plant 2015, 37, 119. [CrossRef]
73. Pavel, L.V.; Sobariu, D.L.; Diaconu, M.; Florian, S. Effects of heavy metals on Lepidium sativum germination and growth. Environ.

Eng. Manag. J. 2013, 12, 727–733. [CrossRef]
74. Zhu, Y.; Zhu, G.; Guo, Q.; Zhu, Z.; Wang, C.; Liu, Z. A Comparative Proteomic Analysis of Pinellia ternata Leaves Exposed to Heat

Stress. Int. J. Mol. Sci. 2013, 14, 20614–20634. [CrossRef]
75. Meyer, K.; Koester, T.; Staiger, D. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the

Splicing Process. Biomolecules 2015, 5, 1717–1740. [CrossRef] [PubMed]
76. Reddy, A.S.N. Alternative Splicing of Pre-Messenger RNAs in Plants in the Genomic Era. Annu. Rev. Plant Biol. 2007, 58, 267–294.

[CrossRef] [PubMed]
77. Syed, N.H.; Kalyna, M.; Marquez, Y.; Barta, A.; Brown, J.W.S. Alternative splicing in plants-coming of age. Trends Plant Sci. 2012,

17, 616–623. [CrossRef] [PubMed]
78. Hattori, T.; Terada, T.; Hamasuna, S.T. Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol.

Biol. 1994, 24, 805–810. [CrossRef]
79. Jones, H.D.; Peters, N.C.B.; Holdsworth, M.J. Genotype and environment interact to control dormancy and differential expression

of the VIVIPAROUS 1 homologue in embryos of Avena fatua. Plant J. 1997, 12, 911–920. [CrossRef]
80. McKibbin, R.S.; Wilkinson, M.D.; Bailey, P.C.; Flintham, J.E.; Andrew, L.M.; Lazzeri, P.A.; Gale, M.D.; Lenton, J.R.; Holdsworth,

M.J. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. PNAS 2002, 99, 10203–10208.
[CrossRef]

81. Zhang, Q.; Zhang, X.; Wang, S.; Tan, C.; Zhou, G.; Li, C. Involvement of alternative splicing in barley seed germination. PLoS
ONE 2016, 11, e0152824. [CrossRef]

82. Rodríguez, M.V.; Mendiondo, G.M.; Maskin, L.; Gudesblat, G.E.; Iusem, N.D.; Benech-Arnold, R.L. Expression of ABA signalling
genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental
stages. Ann. Bot. 2009, 104, 975–985. [CrossRef]

83. Li, J.; Yan, X.; Ahmad, M.; Yu, W.; Song, Z.; Ni, J.; Yang, Q.; Teng, Y.; Zhang, H.; Bai, S. Alternative splicing of the dormancy-
associated MADS-box transcription factor gene PpDAM1 is associated with flower bud dormancy in ‘Dangshansu’ pear (Pyrus
pyrifolia white pear group), Plant Physiol. Biochem. 2021, 166, 1096–1108. [CrossRef]

84. Hong, Y.; Yao, J.; Shi, H.; Chen, Y.; Zhu, J.-K.; Wang, Z. The Arabidopsis spliceosomal protein SmEb modulates ABA responses by
maintaining proper alternative splicing of HAB1. Stress Biol. 2021, 1, 4. [CrossRef]

85. Chardon, F.; Damerval, C. Phylogenomic analysis of the PEBP gene family in cereals. J. Mol. Evol. 2005, 61, 579–590. [CrossRef]
86. Tao, Y.-B.; Luo, L.; He, L.-L.; Ni, J.; Xu, Z.-F. A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential

gene from the biofuel plant Jatropha curcas. J. Plant Res. 2014, 127, 513–524. [CrossRef]
87. Kato, K.; Nakamura, W.; Tabiki, T.; Miura, H.; Sawada, S. Detection of loci controlling seed dormancy in group 4 chromosomes of

wheat and comparative mapping with rice and barley genomes. Theor. Appl. Genet. 2001, 102, 980–985. [CrossRef]
88. Mori, M.; Uchino, N.; Chono, M.; Kato, K.; Miura, H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the

group 4 chromosomes, and their combined effect. Theor. Appl. Genet. 2005, 110, 1315–1323. [CrossRef]

http://doi.org/10.3389/fpls.2017.00401
http://doi.org/10.1186/s12870-021-03276-z
http://www.ncbi.nlm.nih.gov/pubmed/34736393
http://doi.org/10.1002/pro.3711
http://doi.org/10.1111/j.1365-313X.2010.04112.x
http://www.ncbi.nlm.nih.gov/pubmed/20409276
http://doi.org/10.1093/jxb/ert363
http://doi.org/10.1186/s12958-019-0547-y
http://doi.org/10.1101/gad.13.13.1678
http://doi.org/10.1038/nplants.2014.30
http://doi.org/10.1007/BF00040507
http://doi.org/10.3389/fpls.2022.826809
http://doi.org/10.1007/s11738-015-1871-2
http://doi.org/10.30638/eemj.2013.089
http://doi.org/10.3390/ijms141020614
http://doi.org/10.3390/biom5031717
http://www.ncbi.nlm.nih.gov/pubmed/26213982
http://doi.org/10.1146/annurev.arplant.58.032806.103754
http://www.ncbi.nlm.nih.gov/pubmed/17222076
http://doi.org/10.1016/j.tplants.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22743067
http://doi.org/10.1007/BF00029862
http://doi.org/10.1046/j.1365-313X.1997.12040911.x
http://doi.org/10.1073/pnas.152318599
http://doi.org/10.1371/journal.pone.0152824
http://doi.org/10.1093/aob/mcp184
http://doi.org/10.1016/j.plaphy.2021.07.017
http://doi.org/10.1007/s44154-021-00006-1
http://doi.org/10.1007/s00239-004-0179-4
http://doi.org/10.1007/s10265-014-0639-x
http://doi.org/10.1007/s001220000494
http://doi.org/10.1007/s00122-005-1972-1


Plants 2022, 11, 2807 24 of 24

89. Nakamura, S.; Abe, F.; Kawahigashi, H.; Nakazono, K.; Tagiri, A.; Matsumoto, T.; Utsugi, S.; Ogawa, T.; Handa, H.; Ishida, H. A
wheat homolog of MOTHER of FT and TFL1 acts in the regulation of germination. Plant Cell 2011, 23, 3215–3229. [CrossRef]

90. Dhariwal, R.; Hiebert, C.W.; Sorrells, M.E.; Spaner, D.; Graf, R.J.; Singh, J.; Randhawa, H.S. Mapping pre-harvest sprouting
resistance loci in AAC Innova × AAC Tenacious spring wheat population. BMC Genom. 2021, 22, 900. [CrossRef]

91. Smalle, J.; Kurepa, J.; Yang, P.; Emborg, T.J.; Babiychuk, E.; Kushnir, S.; Vierstra, R.D. The pleiotropic role of the 26S proteasome
subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant
Cell 2003, 15, 965–980. [CrossRef]

92. Kurepa, J.; Toh-E, A.; Smalle, J.A. 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J.
2008, 53, 102–114. [CrossRef] [PubMed]

93. Stone, S.L. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 2014, 5, 135. [CrossRef]
[PubMed]

94. Oracz, K.; Stawska, M. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination. Front. Plant Sci. 2016, 7,
1128. [CrossRef] [PubMed]

95. Kelley, D.R. E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants. Mol. Cell. Proteom. 2018, 17, 1047–1054.
[CrossRef]

96. Yu, F.; Wu, Y.; Xie, Q. Ubiquitin–Proteasome System in ABA Signaling: From Perception to Action. Mol. Plant 2016, 9, 21–33.
[CrossRef]

97. Gao, D.Y.; Xu, Z.S.; He, Y.; Sun, Y.W.; Ma, Y.Z.; Xia, L.Q. Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis
revealed its roles in seed germination and pre-harvest sprouting. J. Integr. Plant Biol. 2014, 56, 480–491. [CrossRef]

98. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef]

99. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [CrossRef]

100. Kim, J.Y.; Kim, D.Y.; Park, Y.J.; Jang, M.J. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light.
PLoS ONE 2020, 15, e0230680. [CrossRef]

101. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method.
Methods 2001, 25, 402–408. [CrossRef]

http://doi.org/10.1105/tpc.111.088492
http://doi.org/10.1186/s12864-021-08209-6
http://doi.org/10.1105/tpc.009217
http://doi.org/10.1111/j.1365-313X.2007.03322.x
http://www.ncbi.nlm.nih.gov/pubmed/17971041
http://doi.org/10.3389/fpls.2014.00135
http://www.ncbi.nlm.nih.gov/pubmed/24795732
http://doi.org/10.3389/fpls.2016.01128
http://www.ncbi.nlm.nih.gov/pubmed/27512405
http://doi.org/10.1074/mcp.MR117.000476
http://doi.org/10.1016/j.molp.2015.09.015
http://doi.org/10.1111/jipb.12135
http://doi.org/10.1038/75556
http://doi.org/10.1016/j.xinn.2021.100141
http://doi.org/10.1371/journal.pone.0230680
http://doi.org/10.1006/meth.2001.1262

	Introduction 
	Results 
	PHS Treatment and Germination Phenotype Analysis 
	Transcriptome and Differential Expression Gene (DEG) Analysis 
	GO and KEGG Enrichment Analysis of Four Comparison Groups 
	Analysis of Differentially Expressed Proteins and GO Annotation for DEPs 
	Analysis of Correlation between RNA–Protein under PHS Treatment 
	Validation of Selected DEGs via Quantitative Real-Time PCR 

	Discussion 
	Materials and Methods 
	Plant Materials and Treatments 
	RNA Isolation, RNA-Seq Library Preparation, and Sequencing 
	Identification of DEGs Functional Annotation Analysis 
	Protein Purification and Tandem Mass Tag (TMT) Labeling 
	LC-MS/MS Analysis 
	Proteome Search and Bioinformatics Analysis 
	Validation Gene Expression Analysis 

	Conclusions 
	References

