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Abstract: Sustainable agriculture is a prerequisite for food and environmental security. Chemical
fertilization, especially nitrogenous fertilization, is considered the most consumed for field crops. In
rice crops, plants consume much less than half of the applied N-fertilizer. In the current investigation,
multiple N environments were generated by applying different N doses of urea fertilizer to a
permanent transplanted field for two successive summer growing seasons at the rice research and
training center, Kafrelsheikh, Egypt. A set of 55 genotypes consisting of 25 Jabonica, 4 Tropical
Japonica, 20 Indica, and 6 Indica/Japonica were transplanted under no N (0N), Low N (LN), medium
N (MN), and High N (HN) (i.e., 0, 48, 96, and 165 Kg N ha−1, respectively). Highly significant
differences were detected among the tested genotypes. AMMI analysis of variance revealed the
existence of the genotype via nitrogen interaction (GNI) on yield performance. The GNI principal
components (IPCA); IPCA1 and IPCA2 scores were significant and contributed values of 71.1 and
21.7%, respectively. The highest-ranked genotypes were MTU1010, IR22, SK2046, SK2058, IR66, and
Yabani LuLu based on their grain yield means (30.7, 29.9, 29.5, 29.3, 28.8, and 28.5 g plant−1). These
genotypes were grouped into the same subcluster (SCL) according to the stability analysis ranking
matrix. Based on AMMI analysis and biplots, MTU1010 and Yabani LuLu showed yield stability
across environments. Meanwhile, the which-won-where biplot showed that IR22 was superior under
unfavorable N-levels and MTU1010 was stable across the different environments. These findings are
considered to be of great importance to breeders for initiating low-nitrogen-input breeding programs
for sustainable agriculture.

Keywords: rice; sustainable; low input; nitrogen fertilizer; AMMI; grain yield; stability; multi-location;
multi-environment

1. Introduction

Rice (Oryza sativa L.) is a staple food in many countries and a major component of diets
in many others. In many parts of the world, a lack of rice supplies could lead to starvation.
Globally, 755 million tons of paddy rice are produced from 162 million ha of land [1]. To
meet the needs of the world’s rapidly growing population, increasing grain yield per unit
area of rice is critical to combating poverty. This goal could be met by cultivating rice
cultivars with high yield potential and using appropriate management [2].
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Nitrogen (N) is the most important nutrient that is needed by plants for growth and
completing their life cycle. However, the rice crop consumes much less than half of the ap-
plied N fertilizer. The recovery efficiency of nitrogen fertilizer in rice amounted to 30–39%,
and the nitrogen use efficiency decreases with the increase in the applied nitrogen [3]. N
application losses contribute to soil deterioration, groundwater pollution, and emissions of
ammonia and greenhouse gases [4,5]. Accordingly, for rice production sustainability that is
less harmful to the environment, it is necessary to identify the superior genotypes under
low application of N-fertilizer. Hence, rice breeders are always evaluating a large set of
genotypes under different environments to identify the high-yielding genotypes that have
adapted to different environments [6,7].

Grain yield (GY) is the economic determinant of the best-performing genotypes [8].
GY is a quantitative trait determined by the additive main effect of environment (E) and
genotype (G) in addition to the nonadditive effect of the G X E interaction (GEI) [9]. Breed-
ers focus on the GEI effect to identify the yield stability of genotypes across different
conditions and environments, which cannot be revealed by the separate effects of genotype
or environment [10–14]. The GY heritability is exposed to variability across different envi-
ronments [15,16], which hinders the accuracy of superior varietal selection processes [17].
Therefore, widely adapted genotypes with the ability to produce stable high yields across
diversified environments constitute a major goal for rice breeders. Hence, it is critical to
evaluate the adaption of several genotypes across different N inputs to identify superior
genotypes with stable GY under different N environments to detect GNI. Furthermore,
the analysis of yield stability under different soil conditions is found to be associated with
imbalanced yield stability [18]. Several statistical analysis methods have been reported and
developed to manipulate GEI including parametric and non-parametric stability statistical
methods. Parametric methods include univariate and multivariate methods. Wricke’s eco-
valence (Wi2) [19], Shukla’s stability variance (s2) [20], the coefficient of variance (CV) [21],
Environmental variance (S2) [22], the Mean-variance component (q) [23], the GE variance
component (q’) [24], the Regression coefficient (bi) [25], and many others constitute univari-
ate methods. Multivariate methods include the additive main effects and multiplicative
interaction (AMMI) model [26] and the GGE biplot method [27]. AMMI analysis considers
both ANOVA and principal component analysis (PCA). The results of AMMI provide geno-
types’ yield stability under different environments and facilitate the precise selection of the
best-performing genotypes for the environment under study [28–30]. Multivariate methods
estimate GEI by following approaches such as the ‘which-won-where’ pattern, identifying
mega environments and superior genotypes across different environments under study,
and ranking environments [31]. Non-parametric methods include Nassa and Huhn’s and
Huhn’s statistics (S) [32], Kang’s rank-sum (KR) [33], TOP-Fox (TOP) [34], Thennarasu’s
non-parametric statistics (NP) [35], and the Genotype stability index (GSI) [36]. Recently, a
new R package has been reported to manipulate the multi-environment trials (MET), called
metan [37]. The package is a work-flow based approach that has a collection of functions to
compute the most used parametric and nonparametric stability statistics. Unlike other R
software packages that could possibly be used for analyzing MET data, metan is specifi-
cally coded for a complete analysis of MET trials (checking, manipulating, analyzing, and
visualizing the data).

In recent years, there has been substantial interest in detecting both the yield and
yield stability under different fertilizer conditions in different crops [38]. In our recent
investigation, we estimated the yield stability of newly developed rice lines across different
water treatments [15]. The present study aims to identify superior rice genotypes under low
nitrogen input with stable yield performance over different N levels. The study is expected
to enrich our knowledge regarding low-nitrogen-input genotypes with high yielding ability.
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2. Results
2.1. Genotypic Variability of GY under Different N Environments

The mean performance of the evaluated genotypes under different N environments
is presented in Supplementary Table S1. The data indicate that the genotypes exhibited
different behavior as a response to the different N treatments, which was confirmed by the
analysis of variance as indicated from the genotypic mean square value under different N
levels (Supplementary Table S2). The mean performance of the tested genotypes across the
different N environments showed that MTU1010 has the highest GY mean value across N
environments, with 30.7 g plant−1. Moreover, environments’ mean performances showed
an increase in the overall GY mean performance of the genotypes with each incremental
dose of N, which ranged between 19.14 and 28.84 g plant−1 for the 0N and HN levels
under study.

2.2. Combined AMMI Analysis of Variance of the GY and the Decomposition of GEI Effect

The AMMI model analysis for the genotypes’ GY revealed significant differences
for both the main (G and E) and GEI effects (Supplementary Table S3). These findings
show that there is considerable variability among the genotypes, environments, and their
interactions. The G factor accounted for 49.97% of the total variance in the AMMI analysis,
followed by E (33.69%) and GEI (7.40%). The decomposition of the GEI effect by AMMI
analysis yielded three significant IPCAs. These three IPCAs explained 100 percent of the
total GEI effects explained, which were all significant accounting for 71.1%, 21.7%, and
7.2% for IPCA1, IPCA 2, and IPCA3, respectively.

2.3. Environmental Effect on the Performance of the Genotypes

Based on the output of the AMMI analysis, Table 1 presents the mean genotypic GY
performance in each N-environment, EPCA1, and the top five ranked genotypes for each N
environment. The environments had different records of the overall genotypes’ GY mean.
According to the environmental index the environments were classified into unfavorable
and favorable for the grown genotypes under these environments. Environments with neg-
ative index estimates were unfavorable while MN and HN were favorable. 0N was the most
unfavorable while HN was the most-favorable condition for the genotypes under study.
Furthermore, according to the estimated EPC1, the results showed that N-environments
contributed differently to the genotype stability for the GY. Among the different N- levels,
0N has the lowest PC1 estimate while HN has the highest PC1 record. These records
indicate that the HN was the main contributor to the genotypic GY stability and 0N has the
lowest contribution to the GEI.

Table 1. AMMI analysis based on GY means for genotypic performance and N environment EPC1
value and the 5 top ranking genotypes for each N environment.

E Mean EPC1 Index Class 1 2 3 4 5

0N 19.13842 −2.35395 −4.575242 Unfavorable IR22 GIZA14 C22 MTU1010 SK2058

LN 21.94194 −1.39131 −1.771727 Unfavorable IR22 MTU1010 Yabani
Lulu SK2035 IR66

MN 24.93612 0.054521 1.222455 favorable SK2046 IR22 MTU1010 Egyptian Yasmin Giza178
HN 28.83818 3.690741 5.124515 favorable SK2058 MTU1010 Reiho WAB 880 SG 73 Giza178

2.4. Graphical Representation of Genotypes and N-Environments in the AMMI Biplots

The biplots for AMMI1-Means vs. PC1 and AMMI2-PC1 vs. PC2 were generated
to identify the mega environment and stable genotypes across N treatments (Figure 1A,
Supplementary Table S4). The AMMI1 biplot was generated to plot genotypes’ and envi-
ronments’ means against their IPCA1. Subsequently, the environments 0N and LN were
identified as low-yielding ones (Figure 1A AMMI1 Biplot). The AMMI2 biplot reveals the
environmental and genotypical scores corresponding to both the GY IPCA1 and IPCA2
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(Figure 1B AMMI2 Biplot). Based on this plot, the environments and/or the genotypes that
are located in close proximity to the origin are less influenced by the effect of GEI. On the
contrary, those genotypes and/or environments that are distanced from the origin either on
the negative or positive side are more influenced by the GEI effect. Among the different N
environments, LN was the nearest to the GEI origin compared with all other environments.
Meanwhile, on the genotypes side, C22, WAB 450-1-B-P-91-HB, Black Rice, Arabi, Yun Lu
No. 48, GZ 6522-15-1-1-3, Giza178, SKC 23808-28-5-2-1-1, Taikeng Yu 1420, IR28, Sakha104,
and SK2058 generated a polygon where they were the most interactive genotypes with the
changes in N levels.

Figure 1. The AMMI1 and AMMI2 (A,B), respectively) biplots indicating the GEI for the 55 rice
genotypes across 4 N environments. The genotypes’ and environments’ legends are presented in
Table 2.

Table 2. Name, type, parentage, and origin of the plant materials.

No. Genotype Type Parentage Origin

1 Sabieny J Selection from Introductions EGYPT

2 Nabatat Asmar J Selection from Agami M1 EGYPT

3 Giza 159 J Giza14/Agami M.1 EGYPT

4 Yabani LuLu J Selection from Introductions EGYPT

5 GZ 5830-59-10-2 J GZ4120/Suweon349 EGYPT

6 Giza 14 J Yabani Pearl/Iraki16 EGYPT

7 GZ 7718-13-3-1-3 J Sakha101/HR4856-1-1-2 EGYPT

8 Nahda J Selection from Introductions EGYPT

9 GZ 6214-4-1-1-1 J GZ4122-23-4-2/IRI396 EGYPT

10 Sakha 101 J Giza176/Milyang79 EGYPT

11 IR 68373-R-R-B-22-2-2 T.J. JINMIBYEO/YR14987-91 IRRI

12 Giza 182 I Giza181/IR39422//Giza181 EGYPT
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Table 2. Cont.

No. Genotype Type Parentage Origin

13 GZ 7922-B-44-1 J Giza177/IDSA EGYPT

14 Pusa Basmati 1 I India selection INDIA

15 Sakha 104 J GZ4096/GZ4100 EGYPT

16 IR 28 I IR8333-6-2-1///IR1561-149-1//IR24*4/O. NIVARA IRRI

17 GZ 6522-15-1-1-3 J GZ5581/GZ4316 EGYPT

18 IR 64 I IR5657-33-2-1/IR2061-4665-1-5-5 IRRI

19 GZ 7718-13-3-2-2 J Sakha101/HR4856-1-1-2 EGYPT

20 Giza 177 J Giza171/Yamji No.1//PI NO.4 EGYPT

21 IR 66 I IR13240-108-2-2-3/IR9129-209-2-2-2-1 IRRI

22 GZ 6910-28-1-3-1 J Sakha101/GZ24316(MUT) EGYPT

23 IR 70 I IR19660-73-4/IR54//IR9828-36-3 IRRI

24 Agami M.1 J Selection from cultivated varieties EGYPT

25 Sakha 103 J GZ4120/Suweon349 EGYPT

26 Arabi I/J Java3/Yabani Montkhab 3 EGYPT

27 Milyang 63 I/J TONGIL/IR946-33-2-2-2//YR675-131-2 KOREA

28 Yen Geng 135 J Chinese selection CHINA

29 IR 73689-31-1 T.J. SR18977-TB-4/JINMIBYEO IRRI

30 Giza 178 I/J Giza175/Milyang49 EGYPT

31 WAB 450-1-B-P-91-HB I — Africa Rice

32 BG 304 I — SRILANKA

33 MTU 1010 I — INDIA

34 IR 68353-35-3-3-2-2-1-2 T.J. CHEOLWEON49/KYWHA9 IRRI

35 Giza 175 I/J (IR28/IR1541)/(Giza180/Giza14) EGYPT

36 WAB 880 SG 73 I — Africa Rice

37 E 7034 J EWAN NO.5/857 CHINA

38 SKC 23808-28-5-2-1-1 I/J 98-Y-116/Sakha102 IRRI

39 IET 1444 I TN1/CO.29 INDIA

40 Black Rice J Jingo9601 China

41 IR 7421-35-1-1-2 T.J. IR2035-290-2-1-1/MASINO IRRI

42 GZ 6903-3-4-2-1 J Sakha101/Suweon313 EGYPT

43 SKC 23822-304-3-1-1-1 I/J M202/Giza177 IRRI

44 Taikeng Yu 1420 J C253///J692130/BL6//TAINUNG67/IR4547-2-1-2 TAIWAN

45 Egyptian Yasmine I IR262-43-8-11/KDML105 EGYPT

46 IR 67075-2B-5-2 I IR10198-66-2//GZ2175/CSR1 IRRI

47 IR 74 I IR19661-131-1-2/IR15795-199-3-3 IRRI

48 Reiho J HOYOKU/AYANISHKI JAPAN

49 C 22 I TJRERMAS/BPI76//PALAWAN/AZUCENA IRRI

50 Yun Lu No. 48 J LUYIN NO.7/YUNANJINGDAO-38 CHINA

51 IR 22 I PETA/DEE GEO WOO GEN//TADUKAN IRRI
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Table 2. Cont.

No. Genotype Type Parentage Origin

52 SK2034 I IR69625A/Giza178R EGYPT

53 SK2046 I IR69625A/Giza181R EGYPT

54 SK2035 I IR70368A/Giza178R EGYPT

55 SK2058 I IR69625A/Giza182R EGYPT

J, Japonica; I, Indica; T.J., Tropical japonica; I/J, Indica japonica; IRRI, International Rice Research Institute.

2.5. Which-Won-Where GGE Biplot Analysis

The sum of the first and second PCA axes explained 96.36% of the total GEI variation,
as can be seen in the GGE biplot presented in Figure 2A. The genotypes that were farthest
away from the biplot origin include Black Rice, Yun Lu No. 48, Arabi, IR22, MTU1010,
Giza178, Reiho, SKC 23808-28-5-2-1-1, and Giza177. These genotypes, called vertex geno-
types, have the longest vectors with respect to their direction. Vertex genotypes are the most
responsive genotypes to the environment in their direction. The vertex genotypes with no
environmental indicators nearby are the poorly performing ones. Accordingly, Black Rice
had the poorest performance in all environments under study. The which-won-where GGE
biplot of GY divided the four N treatments into two sectors. The low treatments, 0N and
LN, were located together in one sector where the IR22 genotype was the best-performing
genotype, while MN and HN were located together in the other sector. MTU1010 showed a
stable performance under different N treatments, placing it in the top five ranked genotypes
across the tested N environments.

Figure 2. Which-won-where pattern based on the GGE biplot polygon to identify the best rice
genotypes under the four different N environments (A). The GY × WAAS statistic biplot for selecting
the high-yielding and stable rice genotypes (B).

2.6. Superior Genotypes Selection Based on GY Means and Stability Parameters

The ranking based on the various stability statistics is presented in Supplementary
Table S5. Based on GY, which considers the main selection criteria for genotype selection, the
genotypes MTU1010, IR22, SK2046, SK2058, and IR66 were the highest-ranked genotypes
in this regard. From another stability statistics analysis, the weighted average of absolute
scores (WAASB) was used to better identify the best genotypes based on the mean GY and
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stability. The biplot shows the distribution of the tested rice genotypes and environments
based on the genotypes’ GY mean and WAASB values, as shown in Figure 2B.

The first quadrant, I, contains the genotypes Black Rice, WAB 450-1-B-P-91-HB, Yun
Lu No. 48, Sabieny, Pusa Basmati 1, Giza177, SKC 23808-28-5-2-1-1, GZ 6522-15-1-1-3,
GZ5830-59-10-2, Taikeng Yu 1420, and IR 67075-2B-5-2. These genotypes showed lower
grain yield compared to the mean grain yield. In addition, this quadrant has low GY
environments 0N and LN. Accordingly, the genotypes and environments located in this
quadrant have the largest response to GEI. The second quadrant contains the environments
with GY above average, MN and HN environments, and the genotypes that have a GY
above average with a high GEI response, namely, Arabi, Reiho, Giza178, SK2034, WAB 880
SG 73, Giza14, Nahda, and IR22. The genotypes GZ7718-13-3-1-3, SKC23822-304-3-1-1-1,
GZ6214-4-1-1-1, GZ7718-13-3-2-2, IR68353-35-3-3-2-2-1-2, IR68373-R-R-B-22-2-2, Yen Geng
135, Agami M.1, IR 73689-31-1, Sakha103, Giza182, IR70, and GZ6903-3-4-2-1 showed low
yield but stable performance across the different environments. These genotypes were
located in the third quadrant and there were no environments in this one. The fourth
quadrant contains the high-yielding stable genotypes. Those genotypes are MTU1010,
SK2046, SK2058, GZ7922-B-44-1, Egyptian Yasmin, Yabani LuLu, IET 1444C22, SK2035, BG
304, IR 74, Milyang63, GZ6910-28-1-3-1, IR74, IR64, GZ6903-3-4-2-1, GZ6910-28-1-3-1, E
7034, and Nabatat Asmar.

2.7. Cluster Analysis and Dendrogram Based on the Stability Statistics Values

A hierarchical cluster analysis was conducted based on the squared Euclidean distance
via Ward’s method using values of the stability statistics for each genotype. The grouping
pattern resulting from this analysis revealed the distribution of the tested rice genotypes
into two main clusters (CL) (Figure 3). CL-1 was further divided into two subclusters (SCL).
SCL1 contains the genotypes WAB 450-1-B-P-91-HB, Black Rice, Arabi, and Yun Lu No. 48,
while SCL2 has the genotypes Sabieny, IR 67075-2B-5-2, GZ7922-B-44-1, Sakha103, Giza175,
GZ6214-4-1-1-1, IR7421-35-1-1-2, GZ7718-13-3-2-2, IR74, Agami M.1, and SKC23822-304-
3-1-1-1. At the same time, CL2 was divided into two main SCLs, SCL3 and SCL4. SCL3
was divided into two groups, SCL3-1 and SCL3-2. SCL3-1 contains the top six ranking
genotypes, MTU1010, IR22, SK2046, SK2058, IR66, and Yabani LuLu, with the highest
GY mean across environments. These genotypes are indica, indicating that indica-type
genotypes have more adaptability to withstand different N doses and provide high yield
ability. Meanwhile, the genotypes Taikeng Yu 1420, Giza178,48, BG 304, IET1444, IR70,
SK2034, C22, SK2035, Giza14, and Egyptian Yasmin were clustered in SCL3-2. Similarly,
SCL4 has two main clusters, SCL4-1 and SCL4-2. The genotypes Pusa Basmati 1, Milyang63,
Nabatat Asmar, GZ6903-3-4-2-1, Giza159, and Nahda clustered in one group together with
the other group of IR64, Sakha101, GZ6910-28-1-3-1, E7034, Sakha104, WAB880 SG 73,
Yen Geng 135, IR68373-R-R-B-22-2-2, IR73689-31-1, Giza182, and IR28. Both groups were
clustered from SCL4-1. Meanwhile, the genotypes GZ5830-59-10-2, IR 68353-35-3-3-2-2-1-2,
Giza177, GZ 6522-15-1-1-3, and SKC 23808-28-5-2-1-1 were grouped in SCL4-2.
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Figure 3. Hierarchical classification dendrogram of the 55 tested rice genotypes based on their ranks
for GY and stability statistics via Ward’s method. SCL 1 (light blue), SCL 2 (Blue), SCL3 (green), and
SCL 4 (red).

3. Discussion

GY is the main criterion for a breeder based on which new genotypes are selected.
Basically, it is the final product of the genotype performance, which considers the output
of GEI. In recent years, great attention has been paid to sustainable cultivation. It mainly
focuses on reaching the maximum yield potential of a genotype with a lower input of water,
chemical fertilizers, and pesticides [4,15].

In the current investigation, considerable variability was detected among the tested
genotypes based on their GY performance under different N levels. The genotypes have dif-
ferent response patterns for each incremental dose of N fertilizer (Supplementary Figure S1
and Supplementary Table S1). The AMMI-ANOVA analysis for the combined two-season
data revealed highly significant differences between genotypes, N-environments, and GEI.
However, the proportion for the genotypic variability was the highest. This finding explains
the existence of selection capacity to find better-performing genotypes under different N
levels since all other elements were consistent except for the application of N- chemical
fertilizer. This suggestion is further confirmed by our findings of an interaction between the
genotypes and the different N levels (GEI) regarding the amount of variability. However,
several investigations confirmed the findings of significant variability due to G, E, and GEI,
but the environments had the highest source of variation (i.e., [39,40]). These trials were
conducted at different locations, which means the environmental conditions are entirely
different from each other. In our investigation, the environments 0N and HN were the
lowest and highest GY mean records, indicating the possibility of further enhancing the
varietal productivity under low-N-input environments. These findings confirm the need
for stability analysis for the tested genotypes under multi-N-levels.

Among the widely used stability analysis methods, the AMMI model combines
both ANOVA and GEI to measure the magnitude of genotype and environment vari-
ability [26,41]. In our investigation, a significant interaction between N fertilizer and the
tested genotypes in GY, as a high proportion of the first two IPCAs, was found. Variability
in response to GEI identifies that genotypes with different ranks of GY potential correspond
to specific environments and their stability across the environments [42]. For the tested
environments, high N levels were favored by the genotypes. However, genotypes that
efficiently developed high yields while growing under poor N levels have the ability to
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tolerate N deficiency in the soil. Genotypes IR22, Giza14, C22, MTU1010, and SK2058 were
the highest yielding under the 0N environment. Interestingly, those genotypes are the
indica type, except Giza14, which is the japonica type. Furthermore, these genotypes were
comparable to the newly developed cultivars under this level. The AMMI biplots were used
to measure the distribution of G, E, and GEI between them [43], as indicated in the AMMI1
and AMMI 2 biplots shown in Figure 1A,B. The AMMI1 biplot explained the distribution of
the tested genotypes based on the GY mean and IPCA1 values, which are useful to identify
the genotypes MTU1010, IR66, and Yabani LuLu with the lowest IPCA1 scores and a high
GY mean. Furthermore, the tested environments exhibited wide dispersion relative to
the GY performance of the genotypes under study. The AMMI2 biplot further described
the multiplicative effects of GEI through the first two IPCAs (Figure 1B). Accordingly, the
genotypes G25, MTU1010, BG 304, and Yabani LuLu were the best genotypes having the
lowest IPCAs values and located in close proximity to the origin. Using AMMI biplots,
several investigations were able to identify their corresponding genotypes such as in bar-
ley [44], rice [40], Sorghum [45], cassava [46], and maize [47]. MTU1010 and Yabani LuLu
are among the two groups most productive and stable. Intriguingly, IR22 showed specific
adaptability to the low N environments (0N, LN, and MN), which was further confirmed by
the which-won-where GGE biplot, as shown in Figure 2A. Moreover, MTU1010 was located
at the boundary between the two sectors where the four environments were scattered,
indicating that this genotype has stable performance across the different N-environments.
Both IR22 and MTU1010 are indica genotypes, while the study has other types such as
japonica and indica/japonica types (Table 2). IR22 is the cultivar derived from the miracle
rice, IR8. MTU1010 is an elite, mega Indian cultivar grown extensively in India [48]. These
findings may indicate that indica type has better performance than other types under study
environments, which may be due to high grain nitrogen use efficiency [49]. This point
requires further analysis and investigation.

We further estimated the stability measure of the weighted average of the absolute
score (WAASB), which was taken into consideration as the sum of absolute values of the
IPCAs [50]. To identify the highly adaptive and best-performing genotypes, we generated
a biplot to simultaneously consider the GY and stability measure of WAASB. Among the
tested environments, the two MN and HN environments were productive with average
GY means higher than the grand mean. The genotypes MTU1010, IR66, Yabani LuLu, and
GZ7922-B-44-1, with high GY and the lowest WAASB values, were identified as the most
stable genotypes across the different N environments under study. The WAASB index was
proven to be an efficient index in the selection of stable, high GY barley genotypes across
different environments [51,52].

To identify groups of the genotypes based on the different stability statistical analysis
ranking matrices, CLA was conducted. The most notable findings were that the low-
yielding genotypes WAB 450-1-B-P-91-HB, Black Rice, and Yun Lu No. 48 were grouped
in a single SCL while the high-yielding ones, IR22, SK2046, SK2058, MTU1010, Yabani
LuLu, and IR66, were grouped in another SCL. The former group was low yielding under
favorable and unfavorable N environments, while the latter group of genotypes was high
yielding under all environments.

Considering our results, MTU1010 and Yabani LuLu showed high performance and
GY stability across the different N-levels, while IR22 showed superior performance under
the unfavorable N-levels. Our results need more investigations regarding the performance
of these genotypes with respect to nitrogen use efficiency-related parameters.

4. Materials and Methods
4.1. Plant Materials

To maintain diversity, a set of 55 rice genotypes consisting of 25 Jabonica, 4 Trop-
ical Japonica, 20 Indica, and 6 Indica/Japonica were used in the current experiment
(Table 2). Among these genotypes were 15 old Egyptian rice cultivars. These genotypes
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were collected from rice GeneBank unit of the rice research and training center (RRTC),
Kafrelsheikh, Egypt.

4.2. Experimental Location and Soil Properties

The 55 rice genotypes were evaluated for two successive seasons at the Sakha Agricul-
tural Research Station experimental farm (31.09◦ N and 30.9◦ E), located in Kafrelsheikh,
Egypt. During the two seasons, the climate was typified by high temperatures and no
rainfall. The soil analysis was conducted according to Piper [53] and Black et al., [54], where
the soil texture of both seasons was clayey with a total N of 759 and 770 mg kg−1 for the
two seasons, as shown in Supplementary Table S6.

4.3. Field Experiments and Environmental Conditions

These diverse genotypes were evaluated following a transplanting method under 4
different N-levels (Urea form) to generate the different environments of no N (0N), Low N
(LN), medium N (MN), and High N (HN) (i.e., 0, 48, 96, and 165 Kg N ha−1, respectively).
The experimental design of each environment was employed according to the randomized
complete block design (RCBD) with three replicates. Each plot was five one-meter-long
rows, with 20 cm × 20 cm spacing. N fertilizer was applied in two splits: 2/3 as a basal
application and 1/3 a month after transplanting according to the N fertilizer amount for
each N environment. Other cultural practices (such as field preparation, fertilizers, and
weed management) were applied according to the standard to maintain the consistency
of all factors except N-levels across the studied environments. At the harvest stage, the
plots were harvested, and GY (g plant−1) was estimated for each experimental plot after
adjusting the moisture content.

4.4. Statistical Analysis

All statistical analyses were conducted in the statistical software R (R Core Team, [55])
version 4.1.1. The “metan” package [37] was employed to conduct the analysis of variance,
AMMI analysis of variance [43], genotype plus genotype by environment (GGE) biplot
analysis [56], stability statistical analysis, and weighted average of absolute scores [50]. The
“Nbclust” package was used to conduct hierarchical cluster analysis [57,58]. The AMMI
analysis was conducted based on the following mathematical formula:

yN
ij = µ+ gi + ej + ΣλkYikαjk + εij

where yij is the yield of the ith genotype in the jth environment, N is the number of PCI in
the AMMI model, µ is the overall mean of the genotypes, and gi and ej are the genotype
and environment diversions from the overall mean. λk is the eigenvalue of the PCA axis k,
Yikand αjk are the GE-PCs scores for axis k, and Σij is the remaining value. Meanwhile, the
GGE model was considered by the following formula:

yN
ij = µ+ ej + ΣλkYikαjk + εij

5. Conclusions

In the current investigation, 55 rice genotypes were evaluated under 4 different N-
levels to identify the genotypes with high yields under low N input and with stable per-
formance under different N-levels. The results showed that the highest-ranked genotypes
were IR22, SK2046, SK2058, MTU1010, YABANI LULU, and IR66 based on the GY mean.
These genotypes were grouped in the same SCL according to the stability analysis ranking
matrix. Based on AMMI analysis and biplots, MTU1010 and YABANI LULU showed
stability, while the which-won-where biplot showed that IR22 was superior under unfa-
vorable N-levels and MTU1010 was stable across the different environments. The study
recommends incorporating these genotypes into the breeding for low-nitrogen fertilizer
input programs for sustainable agriculture.
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