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Abstract: Black mustard [Brassica nigra (L.) Koch] is mainly cultivated as a seed crop, and there
is a lack of information on biomass quality and its potential for animal feeding. A 2-year field
experiment was set up in a split-plot design with 2 main plots (plant densities: 46 and 76 plants m−2),
4 sub-plots (fertilization levels: control, compost, urea with and without urease and nitrification
inhibitors) and 3 replications for each treatment. The highest dry matter yield (17.55–18.34 tn ha−1)
was observed in high-density plots fertilized with urea fertilizer coated with double (nitrification and
urease) inhibitors. In terms of the qualitive parameters of total above-ground biomass, the highest
crude protein (CP) content was achieved in plots with low density and urea with double inhibitors.
Moreover, the highest neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of
above-ground biomass were found under compost and urea with double inhibitors. The high ADF,
NDF and relatively high CP content characterized that black mustard aerial biomass can meet the
requirements of lactating animals, and therefore the production of black mustard biomass as a forage
crop could be of great importance. As a conclusion, black mustard cultivated at plant densities
higher than 46 plants m−2 and under inorganic fertilization, especially with urea coated with double
inhibitors, could be successfully used as a novel forage crop in ruminants’ diets.

Keywords: compost; crude protein content; nitrification inhibitor; nutritive value; seaweed compost;
urease inhibitor; total carbohydrate content

1. Introduction

As the global population is expected to reach 9.8 billion by 2050 and 11.2 billion
by 2100, there will be an increase in food demand [1]. It is predicted that global meat
consumption will increase by approximately 73% by 2050, while dairy production will
increase by 58% [2]. In this scenario, global animal production will confront considerable
challenges in meeting the rising demand for animal protein over the next few decades.
Sustainable production, efficient use of natural resources, and improved animal welfare are
all crucial elements to consider when seeking to meet this intense demand [3]. As a result,
animal nutrition can play a significant role in meeting the aforementioned needs. Higher
animal production efficiency and improved body composition are significantly associated
with animal nutrition, and maintaining dietary nutrition during important stages of animal
life can have an impact on livestock productivity [4].
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Nutrition can be a severe constraint to livestock productivity in general, especially
when feed resources are insufficient in both quality and quantity. In the past, a growth in
animal population was not necessarily followed by an increase in feed resource availability,
which could result in decreased animal performance and health [5,6]. Furthermore, the in-
creased demand for livestock products puts a strain on the requirement for high-producing
animals. Inadequate feed quality and quantity inhibits improved animal output [7]. As a
result, the rising demand for feed protein needs research into alternate feed sources with
high nutrient content that are safe and may be added into animal diets to improve animal
health and production.

Mustards are members of the Cruciferae or Brassicaceae family. There are 150 species
of annuals or biennial herbs in the genus Brassica, many of which are produced as oilseed
crops, vegetables, or fodder. Black mustard [Brassica nigra (L.) Koch] is an herbaceous
annual plant with an unknown native range; however, it is most likely endemic to the
southern Mediterranean region [8]. A black mustard plant has a solid taproot, huge lower
leaves, smaller higher leaves, and a stem that is delicately covered with soft hairs. Black
mustard differs from commercial Brassica crops in that it does not generate a rosette of
basal leaves. The seeds of black mustard are globular in shape, 1–1.6 mm in diameter, dark
brown to practically black in color, minutely reticulate, and mucilaginous [9].

Due to the extreme pungency of its seeds and its value as a leaf vegetable, black
mustard was one of the first domesticated crops and was widely cultivated in central
and southern Europe, North Africa, and Asia. In addition to its culinary application, the
therapeutic potential of black mustard was recognized early on, with mustard meal being
used to treat skin ailments, arthritis, and rheumatism [8,10]. Black mustard cultivation has
recently gained popularity, and it has been transferred to countries other than its native
continents, such as Australia and America, as a source of edible oil and seeds [11]. This crop
has been chosen for its ability to grow in a variety of agroecological conditions, including
relatively low temperatures and disturbed soils, making it well suited for cultivation for
both domestic and industrial purposes [12]. Furthermore, black mustard production is
predicted to increase more significantly in the next years owing to the increased use of
mustard seeds in the food and beverage, pharmaceutical, personal care, and cosmetic
industries [13]. In addition to the high quality of its oil, its seed flour is high in protein
and is even ideal for use in animal husbandry as an additive in animal feed, especially for
poultry [14]. Finally, black mustard seed meal, the residual by-product of pressed black
mustard seed, can also be utilized safely and economically in animal feeding as a relatively
good source of energy and protein [15].

Nitrogen (N) is the most important nutrient for plant growth, development, and
quality, as well as the most complex, due to the multiple forms and activities that might
occur during its cycle [16]. It plays an important role in all plant metabolic activities, and
its rate of absorption and partitioning is principally influenced by supply and demand
during the plant’s life cycle [17]. Nitrogen availability and supply vary by crop species and
are determined by their requirements [18]. While the world’s population continues to grow,
the global demand of nitrogen (N) fertilizers is unlikely to decrease [19]. Urea and urea-
containing N fertilizers are the most commonly used inorganic N fertilizers. Urea accounts
for approximately 56% of global N fertilizer production [20,21]. Urea is a solid fertilizer
with high N content (46%). It is easily kept and applied to crops, and it can be mixed
into the soil with other N fertilizers. Nitrogen losses due to ammonia volatilization are
substantial when urea-based fertilizers are used. Ammonium is transformed to ammonia
and lost in the atmosphere during volatilization. Between 2006 and 2016, the annual growth
in urea production was 2.8% [21].

In order to increase the efficiency of N use, in addition to good agricultural practices
(for instance, proper application procedures, optimum timing, and soil testing to estimate
the amount of fertilizer needed, which may be limited by physical conditions), the use of N
stabilizers and nitrification inhibitors may potentially delay detrimental processes such as
NH3 volatilization, nitrate (NO3

−) leaching, and N2O emissions reduction [22]. A number
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of chemical compounds that can be added to urea to postpone the transition of N have
been discovered. These slow-release products are divided into two categories: (a) urease
inhibitors and (b) nitrification inhibitors. Urease inhibitors slow urea hydrolysis in soil
by lowering NO3

– and NH4
+ production. In addition, the presence of the inhibitor in the

soil influences the effectiveness of NH3 loss management [22,23]. Concerning nitrification
inhibitors, these have a significant impact on the enzymatic activity of NH3 oxidizing
bacteria [24] and their addition to urea delays the conversion of ammonium ions (NH4

+) to
NO3

– NO3, potentially reducing N2O emissions from soil denitrification [25]. According
to several researchers, urease inhibitors when added to urea reduced ammonia loss and
thus increased crop seed and biomass yield and N uptake, in contrast with single urea
application [26,27]. In addition, since N is a component of the chlorophyll structure, the
addition of nitrification inhibitors increases the chlorophyll content in the leaves and
consequently the biomass and seed yield and quality of the crops [22].

Forage constitutes an essential component of dairy ration [28]. Forage provides an
effective fiber source in dairy rations, accounting for 75% of the ration’s neutral detergent
fiber [29]. It should be emphasized that a lack of dietary fiber is linked to low milk
fat, rumen acidity, and digestive inefficiencies [30]. Since black mustard is primarily
grown for seed production, there is no information on biomass quality or forage potential.
Furthermore, several research studies predict that the effect of climate change will result in
large reductions in crop productivity in the Mediterranean region, and a strategy to meet the
increasing demand for feed production includes the introduction of alternative crops, such
as black mustard, which has beneficial properties with adequate yield and good nutritional
value [31,32]. In addition, more research is needed in order to find alternative fertilization
options, including slow-release inorganic nitrogen fertilizers or organic fertilizers such as
compost, for the nitrogen fertilization of crops. The objective of the current study was to
assess the effect of plant density and fertilization (organic with compost and inorganic
using urea with and without urease and nitrification inhibitors) on aerial biomass yield
and quality of the black mustard crop in order to establish alternative forage sources for
livestock feed.

2. Results

According to the results of the two-year data analysis (Table 1), the interaction of
plant density × fertilization was significant on crude ash (CA), total carbohydrate (CHO),
and non-fiber carbohydrates (NFC). The main effects of plant density were significant
for dry matter (DM) yield, DM content and crude protein (CP) content of black mustard
aerial biomass. In response to the effect of fertilizers application, the different regimes had
significant impacts on the productivity and chemical composition of biomass, excluding
the crude fat (CF) and CA content (Table 1).

2.1. Dry Matter Yield

As shown in Table 2, the dry matter yield of black mustard was significantly affected
by plant density and presented a similar trend in both years (p < 0.05), with the highest
values presented in high-density plants (76 plants m−2). In the first (2019–2020) growing
season, the DM yield of high-density plants was higher than that of low-density (46 plants
m−2) by 18.49%, while during the second (2020–2021) cropping season, the DM yield of
high-density was 17.26% higher than that of low-density plants. In the same manner,
throughout the growing periods, the highest yields were found in plots fertilized with
inorganic fertilizers. Specifically, the highest values were noticed in urea fertilizer with
nitrification and urease inhibitors (U + NI + UI) (17.01 and 16.14 tn ha−1 for the first and
second experimental year, respectively) which had no statistically significant differences
with urea without inhibitors (16.23 and 16.14 tn ha−1 for the respective years).
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Table 1. Combined analysis of variance (F) for all measured traits of black mustard biomass in two
experimental years.

Source of Variance Df DM Yield DM Content CP Content CP Yield CF

Year (Y) 1 0.0248 ns 0.0040 ns 0.9768 ns 0.0524 ns 1.6580 ns

Plant Density (PD) 1 9.9495 ** 10.2966 ** 11.1732 ** 2.5311 ns 3.4333 ns

Fertilization (F) 3 37.3676 *** 37.5041 *** 22.9083 *** 58.1784 *** 0.7898 ns

Y × PD 1 0.0134 ns 0.0110 ns 0.0575 ns 0.0859 ns 0.3267 ns

Y × F 3 0.4005 ns 0.6889 ns 0.1593 ns 0.7508 ns 0.1106 ns

PD × F 3 0.5494 ns 0.4754 ns 4.9791 ns 2.3535 ns 2.2104 ns

Y × PD × F 3 0.0318 ns 0.0176 ns 0.0769 ns 0.0072 ns 0.1207 ns

Source of Variance Df CA NDF ADF CHO NFC

Year (Y) 1 0.3525 ns 0.8023 ns 3.5077 ns 0.2103 ns 1.4313 ns

Plant Density (PD) 1 0.6374 ns 3.8650 ns 3.5698 ns 3.6233 ns 2.1571 ns

Fertilization (F) 3 1.1141 ns 7.2726 *** 9.4025 *** 11.8053 *** 19.0120 ***
Y × PD 1 0.0723 ns 0.2196 ns 0.0711 ns 0.1302 ns 0.0173 ns

Y × F 3 0.0477 ns 0.3641 ns 0.5735 ns 0.0901 ns 0.5744 ns

PD × F 3 2.9494 * 1.6596 ns 1.5429 ns 3.2970 * 4.5739 *
Y × PD × F 3 0.0214 ns 0.1033 ns 0.0650 ns 0.0452 ns 0.1005 ns

F-test ratios are from ANOVA. ns, *, ** and ***: Not significant and significant at 5%, 1%, and 0.1% probability
levels, respectively. Df: Degrees of freedom; DM: Dry matter; CP: Crude protein; CF: Crude fat; CA: Crude ash;
NDF: Neutral detergent fiber; ADF: Acid detergent fiber; CHO: Total carbohydrate; NFC: Non-fiber CHO.

Table 2. Dry matter (DM) yield, DM content, crude protein (CP) content, and CP yield as influenced
by the plant density and fertilization.

Plant Density (Plants m−2)

Fertilization
46 76 46 76 46 76 46 76

DM Yield
DM Content (%)

CP Content CP Yield
2019–2020 (tn ha−1) Mean Mean (% of DM) Mean (tn ha−1) Mean

Control 7.08 7.82 7.45 c 17.57 16.85 17.21 c 18.15 12.98 15.57 c 1.29 0.99 1.14 c
Urea 14.99 17.48 16.23 a 25.89 23.99 24.94 a 22.03 20.79 21.41 a 3.31 3.63 3.47 a

Urea + NI + UI 15.68 18.34 17.01 a 28.43 25.76 27.09 a 22.09 23.51 22.80 a 3.45 4.31 3.88 a
Compost 9.42 12.24 10.83 b 22.45 19.12 20.79 b 20.21 17.58 18.89 b 1.90 2.15 2.02 b

Mean 11.79 B 13.97 A 23.58 A 21.43 B 20.62 A 18.71 B 2.49 A 2.77 A

FPlant Density
5.2173 *

(Tukey = 1.707)
4.7546 *

(Tukey = 1.664)
5.6664 *

(Tukey = 1.101) 1.7033 ns

FFertilization
22.7083 ***

(Tukey = 2.176)
19.8362 ***

(Tukey = 3.035)
15.7790 ***

(Tukey = 1.529)
34.1834 ***

(Tukey = 0.662)
FPlant Density ×

Fertilization
0.2566 ns 0.3231 ns 2.9523 ns 1.1902 ns

2020–2021

Control 7.99 8.84 8.42 c 18.51 17.69 18.10 c 19.82 13.81 16.82 c 1.60 1.21 1.40 c

Urea 14.18 16.09 15.14 a 26.05 24.14 25.09 a 22.20 21.07 21.63
ab 3.15 3.38 3.27 a

Urea + NI + UI 14.73 17.55 16.14 a 27.43 24.63 26.03 a 22.77 23.29 23.03 a 3.35 4.06 3.70 a
Compost 10.36 12.95 11.65 b 22.45 19.98 21.21 b 20.71 18.53 19.62 b 2.17 2.40 2.29 b

Mean 11.82 B 13.86 A 23.61 A 21.60 B 21.37 A 19.17 B 2.57 A 2.76 A

FPlant Density
5.0832 *

(Tukey = 1.110)
5.2728 *

(Tukey = 1.216)
5.5777 *

(Tukey = 0.648) 0.8791 ns

FFertilization
15.0869 ***

(Tukey = 2.788)
17.661 ***

(Tukey = 1.759)
8.3990 **

(Tukey = 2.321)
24.3321 ***

(Tukey = 0.621)
FPlant Density ×

Fertilization
0.2353 ns 0.2488 ns 2.2147 ns 1.1696 ns

F-test ratios are from ANOVA. ns, *, ** and ***: Not-significant and significant at 5%, 1% and 0.1% probability
levels, respectively. The capital letters compare plant densities within a growing season, and lowercase letters
compare fertilization treatments within a growing season, by Tukey’s HSD test (p ≤ 0.05).
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2.2. Qualitative Characteristics of Above-Ground Biomass

The effects of plant density and fertilization on the DM content of black mustard
biomass are presented in Table 2. In the low-density plants, the values of DM content
were substantially higher (23.58% and 23.61% in the first and second experimental year,
respectively) than those of high-density treatment (21.43% and 21.60% for the respective
years). In addition, the mean values of DM content provided good evidence of the effects
of different fertilization regimes. Averaged over plant densities, the highest values were
presented in urea with inhibitors (27.09% and 26.03% in 2019–2020 and 2020–2021, respec-
tively) followed by urea without inhibitors (24.94% and 25.09% in the first and second
cropping season, respectively).

According to the combined analysis of variance (Tables 1 and 2), crude protein was
significantly affected by both plant density and fertilization. Concerning the plant den-
sity effect, the values of CP content in low-density plots (20.62% and 21.37% of DM in
2019–2020 and 2020–2021, respectively) were higher than in high-density plots (18.71% and
19.17% of DM in the first and second experimental year, respectively). As for the effect
of fertilizers application, the highest values of CP content were observed in plots with
urea with nitrification and urease inhibitors (22.80% and 23.03% of DM in 2019–2020 and
2020–2021, respectively) and urea without inhibitors (21.41% and 21.63% of DM for the
respective years).

CP yield in the aerial biomass was estimated by multiplying the CP content of the aerial
biomass and the aerial DM yield. According to the combined analysis of variance (Table 1),
CP yield was only affected by the different fertilization treatments. During the two-year
experiment, the mean values of CP yield were greatest in the urea with inhibitor treatment
(3.88 and 3.70 tn ha−1 in the first and second experimental years, respectively) followed by
urea without inhibitors (3.47 and 3.27 tn ha−1 in the first and second experimental years,
respectively), while the lowest values (1.14 and 1.40 tn ha−1 for the respective years) were
observed in the untreated (control) plots (Table 2).

Concerning the crude fat content, there were no significant differences among the
two examined plant densities; however, the plants of low-density treatment presented
slightly higher values (2.66% and 2.62% of DM in the first and second experimental years,
respectively) in comparison with those of the high-density treatment (2.58% and 2.46% of
DM for the respective years) (Table 3). In the same manner, the effect of fertilizer application
was not statistically significant during the 2-year study, although, slightly higher values
(2.68% and 2.63% of DM in 2019–2020 and 2020–2021 growing seasons, respectively) were
found in the plots fertilized with the seaweed compost.

The results of the current study indicated that the crude ash content of black mus-
tard aerial biomass was not influenced by plant density during the experimental periods
(Table 3); however, the low-density plots achieved slightly higher values of this trait (14.05%
and 13.95% of DM in the first and second experimental periods, respectively) than those
of the high-density treatment (13.89% and 13.63% of DM for the respective experimental
periods). In response to fertilization, this had also a non-significant effect on CA content,
although slightly higher values (14.32% and 14.27% of DM in the first and second experi-
mental periods, respectively) were observed in plots fertilized with urea with nitrification
and urease inhibitors.

Neutral detergent fiber (NDF) content was not influenced by the different plant
densities; it was only affected by the different fertilization treatments (Table 3). Specifically,
the highest NDF content was observed in the case of fertilization with compost, with
the values being 47.11% and 47.55% of DM in the first and the second experimental
periods, respectively, while the lowest values (41.20% and 43.17% of DM for the respective
experimental periods) were obtained from the untreated (control) plots.
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Table 3. Crude fat (CF), crude ash (CA), neutral detergent fiber (NDF), and acid detergent fiber (ADF)
content as influenced by the plant density and fertilization.

Plant Density (Plants m−2)

Fertilization
46 76 46 76 46 76 46 76

CF (% of DM) CA (% of DM) NDF
(% of DM) ADF (% of DM)2019–2020 Mean Mean Mean Mean

Control 2.64 2.53 2.59 a 13.99 13.22 13.61 a 43.51 38.88 41.20 c 33.37 31.94 32.66 c
Urea 2.67 2.53 2.60 a 14.48 13.57 14.03 a 43.71 43.79 43.75 bc 36.20 34.57 35.39 bc

Urea + NI +
UI 2.76 2.50 2.63 a 13.61 15.03 14.32 a 47.63 44.53 46.08 ab 38.02 35.66 36.84 ab

Compost 2.59 2.76 2.68 a 14.12 13.73 13.93 a 47.28 46.94 47.11 a 37.77 38.92 38.35 a

Mean 2.66 A 2.58 A 14.05 A 13.89 A 45.53 A 43.54 A 36.34 A 35.28 A

FPlant Density 0.7386 ns 0.1178 ns 3.7800 ns 1.2396 ns

FFertilization 0.1596 ns 0.3880 ns 6.5442 **
(Tukey = 2.632)

6.4133 **
(Tukey = 2.762)

FPlant Density ×
Fertilization

0.8459 ns 1.3120 ns 1.1939 ns 0.6393 ns

2020–2021

Control 2.58 2.35 2.46 a 13.88 13.05 13.47 a 44.54 41.78 43.17 b 36.77 33.99 35.38 b
Urea 2.63 2.31 2.47 a 14.31 13.41 13.86 a 44.72 44.66 44.69 ab 36.92 35.27 36.10 b

Urea + NI +
UI 2.71 2.45 2.58 a 13.66 14.87 14.27 a 47.29 44.05 45.67 ab 38.77 36.37 37.57 ab

Compost 2.54 2.71 2.63 a 13.95 13.17 13.56 a 46.98 48.12 47.55 a 38.51 39.69 39.10 a

Mean 2.62 A 2.46 A 13.95 A 13.63 A 45.89 A 44.66 A 37.74 A 36.33 A

FPlant Density 3.3081 ns 0.7034 ns 1.9219 ns 2.4782 ns

FFertilization 0.8138 ns 0.8646 ns 4.0608 *
(Tukey = 2.979)

3.3738 *
(Tukey = 2.291)

FPlant Density ×
Fertilization

1.5655 ns 1.7403 ns 0.6901 ns 0.9904 ns

F-test ratios are from ANOVA. ns, *, **: Not significant and significant at 5%, 1% probability levels. The capital
letters compare plant densities within a growing season, and lowercase letters compare fertilization treatments
within a growing season, by Tukey’s HSD test (p ≤ 0.05).

Acid detergent fiber (ADF) did not differ among plant densities during the experi-
mental periods (Table 3), although the plants of low-density treatment presented slightly
higher values (36.34% and 37.74% of DM in the first and second growing seasons, respec-
tively) than in high-density plots (35.28% and 36.33% of DM for the respective growing
seasons). Concerning the fertilization effect, the highest ADF content values, averaged over
experimental years and plant density treatments, was achieved in compost (38.98% of DM)
followed by urea with inhibitors (37.21% of DM), while the lowest value (34.02% of DM)
was found in the control plot.

Total carbohydrate content was only affected by fertilization during the two exper-
imental periods (Table 4). In particular, the highest CHO content values were achieved
in untreated (control: 68.25% and 67.25% of DM in the first and second growing sea-
sons, respectively), while the lowest values (60.21% and 60.08% of DM for the respective
experimental periods) were obtained in plots fertilized with urea with inhibitors.

Concerning the non-fiber carbohydrate content, there were no significant differences
among the high- and low-density plots, but fertilization had a statistically significant impact
on this trait. Specifically, the NFC content decreased with the increasing levels of applied
nitrogen, and the highest values (control: 27.05% and 24.09% of DM in the first and second
experimental year, respectively) obtained in the unfertilized (control) plots (Table 4).
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Table 4. Total carbohydrate (CHO) and non-fiber carbohydrate (NFC) content as influenced by the
plant density and fertilization.

Plant Density (Plants m−2)

Fertilization
46 76 46 76

CHO (% of DM) NFC (% of DM)2019–2020 Mean Mean

Control 65.22 71.27 68.25 a 21.71 24.39 23.05 a
Urea 60.73 63.14 61.94 bc 17.02 19.35 18.18 b

Urea + NI + UI 61.72 58.70 60.21 c 14.08 14.18 14.13 c
Compost 62.99 66.16 64.58 b 15.72 19.22 17.47 b

Mean 62.67 A 64.82 A 17.13 A 19.28 A

FPlant Density 1.9679 ns 1.6417 ns

FFertilization 7.1572 *** (Tukey = 3.627) 10.5627 *** (Tukey = 2.303)
FPlant Density × Fertilization 2.8491 ns 3.5275 ns

2020–2021

Control 63.72 70.79 67.25 a 19.17 21.01 20.09 a
Urea 60.79 63.07 61.93 bc 16.06 18.41 17.24 b

Urea + NI + UI 61.03 59.13 60.08 c 13.74 15.08 14.41 c
Compost 62.71 65.99 64.35 ab 15.73 17.87 16.80 b

Mean 62.06 A 64.75 A 16.18 A 18.09 A

FPlant Density 5.6762 ns 4.7703 ns

FFertilization 7.5967 ** (Tukey = 4.050) 9.9054 *** (Tukey = 1.897)
FPlant Density × Fertilization 2.6744 ns 2.2524 ns

F-test ratios are from ANOVA. ns, ** and ***: Not-significant and significant at 1% and 0.1% probability levels,
respectively. The capital letters compare plant densities within a growing season, and lowercase letters compare
fertilization treatments within a growing season, by Tukey’s HSD test (p ≤ 0.05).

3. Discussion

Dry matter yield of black mustard presented the highest values at the high-plant
density of 76 plants m−2 (30 cm row spacing) with a 2-year average value being 17.98%
higher as compared to the low-density of 46 plants m−2 (45 cm row spacing). Seed row
spacing is an agronomical management strategy used by producers to optimize soil and
plant ecosystem husbandry during the growth season with the aim of increasing crop
production. Crop row spacing determines canopy architecture, a distinguishing feature
that effects the utilization of light, water, and nutrients [33]. Narrower row spacings
improve light interception, reduce intra-row competition between plants, and can improve
weed management by boosting crop competitiveness and decreasing light transmittance to
the soil [34,35]. The results of the current study are in line with those of Kuai et al. [36], who
confirmed that narrower row spacings resulted in higher DM yield in rapeseed (Brassica
napus L.) crop. In terms of fertilization, the highest mean values of the two experimental
years were found in urea fertilizer with and without nitrification and urease inhibitors
treatments (16.58 and 16.19 tn ha−1, respectively) presenting no statistically significant
differences. According to several research studies, crops fertilized with inorganic fertilizers
produced greater DM yields because these fertilizers contained soluble inorganic nitrogen
that was readily available to crops, resulting in higher yields [37–39].

Whole-plant black mustard forage DM content decreased linearly as plant density
increased, with the 2-year average values ranging from 23.60% at lower plant density
(46 plants m−2) to 21.52% at higher plant density (76 plants m−2). Low planting density
raises soil temperature by increasing light intensity, which raises water losses from the soil
surface [33,40]. In a previous research work studying the influence of planting density on
soybean physiology, there were decreased stomatal conductance and transpiration rates
in high planting densities compared with lower planting densities [41]. As a result, in the
current study, this phenomenon may have decreased the DM content as planting density
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increased, decreasing the DM content of the whole plant. Concerning the fertilization
effect, the highest values of DM content were found after the application of inorganic
fertilizers and specifically after the application of urea with and without inhibitors (Table 2).
In particular, the highest 2-year average was found in urea with inhibitors treatment
(26.56%) followed by urea without inhibitors (25.02%). The DM content presented a
positive linear response to increasing available nitrogen. This response occurred because
nitrogen stimulates metabolism and plant maturity, resulting in the increased accumulation
of photoassimilates and their transformation into plant organs [38,39].

In order to limit nitrogen loss in the soil, higher-efficiency fertilizers coated with urease
or nitrification inhibitors might be utilized. Several research studies suggested that using
urease or nitrification inhibitors in conjunction with nitrogen fertilizers is one of the most
promising new strategies to prevent nitrogen loss [22,42]. Using inhibitors in conjunction
with nitrogen fertilizers has proven to be an extremely effective technique for decreasing
nitrogen fertilizer losses and enhancing plant development and productivity [43]. In a
recent study, the use of inhibitors increased maize DM content by 5–10% [44].

Biomass protein content varies with plant species, soil fertility, and crop maturity
stage. In particular, as a crop reaches its full maturity, the crude protein content of the
biomass as well as its digestibility as forage decreases, in contrast to the crude fiber content,
which increases [45]. The CP content of alfalfa biomass ranges from 18 to 25% of DM [46].
In the current study, the results presented that the CP content of black mustard biomass
was significantly influenced by both plant density and fertilization, and the maximum CP
content was achieved at the early flowering stage, specifically at 120 days after sowing
(DAS). Indeed, several studies have found that plant maturity can affect the protein content
of forages [47,48]. According to Throop [49], the protein content of wheat biomass gradually
decreased with the delay of harvest time due to the inhibition of protein synthesis by the
weak photosynthetic capacity at more mature stages.

Regarding the effect of plant density, the 2-year average value of CP content recorded
in the plants of the low-plant density (20.99% of DM) was higher than that in the high-
density plants (18.94% of DM). The decrease in biomass protein content at high seeding
density may be due to the fact that the high competition created for available resources
(water and nutrients) made individual plants weaker. Additionally, high competition
combined with high plant density makes less energy available for converting nitrogen
into protein [50]. Increasing levels of available nutrients generally increases feed quality
parameters such as CP content. Regarding the effect of fertilization, the highest 2-year
average was found in urea with nitrification and urease inhibitors (22.92% of DM) followed
by urea without inhibitors (21.52% of DM). The higher protein content after the application
of inorganics fertilizers may be due to the fact that the higher levels of nitrogen available
to plants enhance nitrogen uptake, which plays a pivotal role in protein synthesis [51].
In addition, the use of urease inhibitors reduces urea hydrolysis, adjusting the release of
nitrogen mineral forms to match crop demand and therefore increasing the nitrogen use
efficiency (NUE) of the crop [52].

The yield of total aboveground biomass in protein (biomass protein yield) is a function
of the biomass DM yield and its protein content. As a consequence, DM yield and CP
content had a strong positive correlation with the total biomass CP yield (r = 0.9546,
p < 0.001 and r = 0.7565, p < 0.001, respectively; Table 5).

Crude fat is composed of lipids (galactolipids, triglycerides, and phospholipids) as
well as any other non-polar compounds such as phosphatides, steroids, pigments, fat-
soluble vitamins, and waxes. The percentage of CF in feed crops is typically low, with
values less than 3% of DM [53]. In the current study, the CF content of black mustard
biomass was not significantly affected by fertilization during the experimental periods
(Table 2); however, slightly lower values were found in urea treatment without inhibitors
compared with compost and urea fertilization with double inhibitors. This response could
be attributed to the fact that nitrogen fertilizer increases the amount of pigments in the
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plant, and as conventional urea has higher volatilization, this increase in pigmentation
must have been impaired, reducing the CF content in the plant [54–56].

Table 5. Heatmap of correlation matrix between evaluated traits.

Trait

Coefficient of Correlaiton (r)

DM
Content

DM
Yield

CP
Content CP Yield CF CA NDF ADF CHO NFC

DM Content
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The total mineral content of feed comprises crude ash, which includes inorganic com-
pounds derived from plant and soil contaminants. High CA content indicates significant
soil contamination, which can significantly increase the amount of insoluble fiber sub-
stances in NDF solution. The average ash content of alfalfa is about 11% of DM and 9% of
DM for grass fodder [46]. In the present study, the combined analysis of variance showed
that this trait was not influenced by the evaluated factors (Table 1); however, concerning
the fertilization effect, a slightly higher 2-year value (14.30% of DM) was observed in plots
fertilized with urea with nitrification and urease inhibitors. A similar trend, presenting
higher values of CA content under inorganic fertilization, was also observed in quinoa
(Chenopodium quinoa Willd.) [57] and nigella (Nigella sativa L.) crop [58]. In a previous study,
increasing levels of inorganic fertilizer up to 150% of the recommended dose (120 kg N +
60 kg P2O5 ha−1) in maize crop resulted in a significant enhancement in ash content (up
to 8.6% of DM) due to the high availability of the main nutrients that promote plant
growth and increase the biomass DM [59]. On the contrary, fertilizer application resulted in
decreased CA content in giant reed (Arundo donax L.) compared with unfertilized crop [60].

The content of fibrous substances or total cellulose (crude fiber) is considered a key
indicator of the chemical composition when determining the nutritional value of animal
feed. A high content of fibrous substances is an indication of low digestibility and energy
value of the feed [61]. Crude fiber can be divided into two categories, neutral detergent
fiber and acid detergent fiber. The determination of NDF and ADF is promoted with the
aim of predicting DM intake and estimating digestible energy content, as well as ensuring
adequate fiber in the diet of farm animals [62]. The NDF and ADF content of feed is
critical, especially for lactating ruminants, because milk fat content is proportional to their
percentages. For dairy cows, the US National Research Council (NRC) recommends a
minimum dietary NDF content of 25 to 28% of DM and an ADF content of 17 to 21% of
DM [63].
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NDF approximates total cellulose by estimating cell wall components (hemicellulose,
cellulose, and lignin) [64]. Rumen microorganisms breakdown hemicellulose and cellulose
slowly, while lignin is indigestible. Lignin also attaches to other components of the cell
wall, rendering them indigestible as well. Depending on the plant species and level of
maturity, NDF is partially digested. This measure rises as plants mature and is used to
predict feed intake [46,58,65]. NDF was only affected by fertilization in this study, and
the highest value was reported in compost followed by urea with inhibitors treatment.
The large changes in biomass NDF concentration between fertilization treatments can be
attributed to fertilization’s increasing impacts on biomass fiber content [66]. So far, nitrogen
fertilization treatment has been reported to have no effect on the NDF content of plant
biomass [67] or to have a negative effect [56]. This disparity is related to the season of
evaluation, specifically during vegetative growth. Higher growth rates are well known to
cause stem accumulation and thus an increase in NDF concentration [68].

ADF is a measure of the plant’s cellulose and lignin content, and it is also partially
digestible. Because high levels are associated with poor digestibility, ADF has been used to
predict forage digestibility [65]. ADF, like NDF, was only influenced by fertilization and
the greatest ADF value was discovered in the case of compost fertilization. In the same
manner, Kering et al. [69] discovered that nitrogen fertilization reduced ADF concentration
in wild horsetail (Cynodon dactylon (L.) Pers.).

As mentioned above, NDF estimates all cell wall components (hemicellulose, cellulose
and lignin), while ADF determines cellulose and lignin. Therefore, a strong positive correla-
tion between NDF and ADF was expected, as found in the present research work (r = 0.7171,
p < 0.001; Table 5). Moreover, DM yield was positively related to NDF (r = 0.2874, p = 0.0341)
and ADF (r = 0.2042, p = 0.0395) (Table 5), possibly because as black mustard plants grew, the
leaf-to-stem ratio decreased, resulting in more structural tissue (total cellulose) produced to
support plant growth. Similar results were also observed in alfalfa crop [70].

Carbohydrates are the primary energy source for rumen microorganisms and consti-
tute the main energy reserve of plants, accounting for 50 to 80% of total plant energy re-
serves [71]. Carbohydrates provide energy to animals, with the majority of digestion occur-
ring in the rumen in the case of ruminants. In our study, total CHO levels (58.70%–71.27%
of DM) were within this range. Specifically, the total CHO content decreased linearly
with the increasing levels in suppling nitrogen to the plant (Table 4) on account of the
increased use of these carbohydrates to transform the available nitrogen into protein, as a
plant natural response [72,73]. Our results are in agreeance with those of Leite et al. [74],
who observed low total CHO when the highest nitrogen fertilization rate (270 kg N ha−1)
applied on Marandu palisadegrass.

The non-fiber carbohydrates fraction (starch, sugars, pectins, and β-glucans) degrades
quickly in the rumen and is required to maintain adequate carbohydrate and protein
degradation synchrony as well as to promote adequate microbial growth [71]. The results
of the NFC content of black mustard aerial biomass are presented in Table 4. During
the experimental periods, the NFC content exhibited a similar behavior as total CHO
content, presenting decreases in its values with the increasing levels of available nitrogen
to the plant [74]. This is also supported and confirmed by the significant and high linear
correlation between the CHO and NFC contents (r = 0.8172, p < 0.001; Table 5).

4. Materials and Methods
4.1. Site Description and Experimental Design

A 2-year field trial was established in the experimental field of the Agricultural Uni-
versity of Athens (AUA) (37◦59′ N and 23◦42′ E; 30 m altitude) during the cropping periods
2019–2020 and 2020–2021 (Figure 1). The main soil properties (at 0–30 cm sampling depth)
of the experimental site are demonstrated as follows: the soil was a clay loam (29.4% clay,
35.1% silt, and 35.5% sand) with a pH of 7.39 (1:1 H2O), total nitrogen (N) percentage
of 0.143%, available phosphorus (Olsen P) of 13.6 mg kg−1 soil, available potassium (K)
of 233 mg kg−1 soil, calcium carbonate (CaCO3) percentage of 15.34%, and soil organic
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matter percentage of 1.67%. The weather data were measured throughout the experimental
periods, including mean monthly air temperature and rainfall being obtained from an
automatic weather station (Davis Vantage Pro2 Weather Station; Davis Instruments Corpo-
ration, Hayward, CA, USA), located at the experimental field of AUA, and are presented in
Figure 2. Total rainfall in the 2019–2020 and 2020–2021 cropping periods (from November to
May) was 338.4 and 204.4 mm, respectively. The mean air temperature during the growing
periods was 14.3 ◦C for 2019–2020 and 14.4 ◦C for 2020–2021.
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Figure 2. Meteorological data (mean monthly air temperature and precipitation) for experimental
site throughout the duration of the 2-year study (November-May 2019–2020 and 2020–2021).

The experiment was set up on a 1015 m2 area and arranged in a split-plot design, with
3 replications, in a 2 × 4 factorial scheme. The whole-plot factor was two different plant
densities (PD1: 46 plants m−2 and PD2: 76 plants m−2), and the split-plot factor was four
different fertilization types (untreated (Control), urea (U), urea with Nitrification and Urease
Inhibitors (U + NI + UI) and seaweed compost (Compost)). The rate of each type of fertilizer
used in the current study is the general recommended dose of the corresponding type of
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fertilizer for black mustard production in clay–loam soils [8,10,32]. Specifically, the total
applied fertilizer dose for urea fertilizers with and without inhibitors was 140 kg N ha−1,
while the nitrogen application rate for seaweed compost was 50 kg N ha−1. The type
of urea fertilizer was 46-0-0. The nitrification inhibitor was N-((3(5)-methyl-1H-pyrazol-
1-yl) methyl) acetamide (MPA; 0.07%) and the urease inhibitor was N-(2-Nitrophenyl)
phosphoric triamide (2-NPT; 0.035%) for the fertilizer with urea with double inhibitors
(46-0-0). As for the seaweed compost, the N content was 1.98%. The main plot and sub-plot
sizes were 140 m2 (35 m× 4 m) and 32 m2 (8 m× 4 m), respectively. During each cultivation
period, three days prior to the sowing, the soil was prepared by mouldboard ploughing
at a depth of 25 cm. Fertilizers were applied as basal dressing through broadcasting by
hand and incorporated with the soil by harrowing. Black mustard [Brassica nigra (L.) Koch]
seeds were broadcasted by hand in rows 45 and 30 cm apart for PD1 and PD2, respectively,
and 15 cm within each row. Seed sowing was performed on 29 and 24 November for the
first and the second experimental year, respectively. The crop was harvested by hand on
6 June 2020 and 24 May 2021, when the seeds reached full maturity (seed moisture was
approximately 9%). During the cropping periods, there was no incidence of pests or disease
in the black mustard crop. Moreover, weeds were controlled by hand-hoeing when needed
and before canopy closure.

4.2. Sampling Procedures, Measurements and Methods

A total of 20 plant samples were randomly collected from each sub-plot at the early
flowering stage of black mustard, specifically at 120 days after sowing (DAS). Above-
ground dry matter (DM) was determined after drying for 48 h at 64 ◦C. Then, the DM
weight of the whole plant and the yield per unit area were measured and calculated
according to the planting density.

As for the chemical composition analysis, the plant samples were ground to pass
through a 1-mm Wiley mill (Thomas T4274.E15 Steel Model 4 Wiley Mill; Arthur H. Thomas,
Philadelphia, PA, USA) screen for chemical analysis. The samples were analyzed for
DM analysis (method 943.01), crude ash (CA; method 924.05), Kjeldahl nitrogen (CP;
method 984.13) using a Kjeltec 8400 auto-analyzer (Foss Tecator AB, Höganas, Sweden),
crude fat (CF; method 920.39) and acid detergent fiber (ADF; method 973.18) according to
the Association of Official Analytical Chemists [75]. The crude protein (CP) content was
calculated by multiplying the Kjeldahl nitrogen concentration by 6.25. Neutral detergent
fiber (NDF; method 930.15) was determined using heat stable amylase according to the
procedure of Van Soest et al. [28]. An ANKOM 200 Fiber Analyzer (ANKOM Technology
Corporation, NY, USA) was used for the determination of ADF and NDF. In addition, the
total carbohydrate (CHO) and non-fiber CHO (NFC) were calculated as follow according
to National Research Council [63]:

Total carbohydrate (CHO) = 100 − (CF + CP + CA) (%) (1)

Non-Fiber CHO (NFC) = 100 − (CP + NDF + CF + CA) (%) (2)

4.3. Statistical Analysis

Statistical analysis was performed using the SigmaPlot 12 statistical software (Systat
Software Inc., San Jose, CA, USA). The analysis of variance (ANOVA) used a mixed model,
with years and replications as random effects and plant density and fertilization as fixed
effects. The estimation of significant differences among the treatments were determined
using Tukey’s honestly significant difference test (Tukey’s HSD). Correlation analyses were
used to describe the relationships between the yield components and nutritive characteris-
tics using Pearson’s correlation. For all statistical analyses in the current study, significance
was declared at 5% (p ≤ 0.05).
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5. Conclusions

The results indicated that black mustard aerial DM yield was influenced by both
plant density and fertilization. The highest DM yield was observed in high-density
(76 plants m−2) plots fertilized with urea fertilizer coated with double (nitrification and
urease) inhibitors. In terms of the qualitive parameters of total above-ground biomass, the
highest CP content was achieved in plots with low density (46 plants m−2) and inorganic
fertilization with urea with double inhibitors. Moreover, NDF and ADF were not affected
by plant density; however, there were significant differences between fertilization treat-
ments. The highest ADF and NDF contents of above-ground biomass were found under
compost and urea with double inhibitors. The high ADF, NDF, and relatively high CP
content characterized black mustard aerial biomass can meet the requirements of lactating
animals, and therefore the production of black mustard biomass as forage crop could be
of great importance. As a conclusion, black mustard cultivated at plant densities higher
than 46 plants m−2 and under inorganic fertilization, especially with urea coated with
double inhibitors, could be successfully used as a novel forage crop in ruminants’ diets.
In addition, future studies should be directed toward understanding the effect of the use
of higher-efficiency fertilizers coated with urease and/or nitrification inhibitors on the
quality of alternative forage crops, as black mustard, and their consumption on the growth
performance and health of ruminants.
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