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Abstract: Variability in traits forming the Leaf Economics Spectrum (LES) among and within crop
species plays a key role in governing agroecosystem processes. However, studies evaluating the
extent, causes, and consequences of within-species variation in LES traits for some of the world’s most
common crops remain limited. This study quantified variations in nine leaf traits measured across 90
vines of five common wine grape (Vitis vinifera L.) varieties at two growth stages (post-flowering and
veraison). Grape traits in these varieties covary along an intraspecific LES, in patterns similar to those
documented in wild plants. Across the five varieties evaluated here, high rates of photosynthesis
(A) and leaf nitrogen (N) concentrations were coupled with low leaf mass per area (LMA), whereas
the opposite suite of traits defined the “resource-conserving end” of this intraspecific LES in grape.
Variety identity was the strongest predictor of leaf physiological (A) and morphological traits (i.e.,
leaf area and leaf mass), whereas leaf chemical traits and LMA were best explained by growth
stage. All five varieties expressed greater resource-conserving trait syndromes (i.e., higher LMA,
lower N, and lower Amass) later in the growing season. Traits related to leaf hydraulics, including
instantaneous water-use efficiency (WUE), were unrelated to LES and other resource capture traits,
and were better explained by spatial location. These results highlight the relative contributions of
genetic, developmental, and phenotypic factors in structuring trait variation in the five wine grape
varieties evaluated here, and point to a key role of domestication in governing trait relationships in
the world’s crops.

Keywords: agroecology; functional trait; intraspecific trait variation; Leaf Economics Spectrum; plant
trait spectra; Vitis vinifera

1. Introduction

The Leaf Economics Spectrum (LES) represents a suite of six leaf functional traits—
maximum photosynthetic assimilation (A) and dark respiration rates (R), leaf nitrogen
(N) and phosphorus (P) concentrations, leaf mass per area (LMA), and leaf lifespan (LL)—
which covary with one another across [1,2] and within [3,4] plant species. The LES trait
syndromes expressed by species or individual plants in turn underpin plant resource-use or
ecological strategies, which range from resource-acquiring strategies on one end of the LES,
to resource-conserving strategies on the other [1,2,5]. In general, resource-acquiring species
and plants express high rates of A and R, high leaf N, which are coupled with low LMA,
and short LL; the opposite suite of traits reflects the resource-conserving end of the LES [2].

The LES trait syndromes of plants scale-up to influence different aspects of whole-plant
physiology, form, and function [5,6]. For instance, species expressing resource-conserving
LES traits or trait syndromes are commonly associated with shade-tolerant life-history
strategies, whereas resource-acquiring species often represent early successional pioneer

Plants 2022, 11, 2792. https://doi.org/10.3390/plants11202792 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11202792
https://doi.org/10.3390/plants11202792
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-9640-723X
https://orcid.org/0000-0002-7207-4004
https://doi.org/10.3390/plants11202792
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11202792?type=check_update&version=2


Plants 2022, 11, 2792 2 of 17

vegetation [7–9]. At the same time, LES traits also represent the mechanism by which
plant diversity influences rates of ecosystem functioning. For example, certain LES traits,
including leaf N, have been found to predict rates of leaf-litter decomposition and soil N
availability [10], whereas other LES traits, including A and LMA, are central in vegetation
dynamics models [11].

To date, much of the research on the ecological and evolutionary determinants of
LES trait variation and relationships in plants has focused on LES trait expression in wild
plants growing in unmanaged ecosystems [2,12]. However, more recently, studies have
begun to quantify the extent, causes, and consequences of inter- and intraspecific LES trait
variation in crops or their progenitors growing in managed systems. This includes studies
on soy [13], coffee [14,15], wheat [16], maize [17], cocoa [18], rice [19], and sunflower [20],
cultivated across field- and lab-based conditions. These studies have largely focused on: (1)
quantifying how plants of the same crop species or variety differ from one another across
the LES [15]; (2) elucidating the role environmental conditions, genetics, plant development,
and/or domestication history plays in structuring LES trait variation in crops [18]; and
finally, (3) assessing relationships between LES trait variation in crops and agroecosystem
functions, including yield [13,21], tissue decomposition [22], soil microbial diversity [23],
and plant–soil interactions such as N2 fixation [24].

Although results differ across studies and systems, some generalities have emerged
from this line of research. First, most studies on crop LES trait variation have indicated
that artificial selection has shifted certain crops towards expressing some of the most
extreme resource-acquiring LES trait values observed among plants globally [17,25]. Sec-
ond, multiple studies have reported that individual plants of the same crop species or
genotype differ along an “infraspecific LES” (i.e., an LES that exists below the species
level), which is largely driven by environmental conditions. Specifically, within a given
crop, the resource-conserving end of an infraspecific LES is dictated by plants growing in
unfavourable conditions (e.g., hot, dry, nutrient limited, and/or under soil compaction),
whereas favourable growing conditions confer the expression of resource-acquiring LES
trait syndromes [13,15].

Finally, research has consistently shown that the shape of infraspecific LESs (i.e., the
slope of a bivariate statistical model that describes trait relationships) is both unique to
a given crop, and often (but not always) differs from LES trait relationships observed
among plants globally [13,15,19]. For example, compared with wild plants, coffee expresses
lower A at a given leaf N concentration, which likely reflects the role selecting for non-
photosynthetic N-based compounds (i.e., caffeine) plays in governing coffee LES trait
relationships [14,15]. Alternatively, compared with wild plants, rice expresses higher rates
of A for a given leaf N concentration, which likely reflects a history of artificial selection for
improved N-use efficiency and growth [19]. However, other crops, including soy, exhibit
relationships between A and leaf N that are statistically indistinguishable from those in
wild plants [13]. Although certain generalities have emerged from the literature, multiple
studies have indicated that infraspecific LES relationships are unique to individual crops.
However, to date, there remain relatively few studies testing for the presence of LES trait
relationships in crops, and evaluating whether these crop-specific LES trait relationships
differ from a “universal LES” hypothesized to describe global plant trait variations.

This study evaluated LES trait relationships in wine grape (Vitis vinifera L.): one of the
world’s most commercially important crops which, along with table grapes, is currently
estimated to cover ~6.95 million ha of agricultural land globally. Considerable research
on wine grapes to date has sought to quantify the extensive diversity in above- [26] and
belowground functional traits [27], phenology [28,29], and physiognomic forms [26], that
exists across the ~1100 varieties spanning multiple climatic zones [30]. More specifically,
leaf physiological, chemical, and morphological trait variations have long been the focus of
many studies in the areas of crop biology and viticulture [31]. However, to the best of our
knowledge there have been no studies explicitly evaluating whether wine grapes vary along
an infraspecific LES, or if the shape of an infraspecific wine grape LES differs from that
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observed among plants globally. This study aimed to fill this gap by quantifying nine LES
and related leaf traits in five widely cultivated wine grape varieties (‘Chardonnay’, ‘Pinot
Gris’, ‘Cabernet Sauvignon’, ‘Merlot’, and ‘Syrah’) at two growth stages (post-flowering
and veraison). These data were then used to (1) quantify differences in LES traits across
wine grape varieties and at different growth stages; (2) determine whether an infraspecific
LES in wine grapes exists; and (3) test whether wine grapes differ from wild plants in their
LES trait relationships.

2. Materials and Methods
2.1. Study Site and Design

This study was conducted at the Niagara College Teaching Vineyard (previously
known as “Coyote’s Run” winery), situated in Niagara-on-the-Lake, Ontario, Canada
(43.1697◦ N, 79.1193◦ W) (Figure S1). This vineyard is situated within the Lakeshore Plains
Region in the Niagara Region, which is characterised by gentle slopes, lake-effect moderated
temperatures, and high incident sunlight during the growing season. More specifically,
based on downscaled climate data at a 1 km2 resolution [32], the study site experiences
mean annual temperatures of 8.8 ◦C, receives mean annual precipitation rates of 895 mm
year−1, is not irrigated, and is situated on top of sandy loam/red shale soils which are
well drained. At the farm, common vineyard management systems are employed. This
includes vines that are trained using a 2-arm flat vertical shoot position system, applications
of calcium nitrate and/or muriate of potash and/or sulphate of potash magnesium (K-
Mag; 22-10.8-22) applied uniformly across the farm in mid-June, and foliar spray of liquid
calcium (8-0-0-10) is applied early in each growing season.

At the site, five of the most common grape varieties were selected for this study, includ-
ing ‘Chardonnay’, ‘Cabernet Sauvignon’, ‘Merlot’, ‘Pinot Gris’, and ‘Syrah’. All vines were
grafted on rootstock SO4 in 2004–2006. For each of these varieties, leaf traits were sampled
on a total of nine plants, which were evenly distributed across three distinct sampling rows
spaced ~10 m apart. Within each row, three individual vines were selected for assessments
of leaf traits. Sampling rows and individual vines were marked with flagging tape to enable
sampling at two different growth stages, including immediately following flowering or
cap-fall (i.e., at approximately E-L stage number 25/26 [33]; 15–20 June 2021; hereafter,
“post-flowering”), and during veraison (i.e., approximately at E-L stage number 36/37 [33];
August 10–15; hereafter, “veraison”). All vines chosen for this study were between 1 and
3 cm in basal diameter, and were free of major pest of pathogen damage. On each vine, one
individual leaf was selected to perform detailed assessments of leaf traits. Leaves were
all situated at ~1.5 m above ground, which corresponded to the top of each vine canopy.
Leaves chosen for sampling were all recently developed, fully expanded, fully sun-exposed,
and free of any signs of damage [34]. In summary, the trait dataset employed in this study
included measurements of five varieties, with each variety being represented by nine vines,
and each vine spaced across three planting rows (alternatively, 45 planting rows in total).
Each vine was sampled at two growth stages for a total sample size of n = 90 leaves.

2.2. Functional Trait Measurements

For each leaf, nine physiological, morphological, and chemical traits were measured.
In the field, an LI-6800 portable gas exchange analyzer (LI-COR Biosciences, Lincoln,
Nebraska, USA) was used to evaluate leaf physiological traits, including maximum photo-
synthetic capacity on a per-leaf area basis (Amax, µmol CO2 m−2 s−1), evapotranspiration
rates (E, mmol H2O m−2 s−1), and stomatal conductance (gs, mol H2O m−2 s−1). All
physiological measurements were taken before 13:00 to avoid stomatal closure, and under
the following conditions: CO2 concentrations of 400 ppm, photosynthetic photon flux den-
sities of 1500 µmol of photosynthetically active radiation (PAR) m−2 s−1, relative humidity
at 53–74%, leaf vapour pressure deficits of 1.2–1.7 KPa, and leaf temperatures between
24.3 and 31.6 ◦C. All leaves were allowed to stabilize at these conditions for at least 5 min,
prior to logging data, and values for these traits were calculated as the mean of three
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replicate measurements taken 20 s apart. Physiological trait data were also used to calculate
instantaneous water-use efficiency (WUE, mmol CO2 mol H2O) as Amax/E.

Once physiological measurements were completed, leaves were collected and trans-
ported to the University of Toronto Scarborough, Canada, for analyses of morphological
and chemical traits. Here, leaves were first weighed for fresh leaf mass (g), and then an
LI-3100C leaf area meter (LI-COR Biosciences, Lincoln, NE, USA) was used to measure leaf
area (cm2). Subsequently, all leaves were dried at 60 ◦C to constant mass and re-weighed for
dry mass (g). These data were used to calculate LMA (g m−2) as dry mass/fresh area, and
LMA data were, in turn, used to derive mass-based maximum photosynthetic rates (Amass,
mmol CO2 g−1 s−1) as Amax/LMA. Finally, leaves were ground into a homogeneous fine
tissue using an MM400 Retsch ball mill (Retsch Ltd., Hann, Germany), and ~0.1 mg of leaf
tissue was weighed, placed into a foil capsule, and analysed for leaf N and C concentrations
(both on a % dry mass) using a LECO CN 628 elemental analyzer (LECO Instruments,
Ontario, Canada).

2.3. Data Analysis—Causes of Intraspecific Trait Variation in Wine Grape Varieties

All statistical analyses were performed using R v. 4.1.0 (R Foundations for Statistical
Computing). The first analysis evaluated statistical distributions for all traits using the
‘fitdist’ function in the ‘fitdistrplus’ R package [35], to identify which traits were normally or
log-normally distributed, as inferred by the highest log-likelihood values. Based on these
results, descriptive statistics for each trait across our entire dataset (n = 90 observations
for each trait) were calculated, which included means and standard deviations (SDs) for
normally distributed traits, and medians and median absolute deviations (MADs) for
log-normally distributed traits. Coefficients of variation (CVs) were also calculated for
all traits.

An analysis of variance (ANOVA) procedure, coupled with Tukey’s honestly signifi-
cant difference (HSD) post hoc tests, was then used to evaluate whether traits varied as a
function of growth stage (i.e., post-flowering or veraison), variety identity, and planting
row, as well as all two- and three-way interactions. This procedure was then paired with a
variance partitioning analysis, employed in previous analyses of intraspecific trait varia-
tion [15,36], to identify the factors that explained the highest proportion of variability in
grape traits. This entailed first fitting a linear mixed effects model with nested random
effects using the ‘lme’ function in the ‘nlme’ R package [37]. In this model, nested random
effects were parameterized as planting rows nested within varieties which were nested
within the growth stage; a random intercept was included as the only fixed effects [36]. The
‘varcomp’ function in the ‘ape’ R package [38] was then used to partition the variance in a
given trait across the nested random effects, while also quantifying the proportion of trait
variability unexplained by the nested factors considered here.

2.4. Data Analysis—Bivariate and Multivariate Trait Correlations

Pearson correlation tests were used to evaluate all pairwise trait relationships across
the entire dataset (n = 90 observations total for each test). Multivariate relationships among
grape traits were then examined using a principal components analysis (PCA), which was
implemented with the ‘rda’ in the ‘vegan’ R package [39]. In this PCA, all trait data were
scaled to unit variance, and Amax was excluded due to its strong correlation with Amass
(r = 0.801, p < 0.001). The ‘dimdesc’ function in the ‘FactoMineR’ R package [40] was then
used to evaluate the statistical relationships between individual traits and the first two
principal component axes. Multivariate analysis also included a permutational multivariate
analysis of variance (PerMANOVA), which was designed to test whether multivariate trait
syndromes varied significantly as a function of planting row, variety, and growth stage,
as well as all two- and three-way interactions among these factors. This PerMANOVA
was performed using the ‘adonis’ function in the ‘vegan’ R package [39] and was based
on n = 999 permutations. Finally, we used ANOVA coupled with a Tukey HSD post hoc
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test (implemented as above) to test whether PCA axis 1 and 2 scores varied as a function of
growth stage, variety identity, and planting row, and all two- and three-way interactions.

2.5. Data Analysis—An Intraspecific LES across Wine Grape Varieties

The final statistical analysis evaluated relationships among three leaf traits which are
central in the LES hypothesis, including LMA, Amass, and leaf N [2]. Here, standardized
major axis (SMA) regression analysis was used to quantify pairwise trait relationships in
grapes, and compare their shape (i.e., SMA slopes) and strength (i.e., SMA r2 values) with
those same trait relationships observed among plants globally. This analysis entailed first
fitting an SMA regression to the grape trait dataset (n = 90 leaves total) using the ‘sma’
function in the ‘smatr’ R package [41], and then performing this same analysis on plant
species in the GLOPNET dataset of Wright et al. [2]. These GLOPNET analyses were based
on n = 764 species with paired LMA-Amass data, n = 1958 species with paired LMA-leaf N
data, and n = 706 plant species with paired Amass-leaf N data. Finally, our analysis tested
for statistically significant differences in the slopes of these LES trait relationships in grape
vs. wild plants in GLOPNET, using the ‘slope.test’ function in the ‘smatr’ R package [41].

3. Results
3.1. Trait Variation across Wine Grape Varieties

All traits ranged widely across the varieties and growth stages evaluated here, with
all traits except LMA, leaf C, and leaf N expressing CVs ≥ 20 (Table 1). Physiological
traits were particularly variable, such that Amax ranged from 2.320.1 µmol CO2 m−2 s−1

(CV = 26.7) and Amass from 0.043–0.338 µmol CO2 g−1 s−1 (CV = 30.2). Similarly, WUE
ranged widely from 1.0 to 19.1 mmol CO2 mol H2O−1 (CV = 63.9), and gs ranged from 0.012
to 0.83 mol H2O m−2 s−1 (CV = 97.3). However, for these groups of traits, the factors best
explaining this variability differed. Variation in both Amass and Amax was best explained
by grape variety identity (explained variance = 27.3% and 37.8%, respectively), whereas
variation in WUE and gs was best explained by spatial location/row identity (explained
variance = 9.2% and 12.9%, respectively). Variation in traits related to leaf size, including
leaf dry mass (range = 0.399–2.04 g) and leaf area (range = 52.6–241.7 cm2), was also best
explained by variety identity (explained variance = 29.4% and 35.5%, respectively). Leaf
chemical traits, including leaf C and N concentrations, were the least variable (CV = 2.0 and
17.0, respectively), with values ranging from 41.4% to 45.6% C and 2.2% to 4.3% N. Leaf
chemical traits, along with LMA, were best explained by growth stage, thus reflecting trait
variation that occurs as plants developed from post-flowering to veraison (Table 1, Figure 1).

Table 1. Descriptive statistics for nine leaf functional traits measured across five grape varieties at
two different growth stages.

Distribution
Fitting Descriptive Statistics Variance Partitioning

Trait Group Trait Normal Log-
Normal

Mean/
Median

SD/
MAD Range CV Time Variety Row Unexplained

Physiological

Amax
(µmol CO2 m−2 s−1) −240.4 −261.8 13.2 3.52 3.0–20.1 26.7 0.000 0.273 0.041 0.686

Amass
(µmol CO2 g−1 s−1) 129.6 115.5 0.19 0.06 0.04–0.34 30.1 0.108 0.378 0.036 0.478

gs
(mol H2O m−2 s−1) −0.9 44.2 0.188 0.13 0.012–0.83 97.3 0.075 0.064 0.129 0.732

WUE
(mmol CO2 mol
H2O−1)

−318.0 −222.5 4.3 2.2 1.02–19.1 63.9 0.000 0.000 0.109 0.891
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Table 1. Cont.

Morphological

Leaf dry mass (g) −32.8 −25.1 0.88 0.36 0.4–2.0 37.9 0.000 0.294 0.000 0.706

Leaf area (cm2) −464.7 −462.1 125.6 37.5 52.6–241.7 32.5 0.150 0.355 0.000 0.495

LMA (g m−2) −357.9 −357.2 68.8 14.6 44.9–102.8 18.4 0.748 0.021 0.000 0.231

Chemical
Carbon (% mass) −116.8 −117.1 43.6 0.9 41.4–45.6 2.0 0.476 0.205 0.045 0.275

Nitrogen (% mass) −64.6 −61.6 2.9 0.5 2.2–4.3 17.0 0.779 0.037 0.048 0.136

Trait distributions were determined based on the highest log-likelihood. For normally distributed traits, means
and standard deviations (SDs) are presented, whereas for log-normally distributed traits, median and median
absolute deviations (MADs) are presented. Sample sizes in all cases are n = 90 leaves, and trait abbreviations are
as follows: Amax: light saturated maximum photosynthetic rate on a per-unit leaf area basis; Amass: light saturated
maximum photosynthetic rate on a per-unit leaf mass basis; gs: stomatal conductance; WUE: instantaneous water
use efficiency; LMA: leaf mass per unit area.
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p < 0.05) are shown below a given contrast. Trait abbreviations are as follows: Amax: light saturated 

Figure 1. Functional trait variations across five wine grape varieties at two growth stages. Colours
correspond to different wine grape varieties, with square symbols representing trait values measured
post-flowering and circles representing trait values measured during veraison. Trait data are pre-
sented on log-scales where appropriate, as informed by the summary statistics presented in Table 1,
and results from analyses of variance (ANOVAs), testing for differences in traits across varieties,
growth stage, planting rows, and all interactions, are presented in Table 2. Additionally, certain
results are presented from Tukey’s honestly significant difference (HSD) post hoc tests. For clarity,
only instances where traits varied significantly within varieties across growth stages (Tukey’s HSD
p < 0.05) are shown below a given contrast. Trait abbreviations are as follows: Amax: light saturated
maximum photosynthetic rate on a per-unit leaf area basis (Panel A); Amass: light saturated maxi-
mum photosynthetic rate on a per-unit leaf mass basis (Panel B); leaf N: leaf nitrogen concentration
(Panel C); gs: stomatal conductance (Panel D); WUE: instantaneous water use efficiency (Panel E);
leaf C: leaf carbon concentration (Panel F); leaf mass: leaf dry mass (Panel G); leaf area: fresh leaf
area (Panel H); LMA: leaf mass per unit area (Panel I).
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Table 2. Results of analysis of variance (ANOVA) testing variation in nine leaf traits and two principal
components axis scores across two growth stages, five varieties, individual planting rows, as well as
all two- and three-way interaction terms (denoted by “*”).

Trait Group Trait Growth
Stage Variety Row Stage *

Variety
Stage *
Row

Variety *
Row

Stage *
Variety *

Row

Physiological

Amax
3.18

(0.08)
1.92

(0.119)
0.64

(0.529)
7.99

(<0.001)
0.08

(0.92)
1.04

(0.417)
1.73

(0.11)

Amass
18.49

(<0.001)
6.46

(<0.001)
1.17

(0.317)
10.22

(<0.001)
0.07

(0.933)
0.94

(0.495)
1.82

(0.091)

log-gs
6.95

(0.011)
1.96

(0.112)
2.1

(0.132)
2.66

(0.041)
1.61

(0.208)
1.52

(0.17)
1.38

(0.225)

log-WUE 0.05
(0.832)

1.795
(0.146)

0.773
(0.466)

0.368
(0.83)

0.92
(0.403)

2.78
(0.011)

0.45
(0.889)

Morphological

log-Dry mass 0.65
(0.425)

8.17
(<0.001)

1.01
(0.369)

0.54
(0.705)

0.02
(0.984)

0.64
(0.744)

0.43
(0.897)

log-Area 18.72
(<0.001)

12.39
(<0.001)

1.17
(0.318)

0.82
(0.52)

0.12
(0.885)

0.61
(0.77)

0.44
(0.895)

log-LMA 146.87
(<0.001)

2.26
(0.074)

0.26
(0.775)

1.38
(0.253)

0.12
(0.885)

1.23
(0.297)

1.11
(0.372)

Chemical

Leaf C 86.13
(<0.001)

9.26
(<0.001)

0.07
(0.937)

7.15
(<0.001)

0.66
(0.521)

2.02
(0.059)

1.53
(0.168)

log-Leaf N 261.85
(<0.001)

4.2
(0.005)

0.82
(0.45)

4.79
(0.002)

1.5
(0.232)

2.76
(0.012)

1.83
(0.089)

Multivariate

PCA 1 374.9
(<0.001)

2.26
(0.073)

0.627
(0.537)

8.477
(<0.001)

0.561
(0.574)

1.56
(0.156)

1.72
(0.112)

PCA 2 0.252
(0.617)

1.407
(0.243)

0.904
(0.41)

0.953
(0.44)

1.118
(0.334)

1.604
(0.143)

1.119
(0.364)

Values shown here are F-statistics and associated p-values (in parentheses), where the sample size for all ANOVAs
was n = 90 leaves distributed equally across two growth stages (n = 45 leaves per growth stage total), five varieties
(n = 18 leaves per variety), and three rows for each growth stage-by-variety combination. Statistically significant
effects (where p < 0.05) are highlighted in bold, and abbreviations are as follows: Amax: light saturated maximum
photosynthetic rate on a per-unit leaf area basis; Amass: light saturated maximum photosynthetic rate on a per-unit
leaf mass basis; gs: stomatal conductance; WUE: instantaneous water use efficiency; LMA: leaf mass per unit area;
PCA 1: principal component 1 score; PCA 2: principal component 2 score. Results and associated post hoc tests
for individual traits are presented in Figure 1.

With the exceptions of WUE and gs, variance partitioning and ANOVA indicated that
variety identity, growth stage, and a variety-by-growth stage interaction term were the
most important factors determining leaf trait variation in our dataset (Table 2). Across
all traits except for WUE and gs, the combination of variety identity and growth stage
explained between 27.3% and 81.5% of trait variation (Figure 2, Table 1). Moreover, except
in the case of Amax, traits varied significantly as a function of variety and growth stage
(Figures 1 and 2, Table 1). Across varieties, ‘Pinot Gris’ most consistently expressed a
suite of traits that were the clearest ‘resource-acquiring’ syndrome. In the dataset, ‘Pinot
Gris’ expressed among the highest values of Amax (15.1 and 13.7 µmol CO2 m−2 s−1 in the
post-flowering and veraison stages, respectively), Amass (0.256 and 0.186 µmol CO2 g−1 s−1

in the post-flowering and veraison stages, respectively), and leaf N (3.4% and 2.5% in the
post-flowering and veraison stages, respectively), and the lowest LMA values (59.9 and
73.4 g m−2 in the post-flowering and veraison stages, respectively; Figure 1).
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Figure 2. Variance partitioning of nine leaf traits measured across five common wine grape varieties,
at two growth stages, and across spatial locations (i.e., planting rows). Heights of the different bar
segments correspond to the proportion of total trait variation in each trait (where n = 90 leaves
for all traits), as determined by a variance partitioning procedure. Variance components presented
here visually correspond to the numerical values presented in Table 1. Trait abbreviations are as
follows: Amax: light saturated maximum photosynthetic rate on a per-unit leaf area basis; Amass:
light saturated maximum photosynthetic rate on a per-unit leaf mass basis; gs: stomatal conductance;
WUE: instantaneous water use efficiency; LMA: leaf mass per unit area.

One of the most consistent patterns observed in this analysis is that across all vari-
eties and traits, grapes generally express more ‘resource conservative” trait syndromes
in their leaves as they develop from the post-flowering through to veraison stages. This
entailed all varieties expressing statistically significant (Tukey’s HSD p < 0.05) increases in
LMA between the post-flowering and veraison stages, four varieties expressing statistically
significant (Tukey’s HSD p < 0.05) declines in leaf N, and three varieties expressing statisti-
cally significant (Tukey’s HSD p < 0.05) declines in Amass over the same stages (Figure 1).
Additionally, consistent with plants moving towards more resource-conserving trait syn-
dromes through the growing season, leaves were smaller in area during veraison than
post-flowering within all varieties, although these differences were not statistically signif-
icant (Figure 1). Four of the five varieties also expressed statistically significant declines
(Tukey’s HSD p > 0.05) in leaf C concentrations between the two growth stages (Figure 1).

3.2. Relationships among LES and Other Leaf Traits in Wine Grape Varieties

Trait relationships in grape were largely consistent with patterns observed in the LES,
including positive relationships among Amass and leaf N (Pearson p < 0.001, r = 0.448),
both of which traded-off with LMA (Pearson r = −0.424 and r = −0.727, respectively,
p < 0.001 in both cases; Figure 3, Table S2). Leaf C concentrations also expressed significant
relationships with certain LES traits; notably, a positive correlation with leaf N (Pearson
r = 0.63, p < 0.001) and a negative relationship with LMA (Pearson r = −0.359, p < 0.001;
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Figure 3, Table S2). Traits associated with plant–water relationships were correlated with
one another (Pearson r = −0.67, p < 0.001); however, WUE and gs were unrelated to
any other traits measured here associated with C assimilation, leaf chemistry, or leaf size
(Figure 3, Table S2).
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Figure 3. Pearson correlation tests analyzing the relationships between nine leaf traits measured
across five wine grape varieties in Southern Ontario, Canada. Shades of circles correspond to
Pearson correlation coefficients for each test which are presented numerically within the circles.
Sample sizes for each correlation test were n = 90 leaves, and only statistically significant trait
correlations represented by circles/correlation coefficients (where p ≤ 0.05) are presented here. A
full trait correlation matrix is presented in Table S1. Trait abbreviations are as follows: Amax: light
saturated maximum photosynthetic rate on a per-unit leaf area basis; Amass: light saturated maximum
photosynthetic rate on a per-unit leaf mass basis; gs: stomatal conductance; WUE: instantaneous
water use efficiency; LMA: leaf mass per unit area.

Multivariate analysis revealed that the first two principal components explained 36.2%
and 21.6% of the trait variation in grape traits (Figure 4). Consistent with the results from
bivariate analyses, the first PCA axis was significantly associated with LES traits, including
Amass (r = 0.559, p < 0.001), and leaf N (r = 0.932, p < 0.001), which trade off against LMA
(r = −0.782, p < 0.001; Figure 4, Table S2). Other traits including leaf C (r = 0.721, p < 0.001)
and leaf area (r = 0.375, p < 0.001) also loaded onto the first principal component axis, thereby
contributing to the suite of traits that reflect resource acquisition (Figure 4, Table S2). The
second principal component was primarily defined by WUE (r = 0.806, p < 0.001) which
traded off against gs (r = −0.851, p < 0.001; Figure 4, Table S2).
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Figure 4. Principal components analysis (PCA) evaluating multivariate trait relationships across five
wine grape varieties across two growth stages. Only seven of nine traits quantified in this study
were included here, due to strong collinearity in certain traits (see Figure 3). Colours correspond to
different varieties, whereas symbols represent different growth stages (post-flowering and veraison,
“P.F.” and “Ver.”, respectively). To aid in visualization, also presented here are 95% confidence ellipses
surrounding the two different growth stages which explained 22.9% of the variation in the seven
traits analyzed here. Associated permutational analysis of variance (PerMANOVA) and relationships
between individual traits and PCA axes are presented in Tables S2 and S3. Trait abbreviations are
as follows: Amax: light saturated maximum photosynthetic rate on a per-unit leaf area basis; Amass:
light saturated maximum photosynthetic rate on a per-unit leaf mass basis; gs: stomatal conductance;
WUE: instantaneous water use efficiency; LMA: leaf mass per unit area.

The PerMANOVA was consistent with univariate analyses of traits and causes of trait
variation, with both growth stage and variety being statistically significant predictors of
multivariate trait syndromes. These two factors explained a total of 50.3% of the variation
in traits, with variety identity explaining 27.4% and growth stage explaining an additional
22.9% of variation (PerMANOVA p < 0.001 in both cases; Table S3). Although variety
differences were less distinguished in our PCA, trait observations measured at different
growth stages were clearly differentiated across the first PCA axis. Specifically, leaves
from all varieties sampled in the post-flowering period were strongly associated with the
resource-acquiring end of the first PCA axis, which reflected larger leaves with a higher
Amass, leaf N, and leaf C, and a lower LMA. The opposite suite of traits characterized leaves
from all varieties sampled during veraison (Figure 4). This finding was also confirmed by
ANOVA, which revealed that PCA 1 axis scores varied significantly as a function of growth
stage as well as a sampling time-by-variety interaction term (Table 2).
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3.3. A Leaf Economics Spectrum across Wine Grape Varieties

Relationships among three core LES traits evaluated here including Amass, leaf N,
and LMA, closely matched patterns of LES trait variation observed among plants globally.
This included positive SMA relationships among Amass and leaf N (SMA model r2 = 0.189,
p < 0.001), and negative relationships between LMA and Amass (SMA model r2 = 0.191,
p < 0.001), and LMA and leaf N (SMA model r2 = 0.507, p < 0.001; Figure 5, Table S4).
Positive scaling relationships between Amass and leaf N in grape (SMA model slope = 0.12)
were statistically indistinguishable from the Amass-leaf N observed in the GLOPNET dataset
of plants globally (SMA model slope = 0.11, slope test r = 0.03, p = 0.77; Figure 5, Table
S4). Analysis did identify statistically significant differences in LES trait scaling relation-
ships between LMA and leaf N in grapes which were steeper (SMA model slope = −0.04)
vs. the GLOPNET dataset (SMA model slope = −0.008; slope test r = 0.96, p < 0.001;
Figure 5, Table S4). Similarly, relationships between Amass and LMA in grapes (SMA
model slope = −225.2) differed statistically from those observed in the GLOPNET dataset
(SMA model slope = −868.1; slope test r = −868.1, p < 0.001; Figure 5, Table S4).
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Figure 5. Leaf Economics Spectrum trait relationships in wine grapes. Presented here are bivari-
ate relationships across three core LES traits including Amass, LMA, and leaf N concentrations
(Panels A–C), as well as a three-dimensional representation of the relationships across the same traits
(Panel D). Coloured points correspond to different grape varieties, which are not differentiated based
on growth stage here to aid in visualization. Black solid trend lines correspond to the standardized
major axis (SMA) regression model of a given bivariate trait relationship across wine grapes (where
SMA model p < 0.05 and r2 ≥ 0.189 in all cases) and dashed black trend lines in (Panels A–C) represent
convex hull models that encapsulate the two-dimensional trait space occupied by wine grape leaves.
Additionally, data and SMA models for the same LES trait relationships observed among wild plants
in the GLOPNET dataset are shown in all panels (grey dashed trend lines and points). SMA models
were fit to the ‘Wine grape variety’ dataset, and wild plants were derived from the GLOPNET dataset
(Wright et al., 2004). Full model diagnostics for each SMA model in (Panels A–C) are presented in
Table S4. Trait abbreviations are as follows: Amass: light saturated maximum photosynthetic rate on a
per-unit leaf mass basis; LMA: leaf mass per unit area.
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4. Discussion

This study reveals that the five wine grape varieties evaluated here differ significantly
in their leaf physiological, chemical, and morphological traits. Specifically, analyses re-
vealed that variety differences in Amass, leaf C, leaf N, leaf size (both mass and area), and, to
a lesser extent, LMA, reflect differences in ecological strategies among varieties (Figure 4).
Many prior studies have evaluated leaf trait variations in multiple V. vinifera varieties,
across multiple environmental conditions and growth stages. Although a comprehensive
review of these studies is beyond the scope of our analysis, these studies do suggest that
our trait values broadly fall within the functional trait space occupied by wine grapes. For
example, previous studies indicated the following trait ranges for vines of multiple varieties
across a diverse set of conditions and stages: Amax between ~5 and 20 µmol CO2 m−2 s−1,
leaf N between ~1.5% and 3.3%, and LMA ranging from ~30 to 270 g m−2 [42–54]. The
dataset in this study broadly aligns with these findings, indicating that unlike other crops
such as soy [13], wheat, and maize [17], which occupy the extreme “resource-acquiring”
end of the LES trait space, wine grapes are largely intermediary in their LES trait values
when compared with plants globally (Figure 5). The dataset here provides some evidence
indicating that certain varieties (‘Chardonnay’ and ‘Pinot Gris’) express more resource-
acquiring trait syndromes than others (‘Cabernet Sauvignon’, ‘Syrah’, and ‘Merlot’). This
trend is intriguing and points to differences in red vs. white varieties; however, consider-
able overlap remains among varieties within the larger wine grape trait space (Figure 5),
and our dataset contains too few varieties to support robust analyses of differences in trait
syndromes across reds vs. whites.

Although variety identity explains up to 37.8% of leaf trait values (Table 1), changes
in trait syndromes across growth stages were also a pronounced determinant of trait syn-
dromes in wine grape. During veraison, across vines of all varieties leaves shift from
resource-acquiring to resource-conserving leaf trait syndromes. With few exceptions, all
varieties exhibited declines in Amax, Amass, leaf N, and leaf area, in addition to increases
in LMA between the two growth stages, and leaves were strongly and statistically differ-
entiated in multivariate trait space according to growth stage (Figure 4). Taken together,
variety differences, changes in traits related to vine development within a growing season,
and their interactions were the most important factors structuring intraspecific leaf trait
variations in grape. Alternatively, finer-scale spatial variation in traits within a given variety
at a given sampling time—accounted for here as sampling row identity—explained little
variation in leaf traits, particularly in the traits associated with the C economy of leaves.

Systematic varietal differences in longer-term leaf hydraulic traits, including water
potential at turgor loss point, have been well documented, and indeed represent a primary
basis of variety selection under climate change [55]. However, in this study, unlike traits
reflecting hydraulic safety margins or resource capture traits, we found gs and WUE did
not strongly vary across varieties or sampling times. Instead, these traits were better
explained by planting row variations, although systematic differences across rows were
not statistically significant (Table 2). This finding is consistent with previous research on
crop traits reporting that, at the farm scale, leaf hydraulic traits reflecting short-term water
fluxes such as WUE are often better explained by localized environmental conditions [13].

The present study was performed over a single growing season. Therefore, the analysis
here is limited in informing how longer-term climatic, edaphic, and/or management-
related changes influence grape leaf trait expression. Crop responses to a multitude of
chronic, acute, and interacting environmental drivers underpin longer-term agroecological
resistance or resilience environmental change [56], with crop leaf [29,57], root [27], or
phenological traits [28,58] being central in meditating these responses. Indeed, enhancing
the phenological variability and other aspects of functional diversity has been identified as
a key climate change mitigation strategy for vineyards globally [30]. Expanding the research
here to understand how LES traits of different wine grape varieties respond to environmental
variability—e.g., elevated temperatures, increases in atmospheric CO2 concentrations, or
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water limitation—therefore represents an avenue for understanding how vineyard functional
diversity confers resistance or resilience to environmental change [12,43,59,60].

There was some evidence that grape falls along an infraspecific LES consistent with
that observed in wild plants [1,2]. This includes statistically significant positive covariation
between Amass and leaf N, both of which trade off with LMA (Figure 5). This finding
contributes to existing studies on intraspecific LES trait variation, showing that plants
of multiple domesticated plant species differentiate along intraspecific Leaf Economics
Spectra [13,15,19]. This also aligns with recent studies showing that within ‘Chardonnay’
alone, vines differ in their resource capture traits in response to soil compaction [61].
Here, this study found that in wine grape varieties, relationships between leaf N and
Amass are statistically indistinguishable from the same relationship observed in plants
globally (Figure 5). Additionally, although other LES trait relationships in grape evaluated
here including those between LMA, Amass, and leaf N, did differ statistically from those
quantified in the GLOPNET dataset, grape LES traits and their relationships were broadly
aligned in both datasets (Figure 5).

This is unlike certain crops, including rice [19] and coffee [15] which, due to their
domestication syndromes that favour greater resource-use efficiencies or concentrations of
secondary compounds, exhibit LES trait relationships that differ statistically from those
observed in wild plants. Instead, wine grapes appear to align more closely with crops such
as soy whose LES relationships match closely with wild plants [13]. When taken with the
broader literature on crop traits, the following hypothesis emerges: LES trait relationships
in crops differ from those in wild plants, when the domestication syndrome entails targeted
alterations to the N economy of leaves and plants.

In the present study, the sample sizes for individual varieties (n = 18) were too small
to evaluate whether varieties differed in their LES trait relationships [62]. However, one
emerging question within studies on intraspecific leaf trait relationships, is whether or not
plants are constrained along a single LES which is unique to a given species or genotype.
To date, this has been only weakly addressed, with different datasets from coffee indicating
that a single intraspecific LES describes plant trait syndrome differences across growing
conditions [15] and ontogeny [14]. Therefore, expanding the study design here to include
a greater number of wine grape varieties, and expanding sampling designs to include a
wider range of environmental conditions and growth stages, would inform this question.

In defining the traits that form the LES in plants, this study also shows that in wine
grapes, leaf C concentrations correlate positively with traits associated with resource
acquisition, including leaf N and (in multivariate space) Amass, while trading off against
LMA (Figures 3 and 4). In other crops, leaf C has been found to reflect leaf construction costs,
and therefore, positively correlate with LMA and leaf dry matter content; by extension,
higher leaf C values generally reflect a more resource-conserving trait strategy [15,21].
However, here and in our previous research on ‘Chardonnay’ traits [61], higher leaf C
values were associated with a more resource-acquiring trait syndrome. In addition to strong
inter-varietal variation in leaf C, we detected consistent and pronounced seasonal declines
in leaf C in all varieties except ‘Merlot’ (Figure 1). A coupling of leaf C concentrations with
other LES traits (namely, leaf N) in wine grape leaves is likely as a result of commensurate
changes in enzymes related to both the Calvin cycle and starch and sugar synthesis [63]. By
extension, trait relationships that involve leaf C concentrations may reflect a component
of a domestication syndrome in wine grapes, namely, artificial selection for starches and
sugars in leaves which then deplete during veraison [31].

5. Conclusions

Our study contributes to the growing literature indicating that plants of the same
crop species differ from one another in their leaf traits, with plants differentiating along
infraspecific LESs that show important similarities and differences from the LES observed
in plants globally. This study finds that variety and growth stage differences in leaf traits
are most important in structuring trait-based ecological strategies of wine grapes, with fine-
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scale spatial variation being a smaller component. By extension, these findings also indicate
that expanding this line of research to include additional wine grape varieties, along with
multiple sites with contrasting environmental conditions, would likely be most important
in expanding our understanding of the extent and drivers of LES trait variation in wine
grapes. Indeed, although the five varieties included in the present study are widespread
and common, they represent a small fraction of the total varietal diversity of wine grapes
and growing conditions globally [30]. Despite this limitation to the present study, the
analyses presented here indicates that significant genetic variation exists across wine grape
varieties, as well as temporal variation in relation to plant development and reproduction.
Better understanding (1) how the leaf traits studied here respond to environmental changes,
(2) how these responses differ across varieties, and (3) the temporal sensitivity of trait-based
responses to environmental fluctuations, represents key considerations for quantifying the
role that functional diversity plays in mitigating climate change impacts on vineyards.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11202792/s1, Table S1. Results of Pearson correlation tests
evaluating bivariate relationships across nine leaf traits measured across five wine grape varieties
in Southern Ontario, Canada, at two growth stages. Table S2. Contributions of leaf traits towards
two primary axes in a principal component analysis (PCA) across wine grape leaves, measured on
five varieties at two growth stages during the growing season. Table S3. Results of a permutational
multivariate analysis of variance (PerMANOVA) evaluating variations in seven leaf traits measured
in n = 90 leaves from five different grape varieties at two growth stages. Table S4. Standardized
major axis (SMA) regression models evaluating bivariate correlations in three traits forming the Leaf
Economics Spectrum (LES). Figure S1. Location of the Niagara College Teaching Vineyard, situated
in Niagara-on-the-Lake, Ontario, Canada (43.1697◦ N, 79.1193◦ W).
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