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Abstract: In higher plants, the complexity of a system and the components within and among species
are rapidly dissected by omics technologies. Multi-omics datasets are integrated to infer and enable
a comprehensive understanding of the life processes of organisms of interest. Further, growing
open-source datasets coupled with the emergence of high-performance computing and development
of computational tools for biological sciences have assisted in silico functional prediction of unknown
genes, proteins and metabolites, otherwise known as uncharacterized. The systems biology approach
includes data collection and filtration, system modelling, experimentation and the establishment
of new hypotheses for experimental validation. Informatics technologies add meaningful sense
to the output generated by complex bioinformatics algorithms, which are now freely available in
a user-friendly graphical user interface. These resources accentuate gene function prediction at a
relatively minimal cost and effort. Herein, we present a comprehensive view of relevant approaches
available for system-level gene function prediction in the plant kingdom. Together, the most recent
applications and sought-after principles for gene mining are discussed to benefit the plant research
community. A realistic tabulation of plant genomic resources is included for a less laborious and
accurate candidate gene discovery in basic plant research and improvement strategies.

Keywords: computational approaches; functional genomics; metabolomics; systems biology;
transcriptomics; plant breeding

1. Introduction

The plant kingdom is comprised of photosynthetic eukaryotes, mainly green plants.
The enormous variations among and within plant populations include the physical forms,
reproductive mechanisms, carbon assimilation strategies (photosynthesis metabolisms),
growth and development and other factors such as responses against pests and pathogens,
stress environments and productivity [1]. Plants are drastically subjected to constant
changes that appear invisible to the human eye, otherwise regarded as unknown.

The phenotype accounts for highly flexible differences which result from the genetics
(G), environment (E), and genetics by environment interaction (GXE). The deoxyribonucleic
acid (DNA) molecule is the central hereditary unit, as the genetic material is passed from one
generation to the other. Composed of four different nucleotides (adenine, thymine, cytosine
and guanine), DNA carries gene fragments that encode protein molecules, of which protein-
encoding genes contribute to a relatively minor portion (2%) of the total genetic material
(genome). The major fraction (98%) of the genome is represented by non-coding sequences,
which may indirectly participate in the protein-coding gene expression mechanisms and
actions. The central dogma of molecular biology maintains genetic integrity at each life
cycle via replication (DNA–DNA), reverse-transcription (RNA–DNA), transcription (DNA–
RNA) and translation (RNA–protein) [2]. On the other hand, gene regulatory elements
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(enhancers and silencers), non-coding RNAs such as microRNA (miRNA), small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), long non-coding RNAs (lncRNAs), and
Piwi-interacting RNA (piRNA) are explicitly reported to affect gene expression levels, DNA
methylation, alternative splicing events, and epigenetics [3,4].

While the study of the entire genetic material of an organism is known as genomics,
the landscape of all the elemental genes expressed (transcripts) at a given time/condition is
referred as the transcriptome. Transcripts are translated into protein molecules which may
undergo further modifications to form small molecules of <15,000 Da (known as metabo-
lites). These catalogues of proteins and metabolites synthesized at a given time/condition
are studied in proteomics and metabolomics, respectively. Thus, transcripts, proteins
and metabolites are central components driving the complexity of a biological organism.
The growing application of various omics technologies has marked a burst of scientific
and technological omics-based approaches offering a wealth of plant science information.
“Omics” data are either interpreted independently or integrated via multi-omics analysis to
understand critical questions in plant-based research [5].

Systems biology approaches (SBA) offer a plethora of virtual modelling systems
equipped with in silico designs for gene function prediction [6]. Revolutionized by high-
throughput omics technologies, SBA offers a vast amount of big data generated at the
molecular level [7,8]. In parallel, computational biology has gained importance alongside
SBA for dissecting and further improving the biological information of the target organisms
per se [9,10]. Moving forward, conventional approaches that are dependent on sequence
information to predict the putative biological functions (Gene Ontology classification)
of a target gene have expanded robustly to accommodate organizational level-function
annotations: the structural features of a given sequence, the interaction between the gene
product and the cellular entity, and the phenotypic diversity of a population. In recent
years, machine learning approaches and deep learning architectures such as feature-based
and artificial neural networks (convolutional neural networks (CNNs) and recurrent neural
networks) have been massively deployed in plant research [11,12]. The latter was evidently
highly advantageous. For example, in cis-regulatory element (CRE) prediction, the CNN, in
the absence of a priori knowledge on the target location, outperforms conventional k-mer
enrichment, expectation maximization and Gibbs sampling methods with a lower false
positive rate [13–15].

In this review, we highlight the use of multimodal-omics data and outline the most
prominent tools employed for gene function prediction in plant research. Open-source
databases available for plant-based omics studies are presented. Further, several plant-
related case studies in relation to gene discovery and pathway reconstruction using un-
known genes are discussed. Lastly, we emphasize and suggest the importance of integrated
multi-modal analyses for gene function prediction and identification in both basic and
translation plant research.

2. The Omics-Platform
2.1. Genomics

The development and application of next-generation sequencing (NGS) technologies
have revolutionized crop improvement strategies primarily through genome exploration
and gene discovery [16,17]. Genomics study infers the function and evolutionary history of
plants, and with growing NGS technologies such as Illumina, Pacific Biosciences, Beijing
Genomic Institute (BGI), Twist Bioscience, 10XGenomics and Oxford Nanopore, the research
output (scientific publication) has significantly increased over the last decade (2012 to 2022)
(Figure 1). The NGS technologies are indeed robust tools for genome characterization
(genome size and genome ploidy level) and genetic variation identification at the genome
and/or population level. Genomic datasets are established by means of comprehensive
methods which involves the target species’ DNA isolation, sequencing and sequence
annotation using bioinformatics tools. Whole-genome sequencing (WGS) requires the entire
DNA content of a single organism, while exome sequencing examines the coding DNA
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sequences (exons) of a genome. Another technique, namely genotype by sequencing (GBS),
is a combinatorial technique that employs restriction enzymes to select single nucleotide
polymorphisms (SNP) within a population. Epigenomics targets the gene-regulating
components such as DNA methylation [18,19].
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Figure 1. Scholarly omics-related articles published under the plant sciences category from 2012 to
2022. The literature search using Web of Science (https://www.webofknowledge.com) search engine
was accessed on 18 September 2022 with Boolean ‘or’ and the following keywords: genomic, genome,
transcriptomic, transcriptome, proteomic, proteome, metabolomic and metabolome.

The decreasing cost of genome sequencing has led to a deluge of plant genome
sequences, particularly of agricultural crop sequences [20,21]. Sequencing price varies by
the experimental designs and each design considers a myriad of technical features, such as
number of reads, read length, methodology and technology. The most used methodologies
to generate paired end reads in Illumina are Hiseq (100–250 bp) and Miseq (up to 300 bp).
The latter has a low throughput and thus is highly recommended for small genomes <20 Mb.
Next, PacBio emerged as a third-generation technology for complex genome sequencing of
about 2.5–80 kb. The detection principle is based on the nucleotide excitation of a single
molecule, and the technology is subjected to high error rates. The MinION by Oxford
Nanopore sequences up to 20 Gb and comes with a low cost, portability features and a high
error rate, comparatively much higher than PacBio. Another affordable NGS platform is
BGISEQ, a forthcoming technology gaining a foothold in Asia. This technology generates
single-end and paired-end reads of about 50–100 bp [22,23]. To date, Illumina remains the
best quality read-producing technology. The quality of read profiles generated by Illumina
can be evaluated in real time, and poor reads are filtered off using various user-friendly
applications as follows: FastQC [24], Cutadapt [25], AdapterRemoval [26], Skewer [27],
and Trimmomatic [28].

Plant genome assembly is challenged by the genome size, sequence repetitive nature
and ploidy level (autoploid and alloploid). For example, a wheat genome of about 17 Gb
features three independent sub-genomes [29]. The genome assembly procedure becomes
easiest with the availability of a single allele per locus, although that is not the usual
case in most plant genomes. In a systemic comparison between plant and vertebrate
genomes using the unbiased kmer-based approach, plant genomes showed higher repeat
contents [30].

Upon genome assembly, subsequent genome annotation is required to identify func-
tional elements present along the genome sequence [31]. The genome structural annotation
or gene predicting process adds biological meaning to the raw sequences and offers fun-
damental insights into the biology of the target species. However, the genome annotation
process for high-quality genome assemblies is often challenged by the gene density and the

https://www.webofknowledge.com
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introns abundantly present in a genome. There are three distinct computational algorithms
developed for detecting the coding region; ab initio (intrinsic), evidence-based (extrinsic)
and genomic sequence comparison. The ab initio gene finding prediction software includes
the hidden Markov models (HMM), conditional random field, support vector machine,
and neural networks. Integrating the information from both the content sensor and signal
sensor [31–35], the content sensor classifies the DNA sequence as coding or non-coding,
whilst the signal sensor identifies specific functional regions (donor or acceptor of splice
site) throughout the genome [30]. Ab initio gene predictors, for instance, GenePRIMP [36],
SnowyOwl [37], CodingQuarry [38], BRAKER1 [39], MAKER2 [40], MAKER-P [41] and
Seqping [42], can thus be used as a pipeline to predict a reliable annotation on the newly
sequenced genomes.

The evidence-based method exploits a cost-effective approach in the form of transcrip-
tional evidence by expressed sequence tags (ESTs) or complementary DNA (cDNA) [43].
The genomic sequence comparison identifies the relativity of the content sensor to the
sequence of other genomic DNA [44]. Among the notable comparative gene-finding predic-
tors, CONTRAST [44] has a higher accuracy in both exon/gene sensitivity and specificity
than any previous year predictors; N-SCAN, TWINSCAN [45] and GENSCAN [46]. The
ab initio and genomic sequence comparison methods are somehow less convincing than
evidence-based due to automatic prediction based on training datasets and have poor
quality in algorithms that often result in errors.

Genome sequence data facilitate comparative genomic studies targeted to infer the
functions of unknown genes [47,48], enable reconstruction of metabolic pathways [49,50]
and advance the understanding of evolutionary relationships between and among species [51].
Genome annotation is generally performed using sequence similarity search whereby
annotated genes which encode proteins are matched with known proteins available in
open repositories [48,52]. To date, plant genomic information can be retrieved from pub-
lic databases such as NCBI [52] and Ensembl Plants [53]. Meanwhile, PlantGDB [54],
PLAZA [55], Gramene [56] and Phytozome [57].

2.1.1. Genomic-Assisted Gene Discovery for Crop Improvement

Genomics is the key enabler of the five Gs in crop improvement instruments: (i) genome
assembly, (ii) germplasm characterization, (iii) gene function identification, (iv) genomic
breeding and (v) gene editing [58]. Crops with established genome assemblies are research-
friendly, as the ease of computational analyses is becoming highly feasible. Plant genetic
resources play a fundamental role in leveraging maximum genetic gain in a breeding
program. Genetic variation under the natural setting offers breeders the basis for selec-
tion and further exploitation for crop improvement. Genetic diversity of highly valuable
agronomic traits such as yield, yield-related traits, and resistance against biotic and abiotic
components are amongst the most widely exploited traits for further modifications [59].
Generally, mining desirable genetic variants for subsequent improvement serves as the
underlying principle of crop genetic improvement. Population-level characterization of
genetic variation includes the identification of deletions, insertions, transversions, copy
numbers and single nucleotide polymorphisms (SNPs). A germplasm collection holds
a broad genetic diversity; thus, the accurate characterization of a large-scale germplasm
remains challenging. Nevertheless, advances in genotyping and phenotyping technologies
have revolutionized genomic breeding (GB) approaches.

Early GB methods were developed using markers specifically associated with genes
and the quantitative trait loci governing major effects of a trait per se. Such methods were
extensively applied in early GB programs: marker-assisted selection (MAS), marker-assisted
backcrossing (MABC) and marker-assisted recurrent selection (MARS) [60]. Later, in the
quest for genetic gain and enhanced breeding efficiency, new, improved methods emerged:
genome-wide association study (GWAS), expression QTL (eQTL), haplotype-based breeding,
forward breeding (FB), genomic selection (GS) and speed breeding (SB) [60,61].
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2.1.2. Single Cell Sequencing

A single cell is the basic structural and functional unit of living organisms. The
formation and function of higher-level tissues and organs are influenced by the various
genetic mechanisms along stimuli at the cellular environment. Cell heterogeneity refers
to the diverse cell states formed throughout cell growth (genetic and molecular biological
changes). With highly specialized structures and functions, the cells of multicellular
organisms share identical genetics and sets of genetic instructions in the translation of a
functional organism. Single-cell genomics offers the cell-specific landscape information
regarding the organisms’ genetics, capturing the cell physiology dynamics [62].

The discovery of cell-specific transcription, tissue-specific spatial gene expression,
the role of cell localization, the binding and activity of transcription factors, and the
chromatin and cis-regulatory signatures of a system of interest is now feasible with growing
commercial and specialized equipment systems catered toward resolving cell-specific
activities. The chromatin accessibility profiling methods such as the DNase 1 hypersensitive
site sequencing and assay for transposase-accessible chromatin sequencing (ATAC-seq)
measure the chromatin accessibility for plant regulatory DNA across population-level
species [63]. The disadvantages of these methods include a tendency to mask the cell-
specific and rare events of a target tissue. Alternatively, improved high-cost systems such
as the single-cell ATAC seq assays (integrated co-encapsulation or barcoding of individual
cells) perform sequencing at the single-cell level [64]. In transcriptional profiling using the
scRNA-seq method, the following strategies are most frequently employed: (i) fluorescence
activated sorting (FACS), (ii) isolation of nuclei tagged in individual cell types (INTACT)
and (iii) laser capture microdissection (LCM). Both FACS and INTACT have restricted use
on selected plant species only, whereas the LCM offers a broader application range on a
vast number of plant species. In general, these methods lack markers corresponding to the
different differentiation states of the cell types [65].

The establishment of the Plant Cell Atlas in 2019 officially marked the trajectory
of single-cell studies performed by the plant research community. Comprehensive high-
resolution plant cell information (nucleic acids, proteins and metabolites) is built and shared
among the scientific community [66]. Single-cell RNA sequencing (scRNA-seq) resolves
cell-to-cell heterogeneity using high-throughput technologies: Drop-Seq, Chromium, Seq-
well, SMART-seq 3 and iCell8 [67]. These methods offer a variety of features, which
account for the following factors: (1) the target mRNA region (5′, 3′ or full length), (2) the
number of cells, (3) the cell preparation technique (droplets, cell sorting and nanowells),
(4) unique molecular identifiers (UMIs)—the mRNA molecule label, (5) cell size, and
(6) method availability. In numerous previous studies, scRNA-seq applied on numerous
tissues (Arabidopsis, rice, peanut, maize) revealed high heterogeneity, highlighting the
expression signatures of cell types and development trajectories [68]. In the conventional
RNA-seq method, the bulk information (average gene expression of the sample) is obtained,
whereas the scRNA-seq technique consists of pools of information, each corresponding to
the different types of cells present in the sample. The cell preparation is rendered as the
utmost challenge to obtaining a decent result with accurate interpretations. Optimizing
the protoplast isolation is vital, considering the following factors in a typical plant cell: cell
density, cell wall thickness, digestion efficacy (influenced by cuticle, lignin, suberin and
other deposition), enzyme type and requirement and enzyme digestion time [67,69].

2.1.3. Genome-Wide Association Study (GWAS)

Amongst these methods, GS is the most preferred tool for breeding programs, as
the method does not rely on diagnostic markers entirely and the selection is made on
the breeding lines evaluated according to genomic-estimated breeding values (GEBV)
generated from the genomic-wide marker data sets. Genomic selection (GS) gathers the
additive effects of all the genes governing the genetic variance of a given trait. With each
independent gene imparting a relatively small effect, the number of genes controlling
a single trait may stretch from hundreds to thousands [60,70]. Using a genome-wide
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marker and phenotype information, the GS method establishes the association between
markers and phenotypes from an observed population. A GS analysis was first performed
following Fisher’s infinite model, and soon was extended to the genomic best linear
unbiased prediction (GBLUP) model. The latter accommodates GXE interactions and
thus offers a more accurate prediction [61,71]. Later, the Markov chain, Monte Carlo
and Bayesian modelling methods were developed to include non-additive genetic effects
such as adverse environmental conditions. In the GS method, machine learning builds a
training/reference population of individuals with information of interest (genotype and
phenotype) to train prediction models on the test population or selection candidates. The
prediction accuracy is affected by training set population size, density/number of the
genome-wide markers and the heritability of the trait of interest [72].

Genomics, together with advanced-level genomic tools, open-source genome resources
and powerful technologies, have accelerated crop breeding through rapid trait discovery
techniques. Proposed 15 years ago, genomics-assisted breeding (GAB) has now expedited
a broad range of breeding programs for resistance enhancement against diseases and
tolerance improvement against abiotic factors such as submergence, salinity and drought.
In rice, the “Improved Samba Mahsuri”, a GAB product, carries the Xa21, xa13, xa5 and
xa38 genes governing the bacterial blight (BB) disease (causal pathogen, Xanthomonas oryzae)
along with Pi-2 and Pi-54, blast disease (causal pathogen, Magnoporthe oryzae) resistance
genes [73–75].

2.1.4. Pan-Genomics

There are about 390 thousand land plant species, and their genomes are highly compli-
cated (highly repetitive DNA content, polyploidy and heterozygosity) and diverse (genome
size varying from 60 Mb to 150 Gb). Plant genome changes arise from evolutionary forces
that shaped plant speciation and evolution. Pan-genomics, a subset of plant genomic re-
search, is highly suitable for plant species with extensive genetic diversity at the population
level. Pan-genomes have been developed for important agricultural crops and model
plants such as rice, Arabidopsis, barley, soybean, maize, wheat, tomato, etc. [76]. The key
principles of pan-genomics include the comparison of high-quality genomes to provide
insights into the collection of core and dispensable genes in a species population. Generally,
a single genome or a small number of genomes do not make a good sample in pan-genome
construction. Integration of many high-quality genomes is important to obtain compre-
hensive genetic information of the target population [77]. Genes are designated as the
basic units defining a pan-genome. Pan-genome studies are most useful in understanding
plants with a wide spectrum of genetic diversity and gene pools. In brief, the pan-genome
strategy first establishes a target population of highly diverse individuals. A good selection
of representative individuals in the population is reflected by phenotypic diversity, as
determined by the phylogenetic relationship among the individuals of the population.
Next, a high-quality genome assembly method for long reads is employed using automatic
annotation pipelines. The construction approaches available for pan-genome analyses
includes the de novo assembly (detects variant types and classifies genes into core and
dispensable), iterative assembly (based on a single reference genome), and graph-based
assembly strategy (utilizes graphs from a reference genome to represent the diversity
and variations). Comprehensive tools and pipelines popularly employed in pan-genome
analyses were exhaustively described by Li et al., 2022 [78].

2.2. Transcriptomics

A transcriptome is an atlas of RNA transcripts of a tissue, cell or defined specific
condition [79]. Using the genome information, a transcriptome is “read” to obtain a com-
prehensive description of the genes expressed at a given time point. The mapping and
quantification of the transcriptional activity are central to transcriptome studies. In the mod-
ern era, the transcriptomes are produced either by the microarray [80] or RNA-sequencing
(RNA-seq) technology [81]. The latter is preferred by the plant research community due
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to higher precision in capturing lowly expressed RNAs and isoforms [81]. Comparatively,
the RNA-seq technology detects a greater percentage of novel transcripts than the mi-
croarray [82,83]. In most transcriptome data analyses, the raw count data are subjected to
differentially expressed genes (DEGs) analysis, co-expression network construction and
other techniques such as alternative splicing and isoform analysis [84,85]. Both DEG and
network analyses are used extensively to discover genes underpinning various biolog-
ical processes such as plant defense response [86], regulation [87], water stress JAZ1 in
G. arboreum [88], desiccation tolerance and drought (such as LEA) in A. thaliana seeds [89],
cellulose synthase in secondary cell wall synthesis [90] and cell wall-related genes in
A. thaliana [91].

In 2002, the Gene Expression Omnibus (GEO) repository was first established as an
open repository for gene expression data obtained from various platforms such as mi-
croarrays, serial analysis of gene expression (SAGE) and other sequence-based data [92].
Since then, the number of open-source gene expression data repositories for various
plant species and condition-specific has been on the rise: The Arabidopsis Information
Resource (TAIR) [93], TRAVA [94], RiceXPro [95], Transcriptome Encyclopedia of Rice
(TENOR) [96], Barley Gene Expression Database (Bex-db) [97], and Plant Stress RNA-Seq
Nexus (PSRN) [98] (Table 1).

Transcriptome data relate to the prediction of genome-scale reconstruction from pre-
vious studies: the starch biosynthesis of Manihot esculenta [99], the light and temperature
acclimation in Arabidopsis thaliana [100], and the biosynthesis of biotic stress-regulated
pathways (i.e., tryptophan, auxin and serotonin) in Oryza sativa [101]. High and low levels
of mRNA transcription have improved the understanding of the response outcome in
the genome, especially those mechanistic associations between the cellular trade-offs and
epistatic gene interactions [102,103].

Table 1. Plant omics databases, as accessed on 24 August 2022.

Omics Type Database Organism URL References

Genomics Plant Genome Database (PlantGDB) Plants http://www.plantgdb.org [54]
Plant Genome DataBase Japan (PGDBj) Plants http://pgdbj.jp/?ln=en [104]

National Center for Biotechnology
Information (NCBI) Various https://www.ncbi.nlm.nih.gov [52]

Ensembl Plants Plants http://plants.ensembl.org/ [53]
Phytozome Plants https://phytozome.jgi.doe.gov [57]

PLAZA Plants https://bioinformatics.psb.ugent.be/plaza/ [55]
Plant Genome and Systems Biology (PGSB

PlantsDB) Plants http://pgsb.helmholtz-muenchen.de/plant/
plantsdb.jsp [105]

Chloroplast Genome Database
(ChloroplastDB) Plants http://chloroplast.cbio.psu.edu/ [106]

The Solanaceae Genomics Resource (Spud
DB) Potato http://solanaceae.plantbiology.msu.edu [107]

Melon Genome Database (Melonomics) Melon https://www.melonomics.net/ [108]
Maize Genetics and Genomics Database

(MaizeGDB) Maize https://www.maizegdb.org [109]

Rice Annotation Project Database
(RAP-DB) Rice https://rapdb.dna.affrc.go.jp [110]

Rice Genome Annotation Project (RGAP) Rice http://rice.plantbiology.msu.edu [111]

GrainGenes Wheat, Barley,
rye, oat http://wheat.pw.usda.gov/GG3/ [112]

SoyBase Soy Soybase.org [113]
Genome Database for Rosaceae (GDR) Rosaceae plants https://www.rosaceae.org/ [114]

Brassica Database (BRAD) Brassica plants http://brassicadb.org/brad/ [115]

http://www.plantgdb.org
http://pgdbj.jp/?ln=en
https://www.ncbi.nlm.nih.gov
http://plants.ensembl.org/
https://phytozome.jgi.doe.gov
https://bioinformatics.psb.ugent.be/plaza/
http://pgsb.helmholtz-muenchen.de/plant/plantsdb.jsp
http://pgsb.helmholtz-muenchen.de/plant/plantsdb.jsp
http://chloroplast.cbio.psu.edu/
http://solanaceae.plantbiology.msu.edu
https://www.melonomics.net/
https://www.maizegdb.org
https://rapdb.dna.affrc.go.jp
http://rice.plantbiology.msu.edu
http://wheat.pw.usda.gov/GG3/
Soybase.org
https://www.rosaceae.org/
http://brassicadb.org/brad/
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Table 1. Cont.

Omics Type Database Organism URL References

Transcriptomics Gene Expression Omnibus (GEO) Various https://www.ncbi.nlm.nih.gov/geo/ [92]
AgriSeqDB Plants https://expression.latrobe.edu.au/agriseqdb [116]

The Bio-Analytic Resource for Plant
Biology (BAR) Plants http://bar.utoronto.ca [117]

and The Arabidopsis Information Resource
(TAIR) Arabidopsis https://www.arabidopsis.org [93]

Transcriptome Variation Analysis (TRAVA) Arabidopsis http://travadb.org [94]
The Rice Expression Profile Database

(RiceXPro) Rice https://ricexpro.dna.affrc.go.jp [95]

Transcriptome Encycloperdia of Rice
(TENOR) Rice http://tenor.dna.affrc.go.jp/ [96]

Barley Gene Expression Database (Bex-db) Barley http://barleyflc.dna.affrc.go.jp/hvdb/ [97]
Plant Stress RNA-seq Nexus (PSRN) Plants http://syslab5.nchu.edu.tw [98]
Plant microRNA database (PMRD) Plants http://bioinformatics.cau.edu.cn/PMRD/ [118]

Interactomics STRING Various https://string-db.org [119]
Database of Interacting Proteins (DIP) Various http://dip.doe-mbi.ucla.edu [120]

Protein–Protein Interaction Database for
Maize (PPIM) Maize http://comp-sysbio.org/ppim [121]

IntAct Various https://www.ebi.ac.uk/intact/ [122]
Oryza sativa Protein–Protein Interaction

Network (PRIN) Rice http://bis.zju.edu.cn/prin/ [123]

Biomolecular Interaction Network
Database (BIND) Various http://bind.ca [124]

The Biological General Repository for
Interaction Datasets (BioGRID) Various https://thebiogrid.org [125]

Arabidopsis thaliana Protein Interaction
Network (AtPIN) Arabidopsis https://atpin.bioinfoguy.net [126]

PlaPPISite Plants http://zzdlab.com/plappisite/index.php [127]
3D interacting domains (3did) Various https://3did.irbbarcelona.org [128]

Molecular INTeraction database (MINT) Various http://mint.bio.uniroma2.it/mint/ [129]
ATTED-II Plants http://atted.jp/ [130]

CressExpress Arabidopsis http://cressexpress.org/ [131]
Arabidopsis Network (AraNet) Arabidopsis http://www.inetbio.org/aranet/ [132]

Co-expressed Biological Processes (CoP) Plants http://webs2.kazusa.or.jp/kagiana/cop0911/ [133]
EXPath Plants http://expath.itps.ncku.edu.tw/ [134]

Plant Omics Data Center (PODC) Plants http://bioinf.mind.meiji.ac.jp/podc/ [135]
Plant Netwrok (PlaNet) Plants http://aranet.mpimp-golm.mpg.de/ [136]

OryzaExpress Rice http://plantomics.mind.meiji.ac.jp/
OryzaExpress/ [137]

PlantExpress Rice,
Arabidopsis

http:
//plantomics.mind.meiji.ac.jp/PlantExpress/ [138]

Rice Functionally Related Gene Expression
Network Database (RiceFREND) Rice http://ricefrend.dna.affrc.go.jp/ [139]

Vitis vinifera Co-expression Database
(VTCdb) Grape http://vtcdb.adelaide.edu.au/ [140]

GeneMania Various http://genemania.org/ [141]
A Comprehensive Systems-Biology

Database (CSB.DB) Various http://www.csbdb.de/csbdb/home/
databases.html [142]

RapaNet Brassica http://bioinfo.mju.ac.kr/arraynet/brassica3
00k/query/ [143]

Rice Expression Database (RED) Rice http://expression.ic4r.org [144]
PhytoNet Various www.gene2function.de [145]
CoNekT Plants https://conekt.sbs.ntu.edu.sg [146]

CoCoCoNet Plants https://milton.cshl.edu/CoCoCoNet [147]

Transcriptome-Wide Association Studies: Prediction of Genes Governing Complex traits

Global transcriptional activity measured by the transcriptome-wide association studies
(TWAS) offers a fundamental understanding of the spatiotemporal regulation of transcrip-
tion events in plants [148]. Transcription causes variation, often observed as a collection of
events resulting from altered coding sequences. Both mRNA and protein expression are
spatial and temporal targets for selecting variations caused by the coding sequences. TWAS
unravel endophenotype or variation that is predominantly caused by genetic factors. Such
a feature is highly valuable for prioritizing candidate genes governing complex agronomic
traits. TWAS was recently proposed as a powerful tool to predict trait-associated gene
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expression based on GWAS summary data [149]. TWAS, in combination with GWAS,
increases the power of detection of unknown genes and offers a selection of prioritized
causal genes [150,151].

2.3. Phenome

For the past decade, plant phenomics has made significant strides with the advance-
ment of imaging and sensor technologies in measuring a wide range of traits or phenotypic
variations in response to environmental factors or genetic modifications [152]. Phenomic
data aid in the understanding of the pathways that link genotypes to phenotypes and deter-
mine the underlying causes of complex events in crop yields and diseases [153]. Gathering
relevant phenotypic data across multiple organizational levels is a key step in phenomics,
which aims to characterize the full range of phenotypes that can be expected from a given
genome. Therefore, plant phenotyping can be stratified as per resolution and dimension-
ality (from molecular to entire plant) and environments (from lab to field settings) [154].
The phenotyping method has become an outstanding tool for integrating knowledge into
producing high-performance cultivars, particularly for breeders seeking to develop higher
tolerant cultivars against abiotic and biotic challenges.

Handling high-dimensional phenomics data necessitates advanced computational
methods. In plants, both quantitative trait locus (QTL) mapping and high-throughput
phenotyping (HTP) are being utilized to identify the underlying genes responsible for
the desired phenotypes. The development of NGS techniques has facilitated rapid and
cost-effective access to a vast amount of genomic data, allowing QTL mapping-based
marker-assisted selection (MAS) to be conducted. QTL mapping relies heavily on high-
quality phenomics data. Near-infrared reflectance spectroscopy (NIRS) data composed of
phenomics information have been used as predictors to compare its predictive ability with
marker data [155]. The phenomics study via NIRS has been shown to achieve promising
predictive abilities in crops, including soybean [156], maize [157] and sugarcane [158]. HTP,
on the other hand, relies on automated trait analysis in producing phenotypic data, such
as imaging techniques. This technique uses computational image-analysis tools to parse
images or videos of traits such as root architecture, height, morphology, and photosynthetic
status to extract the latter information [159].

2.4. Epigenetic Modification

Chromatin is a complex structure consisting of DNA and histone proteins that are
susceptible to epigenetic mechanisms, such as DNA methylation, histone tail modifica-
tions and methylation mediated by small RNA (e.g., miRNA, piRNA and/or snRNA).
Epigenomics is a dynamic process that alters gene regulation activities that cause plant mor-
phology and development to become abnormal due to environmental factors such as biotic
and abiotic stress. DNA methylation patterns vary greatly between plant species. Genes
and transposable elements (TEs) in angiosperms are typically methylated at CHG and
CHH (H = A, C, or T) nucleotides, whereas CG methylation is highly abundant in animals.

Epigenomic studies using high-throughput sequencing methods, such as methylation
arrays, chromatin immunoprecipitation sequencing (ChIP-Seq), assay for transposase-
accessible chromatin sequencing (ATAC-Seq), reduced-representation bisulfite sequencing
(RRBS-Seq), methylated DNA immunoprecipitation sequencing (MeDIP-Seq), and bisulfite
sequencing (BS-Seq), have made it feasible to investigate the roles of epigenetic mecha-
nisms and regulatory pathways in plants at a genome-wide scale [160]. Methylation arrays
were the first epigenetic technologies developed to study DNA-methylated CpG islands
characterized by the presence of cytosine-guanine sequences. However, the use of methyla-
tion arrays in plant studies is still limited compared to other sequencing methods and in
mammals [161]. Bisulfite sequencing is widely regarded as the gold standard for detecting
5-methyl-cytosine (5mC) due to its ability to sequence the genome at a base-pair level.
Other methods, such as MeDIP-Seq and RRBS-Seq, only examine the preselected genomic
regions based on the prevalence of CpG content or methylation [162]. Meanwhile, ChIP-Seq
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is a powerful method used to study the interaction between transcription factors and DNA
binding sites and provides additional information about epigenetic modification based on
the chromatin structure or histone changes [163]. To date, more than 11,000 ChIP-Seq data
series have been deposited in the Gene Expression Omnibus (GEO) database. Others such
as the ATAC-Seq database recorded a total of 1880 data series [164]. By using ATAC-Seq,
the chromatin accessibility with DNA methylation changes can be determined using hy-
peractive Tn5 transposase that cleaves the DNA and then inserts sequencing adapters into
open chromatin regions [165].

Epigenomic technologies are widely used to identify genes that underpin various
functions. For instance, ChIP-Seq analysis was used by Li and colleagues to identify genes
involved in the activation and repression of gene regulation in response to abiotic stress.
Additionally, ATAC-Seq profiling of accessible chromatin was carried out to investigate
the transcriptional regulatory landscape of plant genomes, which appears to be conserved
across the root tips of plant species during development [166,167]. Using BS-Seq, Li et al.
(2020) [168] discovered that methylated cytosines (mCG) contributed to the difference
in methylation levels in drought stress, revealing extensive DNA methylation changes
in response to drought. The MeDIP-Seq profiling of olive development also showed
differential DNA methylation in secondary metabolism, which is responsible for the quality
of olive oil. This finding provides an insight into the significance of the methylation status
of olives during the ripening process [169].

2.4.1. Interactomics

Interactomics, the study of interactions between functional elements within an or-
ganism is revolutionizing genetic research. The systemic dissection of functional genes
riding the phenotype of interest is analyzed by genetic models or networks within and
between genetic layers. For example, the genome-wide protein–protein interaction analysis
may represent two distinct genetic layers, namely the proteomics and transcriptomics. An
interactome study exploits large datasets generated by multi-omics technologies to improve
the predictive power in understanding the role of functional elements of a complex bio-
logical system [170]. It offers valuable information on the associations between functional
elements across multiple biological processes. The functional elements of an interaction
network are represented as nodes, whilst the relationships between the nodes are edges.
The edges are constructed based on the correlation measurements derived algorithmically
from quantitative omics-datasets [171,172].

A rapid research pace in co-expression network construction and analysis using
transcriptomes (RNA-seq and microarray generated datasets) may have arisen from the
increasingly growing open-source databases. Databases of co-expression datasets include
the ATTED-II [130], AraNet [132], GeneMANIA [141] and others, as listed in Table 1. In
higher plants, co-expression network analyses have successfully dissected gene function
prediction in glucosinolate biosynthesis [173], cell wall biosynthesis [174], transcriptional
regulation of hormone biosynthesis [175] and Arabidopsis aliphatic glucosinolate biosyn-
thetic pathway [176].

Protein–protein interaction (PPI) dissects the physical interactions between a group of
proteins, ultimately imparting a global understanding of the functional mechanisms of a
proteome landscape, domain interactions and motif and site association of complexes [177].
PPI datasets are generated by means of in vivo, in vitro and in silico methods [178]. The
in vivo methods such as yeast two-hybrid (Y2H) [179], split ubiquitin system (SUS) [180]
and bimolecular fluorescence complementation (BiFC) [181] test the physical interactions
between two proteins. Meanwhile, in vitro methods such as affinity purification mass
spectrometry (AP-MS) [182] and protein microarrays [183] quantify PPIs and protein activi-
ties. Both the in vivo and in vitro methods serve as evidence in PPI network construction.
In addition, various computational methods have been developed for PPI prediction: in-
terolog mapping, gene/domain-fusion inference, domain/motif-domain transfer, gene
co-expression network and machine learning approaches.
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2.4.2. Resources for Plant Protein–Protein Interactions

The number of plant species-specific experimentally validated or predicted PPIs has
been growing with the development of new info-centric databases [127]. As such, the
PlaPPISite houses comprehensive and high coverage interactomes of 13 different species
(zzdlab.com/plappisite/index.php) [127]. The Interacting Proteins (DIP) [120] and 3D in-
teracting domains (3did) [128] databases integrate information from the Protein Data Bank
(PDB) for the identification of protein interaction sites [183]. Concerning plant PPI data, the
Biological General Repository for Interaction Datasets (BioGRID) [126], Molecular Inter-
action database (MINT) [129], Biomolecular Interaction Network Database (BIND) [124],
Functional Protein Association Networks (STRING) [119] and Arabidopsis thaliana Protein
Interaction Network (AtPIN) [126] are rendered the most widely employed databases in
plant functional studies.

2.4.3. Integrated Multi-Layer Omics Data for Functional Studies in Plant

The functional aspects governing phenotypic diversity are cumulatively driven by the
distinct layers of the central dogma. Genetics research, along with integrated multi-omics
approaches, has made a major leap forward in gene function prediction and identification.
The use of multi-omics datasets established from a single experiment is essential for signifi-
cant characterization and identification of gene/protein/biomolecules and their putative
roles in the biological pathways and processes. The omics-to-interactome relationship using
multi-layer omics modules is shown in Figure 2. Integrative omics recruits at least two or
more distinct genetic layers, often established from omics technologies.
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Figure 2. Type of omics datasets. Omics datasets can be divided into two categories: modules and
interactions. Module data indicate molecular sequences of biological systems; DNA (genome) tran-
scribed into mRNA (transcriptome), later translated into proteins (proteome), and lastly synthesized
into metabolite (metabolome). Interaction data, known as interactomes, represent the relationships of
module data generated from respective platforms. The omics resources of the omics technologies and
network interactions can be downloaded from the databases.
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• Genomics-transcriptomics

Co-expression networks using transcriptome-based analysis have facilitated the charac-
terization of unknown gene functions within the metabolic pathways [171]. A combinatorial
analysis of sequence similarity and co-expression identifies conserved co-expression net-
works across various crop species [184]. With the recent development of co-expression net-
work databases such as PlaNet [136], PhytoNet [145], CoNekT [146], and CoCoCoNet [148],
it is now possible to gain insights into the potential causal effect of gene interactions
on a trait of interest. In a study by Liu et al. [185], the gene regulatory network (GRN)
constructed from transcriptome data elucidated the relationship between transcription
factors and target genes via direct interaction. In another study, GRN was utilized to
investigate the genome-wide transcriptional response of fruit development [186]. The hub
genes (group of tightly associated genes) identified from the co-expression network corre-
lated with TFs, suggesting potential regulatory mechanisms involved in fruit development
metabolism [185,186].

• Transcriptomics-proteomics

The integration of genome and transcriptome data may demonstrate the abundance
of protein; however, it does not compulsorily correlate with the corresponding mRNA
levels [187,188]. This may likely occur when there is a protein synthesis delay at the
regulation and post-translational modification process [189], along with other factors
such as the density of the ribosomal subunit [190] and physical characteristics of the
transcript [191].

In a study which investigated maize leaf development, the correlation between the
mRNA and protein abundance was relatively weak during the leaf transition from het-
erotrophic to autotrophic cells compared to later stages of development [192]. In another
study, both proteome and transcriptome data were integrated to understand tomato peri-
carp ripening [193]. The post-translational mechanism occurred during ripening when the
protein abundance and mRNA levels showed a weak correlation, in contrast to the early
stage of tomato ripening [193]. Integrative methods are effectively deployed to understand
plant responses toward biotic and abiotic stresses. Peng and colleagues suggested that
several cotton stress-responsive proteins (gigantae protein, α-crystalline heat shock protein,
and β-1-pyrroline-5-carboxylate synthetase) regulate the alternative splicing events as
the mRNA levels were significantly correlated with protein abundance under salt-stress
condition [194]. The alternative splicing event allows the translation of spliced mRNAs
(from a single gene) into multiple proteins [195].

2.5. Candidate Gene Mining in the Context of Pathway Reconstruction

In plant biology research, gene function identification is primarily challenging as
the study requires a large-scale dimension [196]. In Arabidopsis thaliana, approximately
27,500 genes that encode proteins were reported in 2013 by The Arabidopsis Information
Resource (TAIR), and this number was expected to increase with time. In the same year,
30% of genes were reported to be experimentally validated, compared to only 11% in
2007 [197,198]. Within 50 years of Arabidopsis research, more than 50,000 publications have
been released and stored in the TAIR database for data curation, the annotation of newly
discovered genes and metabolic pathway refinement [199]. Candidate gene mining in
higher plants is much more challenging compared to bacteria due to tissue-level complexity
at the cellular level and the lack of functional information about existing annotated gene
functions [43].

Challenges in Cellular Pathway Reconstruction

Plants synthesize more than a million different types of metabolites [200]. Cellular
pathways such as the metabolic, biochemical, and signal transduction of plant function
influence the system-level behavior, growth and development processes. Incomplete
metabolic pathways from weak annotation necessitate pathway reconstruction [44,201].
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The identification of candidate genes in an incomplete metabolic pathway may result in
unknown proteins. These unknown proteins could represent a missing enzymatic reaction
underpinning a dead-end metabolite. The first step in pathway reconstruction begins with
the identification of orthologous genes. Orthologous genes in different species arise from
speciation events. Since a common ancestor holds orthologous genes, they retain a similar
gene function. Orthologous domains/proteins are retrievable in Clusters of Eukaryotic
Orthologous Groups (KOG) via the Clusters of Orthologous Groups (COG) (https://
www.ncbi.nlm.nih.gov) [202] and WU-BLAST2 server (dove.embl-heidelberg.de/Blast2),
as accessed on 19 August 2022 [203].

3. Guilt-by-Association (GBA), a Method for Gene Discovery

A gene co-expression network (GCN) is a powerful tool to uncover unknown genes
based on correlation values computed (gene expression data) among a series of experimen-
tal samples/conditions [204]. A candidate gene is assumed to co-function with a partnering
gene in the event of correlation, an association measure (Figure 3). The GCN is built by
calculating the correlation of mRNA expression levels across samples. The transcripts
are represented as nodes connected by either weighted or unweighted correlation values,
represented as edges. Unweighted edges imply a binary graph, whilst weighted edges
score the different strengths of the edges of a completely connected graph.
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Figure 3. Guilt-by-association techniques for candidate gene discovery. (A) Preliminary selection of
candidate gene using the biological network, in which the co-functional information of candidate gene
with known gene (i.e., metabolic or other functional genes) can be extracted from gene correlation
and coregulation/regulatory network (steps 1–2). (B) Co-functional information can be inferred by
gene context analyses (steps 3–7). Candidate genes will be observed based on enriched in a similar
function (step 3), clustered in a monophyletic group (step 4), shared similar distributions of motifs
(step 5) and exon/intron structure (step 6), and lastly consist similar CREs (step 7). (C) The ranking
of the high confidence candidate gene will be observed based on the predicted co-function similarity.
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In 2000, the “guilt-by-association (GBA)” principle was proposed to unravel the gene
function of uncharacterized or hypothetical targets within a functional network [205].
Assuming that two interacting genes or proteins are hypothetically bound to a similar
or related cellular function [205,206], the GBA assesses for biological information of a
co-expression network such as functional links between genes: plants [207], yeast, and
bacteria [208]. Gene co-expression and co-regulation have become a standard technique
to identify the function of unknown genes in metabolic pathways [176]. By using mRNA
data from RNA-seq/microarray technologies, genes with similar expression profiles are
hypothetically presumed to be regulated by a similar transcription factor [209,210].

According to Hansen et al. [207], two genes with similar features (sequence, structure,
and expression pattern) may share a similar function. Gene context analysis and gene
network study are commonly known as GBA. Genomic evidence using comparative ge-
nomics and gene co-expression networks infer the participation of the candidate genes in
a similar or related pathway by identifying the possible association with genes of known
functions [48,207,211]. According to Osterman and Overbeek [48], the gene context tech-
nique ranks candidate genes through multiple assignments. Thus, candidate genes with
highly similar contexts are measured as high-confidence genes with potential functional
association with known genes [212–215].

Basically, GCN construction involves three key steps: (i) input data comprising an
expression matrix (m = gene across n = conditions) vector with n = dimension (Table 1),
(ii) similarity measurement/association measure and gene similarity matrix, and (iii) the
threshold value (cutoff correlation value). The association measures are calculated using
Pearson’s correlation coefficient (PCC), Spearman’s correlation coefficient (SCC) and others,
dependent on the dataset distribution. The gene interaction of GCN is defined as the
correlation between genes [211–213]. Correlation values that meet the threshold criteria
assume significant interactions [212].

The threshold value selection criteria vary for unweighted and weighted GCN [214].
There is no rule of thumb applied for setting the threshold values. Although a soft threshold
value (nearing zero) is considered less significant, it compensates for the robustness of
a weighted GCN [215]. On the flip side, important genes might be missed out from the
network with a highly stringent threshold selection [216]. A hard threshold (r = 0.8 to
1.0) has been shown to be more relevant in studies inferring biological relationships. The
validity of the biological information computed based on the GO functional similarity
measure increases at r > 0.8 [215]. GCN has been widely applied to Arabidopsis for the
identification of genes corresponding to cell wall biosynthetic [90], fatty acid chain [217],
photorespiration [218], immune response [219] and other metabolic pathways. In others, a
random threshold correlation value was applied in GCN construction: r = 0.7 in GCN of
biotic and abiotic attack [220,221] and r = 0.83 for leaf development [222].

In weighted GCN, the strength of the interaction is reflected by the score distribution
(0 to 1) [214]. Contrarily, in unweighted GCN, the interaction score is computed by binary
values, whereby 0 represents no correlation, and 1 indicates the presence of correlation [214].
The WGCNA [223] and webCEMiTool [224] are freely available computational resources
available for weighted GCN construction. Others that feature differential GCN construction
include dcanr [225], Ebcoexpress [226], MODA [227], DICER [228], and DiffCoEx [229] and
CoExNet [230] for unweighted GCN. The differential GCN infers the causal regulatory
changes between sample groups of different conditions [87]. For example, the comparative
co-expression of mRNA and lncRNA in Cleistogenes songorica under water-deficient con-
ditions identified differentially expressed mRNAs and lncRNA of common TFs families.
The function of lncRNAs was identified as drought stress regulation via interaction with
miRNAs and protein-coding genes [231].

Recently, another method in GCN, comparative GCN analysis, incorporated gene
homology and co-expressed gene information for functional prediction in different plant
species [148]. Comparative GCN can be executed by predicting conserved interaction
between homolog genes from two or more species. Conserved genes with similar co-
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expression profiles showed significant biological similarities and differences in Arabidopsis
and maize [232]. Obviously, a gene that integrates both the sequence similarity and co-
expression profile information provides a better prediction accuracy than independent
single-information analysis. The integration of homology gene and correlated gene expres-
sion allows useful information on candidate genes to be obtained from the conserved gene
modules. The functional annotation could be drawn relatively from model plants to the
crops of interest [233,234]. There are various web servers and applications available for
co-expression and comparative plant studies; EXPath [134], Plant Network (PlaNet) [136],
RED [144], PhytoNet [145], and CoCoCoNet [147]. These tools combine and compare the
conserved GCN among plant species, ultimately aiding gene function prediction.

4. Predictive Modelling, Artificial Intelligence and Machine Learning Based Methods

The ‘big data’ era in plant sciences offers massive omics-datasets that are extremely
large, noisy and heterogeneous in nature. Gene, protein and metabolite prediction using
phenotypic datasets from various genotypes under adverse environmental conditions
increases the call for scientific approaches that could effectively handle big data with
parallel integration of multi-modality phenomics, metabolomics, genomics, proteomics,
transcriptomics, etc. [235]. In this context, artificial intelligence (AI) and machine learning
(ML) fit perfectly to support the decision-making processes in various plant research areas
while accommodating diverse and fragmented datasets: the prediction of genome regions
favorable for genetic modifications, modelling the genotype–environment interactions,
the dissection of complex plant traits, and the prediction of genome crossover regions.
ML comprises algorithms that learn to perform a required task using a given dataset.
There are two distinctive types of machine learning: (i) supervised learning, where output
prediction is dependent on the input data (training data), and (ii) unsupervised learning,
which identifies patterns in an unlabeled dataset [236]. The most common unsupervised
methods used in plant research include principal component analysis (PCA), clustering
and Autoencoder. The PCA method corrects for data variability by linear transformation of
the variables. The clustering method clusters the data observations based on the similarity
features. The Autoencoder utilizes artificial neural networks to perform reconstruction
using compressed input data to minimize the differences in the original dataset [237,238].
In plant research, the supervised method is much preferred compared to the unsupervised
method; nevertheless, the selection of ML methods is largely influenced by data availability
and the objective of the analysis [239].

5. Conclusions

Viridiplantae is estimated to consist of about several hundred thousand species. With
tremendous advances in sequencing technologies and computational tools, genome se-
quencing and assembly have emerged as important strategies for decoding genetic in-
formation of plant species. Undeniably, plant species with decoded genetic information
are better placed for manipulation and subsequent improvement in breeding programs.
Important crops, primarily food crops such as rice, wheat, sunflower, soybean and many
others, have been the species of interest in high-throughput next-generation sequencing
(NGS) technology. Leading barriers in the success of elucidating the plant genetic landscape
includes the large and inherent complexity of plant genomes attributed by polyploidy,
phenotypic variation and heterozygosity factors observed in repetitive sequences, transpos-
able elements (TE), tandem arrays, and ribosomal gene clusters. To date, only <1000 draft
plant assemblies have been constructed using the NGS platforms. Nevertheless, new meth-
ods are being robustly developed to enhance specificity against the research biological
question. Optimized computational algorithms, computational power and sequencing
technologies are increasingly catered toward answering specific research questions. The
ultimate challenge in gene function prediction involves employing that most appropriate
technological tools feasible to the experimenter. With climate change on the chart of global
issue, food security requires serious attention in the realm of an ever-growing human
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population. Plant breeding is the utmost fundamental strategy in crop yield improvement.
Conventional breeding programs are being replaced by rapid high-throughput breeding
approaches, ultimately to gain better resolution in effective breeding programs. Gene
function prediction and identification is a pre-requisite step that informs the design of
a plant breeding method. Modern biological research provides comprehensive insights
into system-level variation using collated multi-omics tools and integrative system biology
approaches. What is the concerted pool of genes, proteins and metabolites underpinning a
complex trait? The ease of dissecting the research questions posed here becomes much less
with integrative omics analyses which favor high-confidence predictions.
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