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Abstract: Gesneriaceae plant family is comprised of resurrection species, namely Boea hygrometrica and
Paraboea rufescens, that are native to the Southeast Asia and Haberlea rhodopensis, Ramonda myconi, and
Ramonda serbica, which are mainly found in the Balkan Peninsula. Haberlea rhodopensis is known to
be able to survive extreme and prolonged dehydration. Study was carried out after the dried plant
Haberlea rhodopensis Friv. had been hydrated and had reached its fresh state. Two juice samples were
collected from the plant blossom: The first sample was prepared with 1% filtered water through a
patented EVOdrop device. Then the sample was saturated with hydrogen with EVOdrop booster to
a concentration of 1.2 ppm, pH = 7.3, ORP = −390 mV. This first sample was prepared with filtered
tap water from Sofia, Bulgaria. The second sample, which was a control one, was developed with tap
water from Sofia, Bulgaria, consisting of 1% solutions of Haberlea rhodopensis. A study revealed that
during the drying process in H. rhodopensis the number of free water molecules decreases, and water
dimers are formed. The aim of our study was to determine the number of water molecules in clusters
in 1% solutions of hydrated H. rhodopensis plants. Results were analyzed according to the two types
of water used in the experiment. Th EVOdrop device is equipped with an ultranano membrane and
rotating jet nozzle to create a vortex water and saturation thanks to a second device EVObooster to
obtain hydrogen-rich water. In the current study Hydrogen-rich water is referred to as Hydrogen
EVOdrop Water (HEW). Research was conducted using the following methods—spectral methods
non-equilibrium energy spectrum (NES) and differential non-equilibrium energy spectrum (DNES),
mathematical models, and study of the distribution of water molecules in water clusters. In a licensed
Eurotest Laboratory, the research of tap water before and after flowing through the EVOdrop device
was proven. Studies have been carried out on the structuring of water molecule clusters after change
of hydrogen bond energies. The restructuring comes with rearrangement of water molecules by the
energy levels of hydrogen bonds. Local extrema can be observed in the spectrum with largest amount
of water molecules. The structural changes were tested using the NES and DNES spectral methods.
The conducted research proved that the application of EVOdrop device and EVObooster changes the
parameters of water to benefit hydration and health.
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1. Introduction

Haberlea rhodopensis Friv. is a Balkan endemic plant primarily found in the Rhodope
Mountains in Bulgaria. It is known for its drought resistance and biosis–anabiosis–biosis
cycle [1]. It is a protected species under the Law on Biological Diversity in Bulgaria [2] The
plant is listed in the Red Book of Bulgaria in the category of rare species, Balkan endemic [3].
The biosis–anabiosis–biosis cycle may unveil new properties of the water. A study revealed
that, during the drying process in H. rhodopensis, the number of free water molecules
decreases, and water dimers are formed (Kuroki, et al., 2019) [4]. After contact with water,
H. rhodopensis plants straighten up. However, the reasons for this phenomenon are not fully
known. We consider it to be possible to evaluate hydration with NES and DNES methods
and based on water properties when applied after dehydration of H. rhodopensis.

The equipment used for these studies is the EVOdrop device with an ultranano
membrane [5] and rotating jet nozzle for vortex water [6]. The ultranano membrane is a
competitor to the reverse osmosis membrane. The rotating jet nozzle for vortex water [7]
is equipped with three injection nozzles according to the golden ratio and algorithm.
Some research has been conducted on the effects of magnetic field on water [8–10] and
nanomembranes [11,12].

Hydroxyl groups (-OH) in H2O molecules are polar. A covalent bond of water
molecules is a chemical bond that involves the sharing of electron pairs between O and
H atoms. Between H2O molecules, there are electromagnetic hydrogen bonds Hydrogen
bonds are weaker than covalent bonds. The water molecules could be bonded into complex
intermolecular clusters, described by a general formula (H2O)n. The NES and DNES spec-
tral methods are related to the research of parameters of hydrogen bonds, with estimation
of the effects in a 1% solution (v/v) H. rhodopensis in filtered water, prepared with a patented
EVOdrop device and saturated with hydrogen with an EVOdrop booster. As a control, 1%
H. rhodopensis with tap water was used.

Research by Smith et al. and Keutsch and Saykally showed water clusters with 3
to 50 water molecules [13,14]. Different water cluster models are also described in the
investigations conducted by Fowler et al. [15], Shu et al. [16], Chaplin [17], Sykes [18], Liu,
Cruzan and Saykally [19], Choi and Jordan [20], Loboda and Goncharuk [21] and Timothy
and Zwier [22].

The following methods have been generally used to study water clusters—1H NMR [23,24],
far-infrared [25], vibration–rotation–tunneling (VRT) [19], neutron diffraction [26], and
the SCC-DFTB Method [18,27]. A cluster model at (E = −0.1387 eV) (λ = 8.95 µm)
(
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clusters with different numbers of H2O molecules are formed due to the formation of hy-
drogen bonds. The average hydrogen bonds energy (HBE) increases with the number of 
H2O molecules in the clusters, and with the evaporation of water droplets. According Me-
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= 1117 cm−1) has been proposed with 20 water molecules in a dodecahedral structure
with diameter of the circumscribed sphere equal to 0.822 nm [28–30]. The basis of this
research is the NES and DNES methods of Antonov et al. [31–33].

It is accepted that the aqueous solutions can undergo autoprotolysis, i.e., the H+ proton
is released from the H2O molecule and then transferred and accepted by the neighboring
H2O molecule, resulting in the formation of hydronium ions as H3O+, H5O2

+, H7O3
+,

H9O4
+, etc. Thus, water should be considered as an associated liquid composed of a set of

individual H2O molecules, linked together by hydrogen bonds and weak intermolecular
van der Waals forces [19]. The simplest example of such a complex can be a water dimer.

The research has shown that 1% solution of H. rhodopensis in water filtered by EVO-
drop with hydrogen has the highest hydrogen bonds energies among water molecules at
(−0.1112 eV; 11.3 µm; 887 cm−1). The EVOdrop device has an nano membrane and rotat-
ing jet nozzle for vortex water and saturation, thanks to a second device EVObooster for
hydrogen-rich water. There is an increase in the local extremum in the spectrum compared
to the control sample with 1% solution of H. rhodopensis in tap water filtered by EVOdrop
with hydrogen.

The local extremum at (−0.1112 eV; 11.3 µm; 887 cm−1) is related to calcium conduc-
tivity [32,34]. Some studies reveal that signaling-related genes encoding a calcium channel
protein are activated after hydration of H. rhodopensis [34]. Calcium is involved in the
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regulation of DT mechanisms [35]. The calcium ions in xyloglucan enhance strength and
flexibility [36].

The aim of the study was to show that water filtered by EVOdrop with hydrogen has
better hydration properties and structuring of water molecules into clusters.

The excepted applications are for positive effects on human health.

2. Results and Discussion

The reported results are average values between the results of the application of the
device to test 10 different water samples after treatment with the EVOdrop devices and
10 control water samples. For each sample, 10 measurements were performed. There was a
statistically significant difference between the results of the two groups of samples and the
control samples according to Student’s t test with p < 0.05.

2.1. Mathematical Models of Clusters in a 1% Solution of Haberlea rhodopensis Friv.
Blossom Extract

A mathematical model of the number of water molecules [37–39] according to the
energy of hydrogen bonds in a 1% solution of H. rhodopensis blossom extract has been
developed (Table 1; Figure 1).

Table 1. Distribution of the number of water (H2O) molecules in a 1% solution of Haberlea rhodopensis
Friv. blossom extract in EVOdrop-filtered tap water saturated with Hydrogen (H2) and in the control
sample of tap water from Sofia, Bulgaria according to the energy of hydrogen bonds.

−E(eV)
x-Axis

Number of Water Molecules

−E(eV)
x-Axis

Number of Water Molecules

1% Solution
H. rhodopensis

(Sample)

1% Solution
H. rhodopensis

(Control Sample)

1% Solution
H. rhodopensis

(Sample)

1% Solution
H. rhodopensis

(Control Sample)

0.0912 2 2 0.1162 0 6
0.0937 4 5 0.1187 4 8
0.0962 2 7 0.1212 9 2 4 2

0.0987 4 5 0.1237 5 4
0.1012 6 3 0.1262 4 6
0.1037 3 8 0.1287 4 6
0.1062 5 4 0.1312 6 4
0.1087 6 6 0.1337 6 7
0.1112 15 1 3 1 0.1362 6 5
0.1137 1 5 0.1387 8 3 2 3

Notes: 1 1E = −0.1112 eV or (λ = 11.3 µm;
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2 1E = −0.1212 eV or (λ = 10.23 µm;
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= 978 cm−1) is the local extremum for anti-inflammatory effects.
3 1E = −0.1387 eV or (λ = 8.95 µm;
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In 2016, Kostainova and co-authors performed in vitro research on keratinocytes. They
found that H. rhodopensis extracts affect the cell periphery of these cells. The keratinocytes
were cultured under standard conditions and supplemented with additional calcium ions
(Ca2+) in order to stimulate tight junction formation, thereby suppressing proliferative
activity [43].
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2.2. Results from Spectral Analysis of EVOdrop Water with NES and DNES Methods

Measurements with the NES and DNES spectral methods show a significant difference
between EVOdrop water and the control sample.

The test sample consisted of 1% H. rhodopensis blossom extract in filtered water, ob-
tained with the patented EVOdrop device and saturated with hydrogen with the EVOdrop
booster. The control sample was of 1%. H. rhodopensis blossom extract in deionized water.

The result for the test sample in the NES-spectrum was −0.1203 eV, while for the
control sample it was −0.1151 eV. The values of ∆E for EVOdrop water, measured by the
DNES method, were in the interval (−0.0052 eV). The highest number of water clusters in
the sample was 15 (−0.1112 eV; 11.3 µm; 887 cm−1). The number of water molecules in the
control sample was 2.

The difference is considerable and shows a higher-level structuring of water clusters
in comparison with the control sample. Recently, Ignatov et al. [39] found that in water,
clusters with different numbers of H2O molecules are formed due to the formation of
hydrogen bonds. The average hydrogen bonds energy (HBE) increases with the number
of H2O molecules in the clusters, and with the evaporation of water droplets. According
Mehandjiev et al. [44], in bulk water, at the beginning of evaporation, the maximum number
of clusters has an average HBE of (−E) = 0.1162 eV and contains 12–13 H2O molecules.
Discrete changes in HBE of water clusters have the same value and are based on the
formation of clusters with different numbers of water molecules.

H. rhodopensis, tested in our research, is a “resuscitating” plant with unique properties,
a Bulgarian endemite. This is the only plant that recovers after a long drying time and has
an ability to survive up to 31 months dried in an herbarium [44]. It is the only one in which
Kuroki et al. [6] proved the presence of clusters of two water molecules in a dry state. There
are no proven cluster formations in other plants. When H. rhodopensis dries out, dimers
of water molecules are formed [6]. When being watered the dry plant turns green. After
dehydration of H. rhodopensis, the degree of hydration can be estimated with the NES and
DNES methods depending on the water quality.

Our results with H. rhodopensis show that after drying, the formation of clusters of
water molecules depends on the type of water. The experiments were conducted with
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deionized and filtered EVOdrop water. The EVOdrop device enables the formation of
clusters in water. The structuring of the water molecules was established, which are
analyzed with NES and DNES methods.

In recent years, H. rhodopensis has drawn the attention of researchers due to its ben-
eficial effects on human and animal health. The extract of the plant contains high levels
of flavonoid antioxidants [45,46]. We used such an extract in the present study. The plant
has a tonic and anti-aging effect. In folk medicine, it is used to cleanse the stomach, liver,
kidneys, and blood vessels [47,48]. Aqueous and alcoholic extracts of H. rhodopensis have
shown unique medical and pharmaceutical potential, related to their antioxidant, radio-
protective, antimicrobial, antimutagenic, immunostimulatory, anticancer, and anti-aging
effects. The extract could be used in phytotherapy, human and veterinary medicine and
cosmetics [49,50]. Our results show that its unique useful properties can be enhanced using
EVOdrop technology.

3. Materials and Methods
3.1. Plant H. rhodopensis Friv.

Ethanol extract from the H. rhodopensis leaves and blossom were used in our study
(Figure 2). H. rhodopensis Friv. oil has the following chemical composition (Table 2) [51]:

Plants 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 

  
Figure 2. Haberlea rhodopensis blossom extract. 

Figure 3 illustrates flowers of H. rhodopensis. 

 
Figure 3. Flowers of Haberlea rhodopensis. 

3.2. The EVOdrop Turbine Water Purifier 
Тhe proprietary operating principle and developed geometry of the EVOdrop tur-

bine (Figures 4) allow for highly efficient treatment. Incoming water passes through the 
rotating turbine, driving it with its pressure, which in turn makes water pass through the 
rotating device. Specific outcomes of this treatment are based on magnetohydrodynamic 
forces [4,5]. Figure 4 shows EVOdrop’s turbine operation principle. 

Figure 2. Haberlea rhodopensis blossom extract.

Table 2. Chemical composition of H. rhodopensis oil.

Compounds µg·g−1 DW

flavonoids

Luteolin 2730.18
Hesperidin 928.56
Kaempferol 578.52

Phenolic Acids

Ferulic acid 630.48
Sinapic acid 580.80

Figure 3 illustrates flowers of H. rhodopensis.
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3.2. The EVOdrop Turbine Water Purifier

The proprietary operating principle and developed geometry of the EVOdrop turbine
(Figure 4) allow for highly efficient treatment. Incoming water passes through the rotating
turbine, driving it with its pressure, which in turn makes water pass through the rotating
device. Specific outcomes of this treatment are based on magnetohydrodynamic forces [4,5].
Figure 4 shows EVOdrop’s turbine operation principle.
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Figure 5 illustrates the EVOdrop filter.
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3.3. The EVOdrop Booster for Hydrogen-Rich Water

The EVOdrop Booster produces hydrogen-rich water. EVOdrop hydrogen water has a
concentration of hydrogen (Figure 6).
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Figure 7 illustrates the EVObooster device for EVOdrop hydrogen water.
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Figure 7. The EVObooster device for EVOdrop hydrogen water.

The biological effects of hydrogen-rich water at a concentration of 0.08–1.5 ppm are
described [17,18]. In the current study, hydrogen-rich water is referred to as Hydrogen
EVOdrop Water (HEW).

3.4. Differential Non-Equilibrium Energy Spectrum (NES) and Differential Non-Equilibrium
Energy Spectrum Spectral Analyses (DNES)

The device of the author A. Antonov [52–55] for spectral analysis with NES and DNES
methods is based on an optical principle. The evaporation of water drops is performed in a
hermetic camera with a glass plate and water-proof transparent pad which consists of thin
maylar folio. Evaporation of water drops was performed at a stable temperature of 22 ◦C.
The drops were placed on a BoPET (biaxially oriented polyethylene terephthalate) foil with
a 350 µm thicknesses (Figure 8).

Plants 2022, 11, x FOR PEER REVIEW 9 of 12 
 

 

consists of thin maylar folio. Evaporation of water drops was performed at a stable tem-
perature of 22°C. The drops were placed on a BoPET (biaxially oriented polyethylene ter-
ephthalate) foil with a 350 μm thicknesses (Figure 8). 

 
Figure 8. Operating principle of the method for measurement of wetting angle of liquid drops on a 
hard surface: 1—drop, 2—thin maylar foil, 3—glass plate, 4—refraction ring width. The wetting 
angle θ is a function of a and d1. 

The parameters are as follows: 
• Monochromatic filter with wavelength λ = 580 ± 7 nm; 
• Angle of evaporation of water drops from 72.3° to 0°; 
• Energy range of hydrogen bonds among water molecules is λ = 8.9–13.8 μm or       

E = −0.08–−0.1387 eV. 
The energy (E) of hydrogen bonds among H2O molecules in the water sample is 

measured in eV. The function f(E) is called the energy distribution spectrum. The energy 
spectrum of water is characterized by a non-equilibrium process of water droplet evapo-
ration; this is non-equilibrium energy spectrum (NES) and is measured in еV−1. DNES is 
defined as the difference 

∆f(E) = f (samples of water) − f (control sample of water), 

DNES is measured in еV−1 
where f(*) denotes the evaluated energy [31,32]. 

3.5. Filtration with EVOdrop Filter for Tap Water, Sofia, Bulgaria 
Table 3 illustrates the physicochemical parameters of tap water from Sofia, Bulgaria 

before and after filtration with the EVOdrop device. The certificate No. 10216/21.07.2022 
corresponds to the water before filtration, and No. 10217/14.07.2022 after filtration, with 
the EVOdrop device. The research was performed according to the parameters of Ordi-
nance No. 9/2001, Official State Gazette, issue 30, and Decree No. 178/23.07.2004 regarding 
the quality of water intended for consumption and domestic uses in the accredited labor-
atory “Eurotest control” JSC, Sofia, Bulgaria [56]. 

Table 3. Physicochemical parameters of the tap water from Germany before and after filtration with 
EVOdrop device. 

Controlled Parameter Measuring Unit Maximum Limit Value Before EVOdrop After EVOdrop 
1. pH pH values ≥6.5 and ≤9.5 6.73 ± 0.11 8.88 ± 0.11 

2. Total hardness mgekv·L−1 12 1.76 ± 0.5 0.98 ± 0.24 
3. Calcium (Ca2+) mg·L−1 150 12.7 ± 1.3 12.7 ± 1.3 

4. Magnesium (Mg2+) mg·L−1 80 21.2 ± 2.1 4.2 ± 0.4 

Figure 8. Operating principle of the method for measurement of wetting angle of liquid drops on
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The parameters are as follows:

• Monochromatic filter with wavelength λ = 580 ± 7 nm;
• Angle of evaporation of water drops from 72.3◦ to 0◦;
• Energy range of hydrogen bonds among water molecules is λ = 8.9–13.8 µm or

E = −0.08–−0.1387 eV.

The energy (E) of hydrogen bonds among H2O molecules in the water sample is
measured in eV. The function f(E) is called the energy distribution spectrum. The energy
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spectrum of water is characterized by a non-equilibrium process of water droplet evapo-
ration; this is non-equilibrium energy spectrum (NES) and is measured in eV−1. DNES is
defined as the difference

∆f(E) = f (samples of water) − f (control sample of water),

DNES is measured in eV−1

where f(*) denotes the evaluated energy [31,32].

3.5. Filtration with EVOdrop Filter for Tap Water, Sofia, Bulgaria

Table 3 illustrates the physicochemical parameters of tap water from Sofia, Bulgaria
before and after filtration with the EVOdrop device. The certificate No. 10216/21 June 2022
corresponds to the water before filtration, and No. 10217/14 June 2022 after filtration, with
the EVOdrop device. The research was performed according to the parameters of Ordinance
No. 9/2001, Official State Gazette, issue 30, and Decree No. 178/23 June 2004 regarding the
quality of water intended for consumption and domestic uses in the accredited laboratory
“Eurotest control” JSC, Sofia, Bulgaria [56].

Table 3. Physicochemical parameters of the tap water from Germany before and after filtration with
EVOdrop device.

Controlled Parameter Measuring Unit Maximum Limit Value Before EVOdrop After EVOdrop

1. pH pH values ≥6.5 and ≤9.5 6.73 ± 0.11 8.88 ± 0.11

2. Total hardness mgekv·L−1 12 1.76 ± 0.5 0.98 ± 0.24

3. Calcium (Ca2+) mg·L−1 150 12.7 ± 1.3 12.7 ± 1.3

4. Magnesium (Mg2+) mg·L−1 80 21.2 ± 2.1 4.2 ± 0.4

5. Hydrocarbonates (HCO3
−) mg·L−1 - 27.5 ± 2.8 <24.4

6. Carbonates (CO3
2−) mg·L−1 - <12 <12

7. Sodium (Na+) mg·L−1 200 5.7 ± 0.9 5.7 ± 0.9

8. Potasium (K+) mg·L−1 - 1.7 ± 0.2 1.6 ± 0.2

9. Manganese µg·L−1 50 3.8 ± 0.4 3.6 ± 0.4

10. Zinc mg·L−1 4 0.074 ± 0.07 0.02 ± 0.002

The research of physicochemical filtration with the EVOdrop filter shows that there is
filtration of molecules with bigger sizes, such as hydrocarbonate ions (HCO3

−). The result
for HCO3

− is from 27.5 ± 2.8 to less than 24.4 mg·L−1. There is an increase in pH from
acidic value to alkaline—from 6.73 ± 0.11 to 8.88 ± 0.11. The hardness of tap water after
filtration is reduced from 1.76 ± 0.5 to 0.98 ± 0.24.

4. Conclusions

The unique properties of Haberlea rhodopensis Friv., related to interaction between
the water molecules during the biosis–anabiosis–biosis cycle, were used to investigate
EVOdrop nanofiltration technology of tap water and its enrichment with hydrogen in
terms of hydration and water molecules clustering. The statistically significant results
clearly demonstrated that EVOdrop treatment leads to a shift in the hydrogen bonds energy
distribution towards larger values along with the corresponding formation of local maxima.
Based on previous results, health benefits of such water treatment can be expected in the
areas of malignant growth inhibition and tissue regeneration for humans.
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