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Abstract: Medicago ruthenica, a wild legume forage widely distributed in the Eurasian steppe, demon-
strates high genetic and phenotypic variation. M. ruthenica with a purely yellow flower (YFM),
differing from the general phenotype of M. ruthenica with a purple flower (PFM), was recently discov-
ered. The similar characteristics of YFM with Medicago falcata have led to conflicting opinions on its
taxonomy using traditional morphological methods. The lack of chemotaxonomy information about
M. ruthenica species and the unclear flower coloration mechanisms have hampered their study. Here,
we investigated M. ruthenica using targeted metabolomics based on the chemotaxonomy method
and elaborated the floral coloration mechanisms using transcriptomics. The identified flavonoids
were the same types, but there were different contents in YFM and PFM, especially the contents of
cyanidin-3-O-glucoside (C3G), an anthocyanin that causes the purple-reddish color of flowers. The
over-accumulation of C3G in PFM was 1,770 times more than YFM. Nineteen anthocyanin-related
genes were downregulated in YFM compared with their expression in PFM. Thus, YFM could be
defined as a variety of M. ruthenica rather than a different species. The loss of purple flower coloration
in YFM was attributed to the downregulation of these genes, resulting in reduced C3G accumulation.
The taxonomic characteristics and molecular and physiological characteristics of this species will
contribute to further research on other species with similar external morphologies.

Keywords: Medicago ruthenica; alfalfa; chemotaxonomy; flavonoids; anthocyanins; gene expression

1. Introduction

Germplasms of wild relatives are urgently needed for forage crop breeding and in-
creased agricultural food production [1]. Medicago ruthenica is a cross-pollinated, diploid
(2n = 2x = 16), perennial legume forage crop and a close relative of alfalfa (Medicago
sativa) [2]. This species is widely distributed in the steppes of Eurasia and has unique
physiological mechanisms for responding to environmental stress compared with other
Medicago species [3]. M. ruthenica shows high genetic variation, particularly for stress-
resistant genes, thus providing abundant resources for forage crop resistance breeding [4,5].
An alfalfa cultivar (M. sativa L. cv. Longmu No. 803), which was obtained by the hybridiza-
tion of alfalfa (M. sativa L. zhaodong) and M. ruthenica, has been successfully cultivated
and exhibits better survival than alfalfa in a cold environment and higher yield [6]. There-
fore, the germplasms of wild M. ruthenica should be urgently collected for germplasm
exploitation and breeding.

The program for the collection of germplasm of M. ruthenica species was established
in the 1990s in China [4]. Ample natural germplasm resources are available for this species,
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and phenotypic characteristics vary widely among this germplasm. In the wild, researchers
identified the species and obtained germplasm resources using traditional morphology-
based methods. Generally, the corolla of M. ruthenica is purple-reddish on the outside
and yellow-colored on the inside [2,7]. It is interesting to note that the purely yellow
corolla types were found by Bu Ning in the second year, after seeds collected in the wild
were planted in the field, which is similar to the corolla of Medicago falcata. Bu Ning was
engaged in forage germplasm collection at the Grassland Research Institute of the Chinese
Academy of Agricultural Sciences and collected seeds from the hilly terrain of Shaerqin
Town, Hohhot, Inner Mongolia, in the 1990s. Plants always exhibit similar characteristics,
and the use of morphological taxonomy gives rise to controversial conclusions [7]. It has
also led to discordant opinions that the purely yellow-flowered type should be ascribed
to M. falcata or it may be a new variant of M. ruthenica [8]. The traditional method is not
adequate. However, the lack of chemotaxonomy information in M. ruthenica species and
the unclear flower coloration mechanisms have hampered studies on M. ruthenica.

Therefore, in this study, we utilized chemotaxonomy to analyze the chemical difference
between purple-flowered and purely yellow-flowered phenotypes of M. ruthenica and
elaborated on the floral coloration mechanisms using transcriptomics. We aim to provide
novel information for the discrimination and classification of M. ruthenica species.

2. Results
2.1. Floral Color Phenotypes

During the investigation of M. ruthenica, two distinct petal color phenotypes were
observed: one with a purple-reddish color outside and yellow inside the petals (PFM) and
the other with purely yellow petals (YFM), as shown in Figure 1. The development and
blooming of the flowers take seven days and can be divided into the following stages:
initial floret separation and petals packaged in the calyx; the appearance of petals among
the calyx lobes; petals emerging from the calyx; more than 2 mm of petals appearing from
the calyx but the keel still wrapped by the vexil; and a ready to bloom flower followed by
complete blooming at the final stage (Figure 2). During flowering, the floral colors of PFM
and YFM were stable.
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Figure 1. The phenotype observations of the M. ruthenica species. The flower samples were collected
from PFM (a) and YFM (b) during the flowering phase at the same time of day (11–12 am) and
stored at 4 ◦C to keep them fresh; then, the samples were inspected under a stereomicroscope and
photographed. Flower face (left), side (middle), and bottom (right) images are shown. During the
investigation of M. ruthenica, two distinct flower color phenotypes were observed, with one having
the purple-reddish outside and yellow petal inside (PFM) and the other with the purely yellow
petal (YFM).
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Figure 2. Development observations of M. ruthenica with different floral color phenotypes. The
samples of different flower development stages were collected from PFM (a) and YFM (b) and
stored at 4 ◦C to keep them fresh. The samples were then inspected under a stereomicroscope and
photographed. It takes seven days for the development and blooming of the flower tissue. The
developmental process from the stage of floret includes initial separating and calyx packaging the
petals, the stage of petals appearing among the calyx lobes, the stage of the petals exceeding the calyx,
the stage of the petals exceeding the calyx more than 2 mm but with the vexil still wrapped by the
keel, the stage of the flower ready to bloom, and finally the flower in full bloom, shown from left to
right. The floral colors of PFM and YFM were stable.

2.2. Sample Quality Control and the Discrimination of Samples in the Validation Set

To identify the potential metabolites related to petal color in M. ruthenica species, we
used the UPLC-MS-based targeted metabolomics approach for qualitative and quantitative
analyses of the flavonoids. PCA and OPLS-DA are widely used in metabolomics for multi-
variate statistical analysis. PCA is used to analyze all data, highlighting specific samples,
whereas OPLS-DA is used for sample grouping and focuses on analyzing differences in
grouped samples. Principal component 1 (PC1) and principal component 2 (PC2) explained
96% and 2.3% of the variance, respectively, which separated PFM and YFM (Figure S1a).
The OPLS-DA value indicated the complete separation of PFM and YFM, suggesting a
significant difference in the flavonoid content of PFM and YFM (Figure S1b). Therefore,
PCA and OPLS-DA are accurate and could be used for further screening of differentially
accumulated metabolites (DAMs), particularly flavonoids.

2.3. Composition of Anthocyanins and Flavonoids and Concentrations’ Discrepancy in YFM
and PFM

The flavonoid metabolites were identified using UPLC-MS, the metabolite data acquisi-
tion of samples was performed in both positive and negative ionization modes (Figure 3a),
and 48 DAMs were screened based on PCA and OPLS-DA (Figure 3b). There are two
metabolic phenotypes in PFM and YFM (Figure 3c). Compared with those in PFM,
25 metabolites were downregulated in YFM, including cyanidin-3-O-glucoside (C3G) and
C-glycosylflavones, 14 were upregulated in YFM, and 9 were not significantly different
between YFM and PFM (Figure 3c and Figure S2). These DAMs could be considered
potential chemical markers for distinguishing the germplasms of PFM and YFM.
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Figure 3. Identification of flavonoids in M. ruthenica species. The petal samples of PFM and YFM
were collected during the flowering phase, and a total of three biological samples were taken, each
from three independent plants that were used in the experiment. To determine the total flavonoids,
extraction and targeted metabolite profiling were performed by Ollwe gene Technologies Co., Ltd.
(Nanjing, China). (a,b) Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-
MS) analysis of anthocyanins and flavonoids in flower samples of PYM and YFM. UPLC was
performed by XCIEX AD system (AB Sciex, Framingham, MA, USA), and MS performed by QTrap
6500 (AB Sciex, Framingham, MA, USA), UPLC was used for component separation in samples, MS
was used for signal acquisition and these separated components’ identification. The signals of these
DAMs were acquired and identified in both positive ion mode and negative ion mode (a). Forty-eight
DAMs were screened based on PCA and OPLS-DA (b). In this figure, each peak represents a kind of
anthocyanin or flavonoid. The contents of anthocyanins and flavonoids were calculated using the
area of related peak. (c) Heatmap of differentially accumulated flavonoid metabolites (DAMs) in PFM
and YFM. A heatmap was drawn with TBtools using log2 fold-change values of the concentrations of
these 48 DAMs. Each line presents the color group representing related metabolites, which are listed
on the right. The colors reflect the contents of metabolites, cells with orange-color represent high
accumulation in samples, and the color scale from blue to red represents low to high accumulation in
samples, respectively. PFM−1–3 and YFM−1–3 represent the three biological independent PFM and
YFM samples, respectively. In this study, PFMs served as the control group.

As summarized in Table 1, these forty-eight DAMs included twenty flavonoids, six
dihydroflavonoids, eleven flavonols, four flavanols, three chalcones, three isoflavones,
and one anthocyanin. The types of anthocyanins and flavonoids were identical in YFM
and PFM. C3G was the major anthocyanin in YFM and PFM (Table 1). Interestingly,
C3G accumulation was reduced in YFM. The over-accumulation of the C3G in PFM was
1770 times more than YFM (Table 1), implying changes in the regulation of anthocyanin
synthesis-related genes.
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Table 1. Differentially accumulated flavonoid metabolites in YFM and PFM.

NO. Metabolite Types Polarity Rt
(min)

Related Contents (µmol/g)
p-Value FC

(YFM/PFM)YFM-1 YFM-2 YFM-3 PFM-1 PFM-2 PFM-3

1 Cyanidin-3-O-glucoside anthocyanidins 1 3.36 12.96 11.15 9.77 18,153.86 19,748.49 18,996.23 0.001 0.0006
2 (-)-Epigallocatechin flavanols 1 3.07 0.02 0.00 0.01 0.35 0.39 0.39 0.000 0.0225
3 Genkwanin flavonoids 1 13.64 1.22 0.93 0.85 38.05 41.18 40.75 0.025 0.0250
4 Vitexin flavonoids 1 5.91 4.03 4.05 4.25 134.06 135.03 139.94 0.030 0.0302
5 Homoorientin flavonoids 1 5.03 1.06 1.17 1.20 13.13 12.95 14.06 0.085 0.0854
6 Cianidanol flavanols 1 3.64 0.03 0.01 0.00 0.11 0.13 0.10 0.105 0.1046
7 Isorhamnetin flavonols 1 10.64 18.05 18.21 19.49 122.01 122.26 120.99 0.153 0.1526
8 Orientin flavonoids 1 5.32 0.71 0.49 0.72 3.61 4.51 3.67 0.163 0.1633
9 L-Epicatechin flavanols 1 4.5 0.04 0.02 0.03 0.11 0.19 0.14 0.193 0.1934
10 Isosakuranetin dihydroflavonoids 1 13.52 0.93 0.95 0.94 4.77 4.87 4.93 0.194 0.1938
11 kaempferol flavonols 1 10.37 28.23 28.48 28.37 141.99 144.90 141.06 0.199 0.1988
12 Tectochrysin flavonoids 1 16.86 0.47 0.35 0.38 1.85 2.01 1.92 0.207 0.2068
13 Kaempferitrin flavonols 1 6.1 0.01 0.03 0.04 0.11 0.09 0.09 0.281 0.2807
14 Myricetin flavonoids 1 7.4 2.07 2.54 2.85 8.69 9.46 6.24 0.305 0.3054
15 Quercetin flavonols −1 8.95 44.20 44.90 46.54 134.23 137.88 128.82 0.338 0.3383
16 Baicalein flavonoids −1 8.15 0.68 0.82 0.78 2.06 1.86 1.96 0.388 0.3885
17 Cynaroside flavonoids 1 6.21 339.96 354.97 358.97 748.84 717.89 754.48 0.474 0.4745
18 Tiliroside flavonoids 1 8.83 0.67 0.57 0.69 1.41 1.340 1.26 0.481 0.4809
19 (-)-Epicatechin gallate flavanols −1 6.1 0.30 0.35 0.29 0.59 0.55 0.64 0.528 0.5280
20 Acacetin flavonoids 1 13.39 0.84 0.86 0.90 1.51 1.70 1.65 0.534 0.5340
21 Hesperidin dihydroflavonoids −1 7.24 0.32 0.41 0.38 0.65 0.70 0.60 0.567 0.5669
22 Dihydromyricetin flavonols 1 4.81 3.08 3.34 3.43 5.75 5.62 5.61 0.579 0.5792
23 Hydroxygenkwanin flavonoids 1 12.08 6.75 6.73 6.76 11.52 11.23 11.32 0.594 0.5939
24 Luteolin flavonoids 1 8.9 205.21 206.01 214.63 319.76 319.67 326.94 0.648 0.6476
25 Apigenin-7-glucoside flavonoids 1 7.05 179.48 183.14 186.88 260.15 248.46 261.00 0.708 0.7076
26 Astragalin flavonols 1 6.75 1835.43 1902.50 1880.48 2573.41 2492.87 2579.29 0.735 0.7349
27 Icariin flavonoids 1 9.42 0.09 0.05 0.04 0.06 0.06 0.11 0.753 0.7526
28 Phloretin chalcone 1 10.27 0.35 0.52 0.30 0.56 0.47 0.45 0.789 0.7888
29 Apigenin flavonoids 1 10.13 363.68 357.08 379.27 448.01 456.86 482.19 0.794 0.7931
30 Genistein flavonoids 1 10.13 141.81 143.86 150.57 175.34 178.58 187.64 0.806 0.8055
31 Schaftoside flavonoids 1 4.97 78.80 77.17 83.68 77.88 81.38 83.61 0.987 0.9867
31 Liquiritin dihydroflavonoids 1 6.13 9.60 9.86 9.72 10.07 9.94 9.23 1.00 0.9975
33 Narcissoside flavonoids −1 6.56 2.94 2.74 2.71 2.32 2.27 2.33 1.21 1.2121
34 Taxifolin flavonols 1 6.35 2.17 2.32 2.28 1.73 1.94 1.82 1.24 1.2351
35 Chrysin flavonoids 1 13.34 1.14 0.98 0.98 0.67 0.62 0.66 1.59 1.5868
36 Spinosin flavonoids −1 5.75 17.89 16.45 17.06 10.47 10.40 11.16 1.61 1.6050
37 Eriodictyol dihydroflavonoids 1 8.85 8.68 8.95 9.23 5.49 5.39 5.48 1.64 1.6421
38 Isoquercitrin flavonols 1 6.08 784.94 706.57 695.53 341.99 490.93 419.78 1.75 1.7459
39 Naringenin dihydroflavonoids 1 10.18 100.29 99.78 102.12 55.23 56.57 58.11 1.78 1.7786
40 Naringenin chalcone chalcone 1 10.17 64.49 65.83 65.93 34.79 35.45 37.02 1.83 1.8299
41 Hyperoside flavonols 1 6.07 1286.82 1385.39 1189.61 652.77 740.89 685.34 1.86 1.8575
42 Glycitein isoflavones 1 8.77 20.60 21.39 21.02 10.92 11.21 11.09 1.90 1.8968
43 Biochanin A isoflavones 1 13.93 20.79 20.01 20.95 9.29 9.58 9.71 2.16 2.1608
44 Rutin flavonols 1 5.79 112.67 122.59 107.68 43.37 44.62 55.40 2.39 2.3916
45 Myricitrin flavonols −1 6.07 0.58 0.63 0.64 0.25 0.23 0.25 2.53 2.5284
46 Ononin flavonoids 1 8.3 123.76 124.57 124.68 51.60 47.81 45.40 2.58 2.5759
47 Pinocembrin dihydroflavonoids 1 13.68 1.34 1.19 1.31 0.46 0.45 0.46 2.81 2.8057
48 Isoliquiritigenin chalcone 1 11.34 789.70 788.05 797.03 196.61 197.93 203.57 3.97 3.9705

FC represents the fold-change and the multiple relationship of the substance after the comparison between the two groups. Rt represents retention time. Related contents were calculated
using the area of mass spectrum peaks. Forty-eight differentially accumulated flavonoid metabolites (DAMs) were identified, comprising twenty flavonoids, six dihydroflavonoids,
eleven flavonols, four flavanols, three chalcones, three isoflavones, and one anthocyanin. The signals of these DAMs were acquired and identified in both positive ion mode and negative
ion mode. In column polarity, “1” represents positive ion mode and “−1” represents negative ion mode. The contents of 25 metabolites were lower in YFM than in PFM, especially that
of cyanidin-3-O-glucoside.
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2.4. Identification of 3319 Differentially Expressed Genes (DEGs) Using Transcriptome Sequencing

We used transcriptome sequencing to analyze DEGs in purple-reddish and purely
yellow-colored M. ruthenica flowers to further investigate the molecular basis of the flower
color variation. The total RNAs extracted from the petals of both plants were sequenced,
yielding 42.11 Gb of clean data (Table S1). More than 84.36% of the clean reads were
mapped to the M. ruthenica reference genome [9]. Mean Q20 and Q30 values were ≥98.48%
and ≥95.25%, respectively. The GC content was ≥42.48%, indicating high-quality reads
that could be used for differential gene expression analysis. PCA of PFM and YFM samples
showed that the PC1 contribution was 76.1%, which showed a clear separation of PFM and
YFM (Figure 4a).
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Figure 4. The preliminary statistics analysis (PCA) of RNA-sequencing. (a) PCA was performed on all
RNA-seq samples. Petal samples in the bud phase were collected for transcriptomic analyses. PFM−1–
3 and YFM−1–3 represent the three biological independent PFM and YFM samples, respectively.
Total RNA was extracted from the petal samples using the TRIzol reagent (Invitrogen, Waltham,
MA, USA) following the manufacturer’s instructions. All samples were sent to Biomarker Co., Ltd.
(Beijing, China), and six cDNA libraries (including three replicates) were constructed and sequenced
using the HiSeq 2000 platform (Illumina, San Diego, CA, USA) and the sequencing by synthesis (SBS)
technique. The contributions of principal component 1 (PC1) and principal component 2 (PC2) were
76.1% and 14.3%, respectively. The result of PCA revealed that the six samples could be assigned to
two groups. (b) NR annotation of unigenes of PFM and YFM. In comparison with other species, these
unigenes of PFM and YFM showed the highest similarity with sequences from Medicago truncatula
(85%, 38,515), Trifolium subterraneum (4%, 1936), and Trifolium pratense (4%, 1877).
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Gene function was annotated according to the COG, Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), KOG, Protein family (Pfam), Swiss-Prot (a
manually annotated and reviewed protein sequence database), eggNOG4.5, and National
Center for Biotechnology Information non-redundant protein sequences (NR) databases.
Overall, 11,614 (21.4%), 36,567 (67.2%), 27,888 (51.3%), 20,285 (37.3%), 31,798 (58.5%), 27,429
(50.4%), 1327 (2.4%), and 45,238 (83.2%) unigenes were matched to the data in the COG, GO,
KEGG, KOG, Pfam, Swiss-Prot, eggNOG4.5, and NR databases, respectively (Table S2).

According to NR annotation, the highest homology matched for PFM and YFM was
that for Medicago truncatula (85%) (Figure 4b). According to GO classification, 36,566 uni-
genes were classified into 53 functional terms; 18 terms were categorized in the biological
process, 20 in the cellular component, and 15 in the molecular function (Figure 5a). Among
them, the groups of the metabolic process (16,979) and cellular process (16,952), cell (17,257)
and cell part (17,257), and binding (18,995) and catalytic activity (17,203) were the highest-
ranked categories for the biological process, cellular component, and molecular function,
respectively (Table S3).
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Figure 5. The annotation of PFM and YFM unigenes based on GO (a) and KOG databases (b). (a) GO
annotation. The GO annotation was used to classify the possible functions of the unigenes based on
NR annotation. The X-axis represents the category of the GO function. The Y-axis on the left indicates
the percentage of the total number of unigenes. The Y-axis on the right shows the number of unigenes
common to the corresponding GO function. In total, 36,566 unigenes were classified into 53 functional
terms; the biological process, cellular component, and the molecular function categories include 19,
20, and 15 GO terms, respectively. (b) KOG annotation of unigenes. The X-axis is the categories
of the KOG annotation, capital letters represent related categories and are listed on the right. The
Y-axis on the left indicates the total number of unigenes and the specific unigene numbers are marked
after related categories. For KOG annotation, these unigenes were annotated into 25 categories,
and 1195 unigenes were annotated into the group of “secondary metabolites biosynthesis, transport,
and catabolism”.
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For the annotation of potential gene functions, we divided these unigenes into 25 cate-
gories based on the KOG database, among which 1195 unigenes were annotated into the
group of “secondary metabolites biosynthesis, transport, and catabolism” (Figure 5b). More-
over, 20,285 unigenes were matched to 137 KEGG pathways (Table S4). The most enriched
pathway focused on metabolism, particularly the phenylpropanoid biosynthesis pathway.
Among them, 491, 158, 4, 70, and 126 key genes were predicted to be involved in the
phenylpropanoid, flavonoid, anthocyanin, flavone and flavonols, and isoflavonoid biosyn-
thesis pathways, respectively (Table S4). In total, 3319 DEGs were identified (Table S5).
Among them, 1261 and 1621 genes were upregulated (Table S6) and downregulated when
comparing YFM with PFM, respectively (Table S7). According to the KEGG annotations,
DEGs involved in flavonoid biosynthesis (19 unigenes) and isoflavonoid biosynthesis
(10 unigenes) were downregulated (Figure 6a), and genes involved in flavone and flavonol
biosynthesis (9 unigenes) and isoflavonoid biosynthesis (15 unigenes) were upregulated
(Figure 6b).
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Figure 6. KEGG enrichment analysis of the differentially expressed genes (DEGs). In this study, PFMs
served as the control group. (a) KEGG analysis of downregulated genes from the RNA-seq data. The
Y-axis on the left represents the categories of the KEGG annotation, and the X-axis indicates the
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number of downregulated genes common to the corresponding KEGG annotation. In total, the
number of downregulated genes involved in categories of flavonoid biosynthesis and isoflavonoid
biosynthesis was 19 and 10, respectively. (b) KEGG analysis of upregulated genes from the RNA-
seq data. The Y-axis on the left represents the categories of the KEGG annotation, and the X-axis
indicates the number of upregulated genes that are common to the corresponding KEGG annotation.
The number of upregulated genes involved in categories of flavone and flavonol biosynthesis and
isoflavonoid biosynthesis was 9 and 15, respectively.

2.5. Differential ABP Gene Expression and Their Quantitative Real-Time PCR
(qRT-PCR) Validation

We further explored ABP DEGs to elucidate the floral coloration mechanism in PFM
and YFM. Anthocyanin synthesis was regulated by the following structural genes—CHS,
CHI, F3H, F3′H, DFR, ANS, and UFGT. CHS, CHI, F3H, and F3′H were upstream genes,
and DFR, ANS, and UFGT were downstream genes. A total of 23 DEGs were considered
candidate genes (Table 2). Compared with those in PFM, a total of 19 genes (4 CHS, 2 CHI,
3 F3H, 2 F3′H, 4 DFR, 2 ANS, and 2 UFGT) were downregulated, and 4 UFGT genes were
upregulated in YFM. Thus, different ABPs were inferred in PFM and YFM; a schematic
model to better understand the formation of pale-yellow M. ruthenica flowers is presented
in Figure 7.

Table 2. Selection of key differentially expressed genes of anthocyanin synthesis pathway in
M. ruthenica.

Gene Gene ID
FPKM YFM-

FPKM
(Mean)

FPKM PFM-
FPKM
(Mean)

log2FC Regulation
YFM-1 YFM-2 YFM-3 PFM-1 PFM-2 PFM-3

CHS MruG02985 45.409 41.605 42.382 43.132 96.761 95.369 94.306 95.479 −1.0933 down
CHS MruG02563 8.449 8.315 9.041 8.602 22.411 20.558 21.163 21.377 −1.2513 down
CHS MruG02992 0.907 0.749 0.582 0.746 6.559 4.906 2.970 4.812 −2.3438 down
CHS MruG02987 11.239 7.972 8.767 9.326 262.238 272.324 267.033 267.198 −4.7440 down
CHI MruG008873 1.740 1.866 0.923 1.510 3.450 3.373 3.136 3.320 −1.0093 down
CHI MruG006531 134.095 146.950 156.917 145.988 311.336 298.964 306.483 305.595 −1.0119 down
F3H MruG015074 0.000 0.000 0.000 0.000 2.918 2.166 1.886 2.323 −4.3940 down
F3H MruG016463 2.274 2.341 2.052 2.222 13.713 13.612 14.737 14.021 −2.5314 down
F3H MruG018452 5.761 4.335 7.982 6.026 23.731 25.329 25.807 24.956 −1.9320 down
F3′H MruG012738 3.721 3.505 3.884 3.704 11.608 14.313 8.023 11.315 −1.4392 down
F3′H MruG012740 4.021 2.984 2.926 3.310 11.552 9.667 9.268 10.162 −1.4914 down
DFR MruG000195 0.000 0.000 0.000 0.000 188.822 185.284 185.727 186.611 −10.2740 down
DFR MruG000196 0.318 0.524 0.489 0.444 145.809 143.038 142.730 143.859 −7.9463 down
DFR MruG007181 25.204 25.597 27.086 25.962 52.308 57.399 54.999 54.902 −1.0256 down
DFR MruG036456 2.354 1.770 2.822 2.316 5.361 5.806 5.354 5.507 −1.1270 down
ANS MruG0255511 0.820 0.930 0.960 0.903 1.880 1.850 1.910 1.880 −1.9634 down
ANS MruG026083 0.685 0.169 0.242 0.365 434.075 442.808 436.607 437.830 −7.8978 down

UFGT MruG0252594 1.880 2.400 2.320 2.200 3.620 2.910 2.990 3.173 −2.0093 down
UFGT MruG008629 1.442 1.562 1.856 1.620 4.622 4.555 4.506 4.561 −1.3855 down
UFGT MruG042817 11.856 10.709 10.530 11.032 0.225 0.190 0.240 0.218 5.1867 up
UFGT MruG030584 1.283 1.288 1.260 1.277 0.832 0.446 0.440 0.573 1.0296 up
UFGT MruG008634 6.416 5.818 6.750 6.328 1.782 1.839 1.705 1.775 1.8024 up
UFGT MruG019752 2.039 2.417 3.234 2.563 1.293 0.313 0.794 0.800 1.4574 up

To verify the transcriptome data, the expression levels of these 23 candidate genes
were examined using qRT-PCR (Figure 8); primers used for qRT-PCR are listed in Table S8.
Most of the genes responsible for anthocyanin synthesis were significantly downregulated
in YFM, whereas three UFGT genes showed significantly higher expression levels in YFM
than in PFM, which was consistent with the results of DEG analysis.
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Figure 7. Model representing the anthocyanin synthesis process in the M. ruthenica species. In
this study, PFMs served as the control group. The referred model for a better understanding of
the formation of the pale-yellow M. ruthenica flower was drawn using Adobe Illustrator 2019. ER
represents the endoplasmic reticulum. The crucial candidate gene IDs are indicated at the side
of related enzymes. Blue-colored grids indicate the downregulated genes, and red-colored grids
indicate upregulated genes. The arrow refers to the steps of the anthocyanin biosynthesis pathway
(ABP). CHS, CHI, F3H, and F3′H were upstream genes involved in the ABP. DFR, ANS, and UFGT
were downstream genes involved in the ABP. Briefly, the low expression level of 4 CHS, 2 CHI, 3
F3H, 2 F3′H, 4 DFR, 2 ANS, and 2 UFGT might disrupt the anthocyanin synthesis, leading to the
formation of the pale-yellow petals seen in YFM. UFGT catalyzes the last step of the ABP, the UFGT
enzyme glycolyzed anthocyanidin into anthocyanin by adding sugar moieties, thereby increasing the
hydrophilicity and stability of anthocyanin.
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Figure 8. Expression profiles of 23 candidate genes and qRT-PCR validation with the heatmap.
Heatmaps of differentially expressed genes’ (DEGs) validation in PFM−1 vs. YFM-1, PFM−2 vs.
YFM−2, and PFM−3 vs. YFM−3. In this study, PFMs served as the control group, and EF-1α was
used as the internal reference gene for normalization. Gene expression was calculated using the
2−∆∆CT method. The color grids on the left with red, blue, green, orange, yellow, and brown represent
CHS, CHI, F3H, F3′H, DFR, ANS, and UFGT, respectively. The top grids represent samples of PFM
(green) and YFM (orange), PFM−1–3 and YFM−1–3 represent the three biological independent PFM
and YFM samples, respectively. The gene names and related gene IDs are listed on the right. The
different colors, from blue (low) to red (high), show the expression of the 23 DEGs.

3. Discussion

Botanical taxonomy is the basis for understanding and classifying plants, exploring
plants’ diversity, and utilizing and conserving plant resources. The categorization and
phylogeny of plants relying on traditional external morphological characteristics are known
to be conflicting [10]. DNA molecular markers have successfully assisted in plant classi-
fication [11]. The limitation of this technique is that it can still only partially reveal the
relationship among plant species by gene fragments rather than the complete genome [12].
Therefore, other methods need to be employed.

Notably, the secondary metabolite components are often similar in plants within a
taxonomical unit [13]. This indicates that phytochemistry can be used to provide additional
evidence for plant taxonomy [14]. With the availability of metabolomics, it has been used
generally in Vicia and Siegesbeckiae Herba species for plant species identification [15,16].
Among the wide variety of secondary metabolites, flavonoids, and anthocyanins are poten-
tial chemotaxonomic markers [17]. Flavonoids are natural pigments, and the combinations
of flavonoid compounds differ significantly in plant species, thus being responsible for
the yellow or white color of flowers [12,18]. Anthocyanins originate from an essential
branch of flavonoids’ biosynthesis, and more than 500 anthocyanins can be produced
by modifications such as hydroxylation, glycosylation, or methylation [19,20]. The types
and content of anthocyanins can also result in flower color polymorphisms that cause
variation from pink to red, blue, or purple [21,22]. For example, flowers rich in cyanidin,
pelargonidin, or delphinidin display purple, red, or blue petals, respectively [23]. Thus, in
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this study, we discussed the differences in chemical compounds between purple-flowered
and yellow-flowered phenotypes of M. ruthenica; we provided information for the clas-
sification of M. ruthenica species, and elaborated on the floral coloration mechanisms in
M. ruthenica species.

In total, 48 flavonoid metabolites were identified in M. ruthenica, with no difference
in the types of metabolites between YFM and PFM (Table 1). These flavonoids could be
considered potential chemical markers for discriminating M. ruthenica from other species.
Among the Medicago species, more than 28 flavonoid metabolites in M. truncatula were
different from those in M. ruthenica, including formononetin-7-O-glucoside, liquiritigenin,
and purpurin [24]. A total of 13 flavonoids in alfalfa were different from those found in
M. ruthenica such as malvidin 3-O-glucoside, petunidin 3-O-glucoside, and robinin [25].
Six flavonoid metabolites in M. falcata differed from those in M. ruthenica, particularly
salidroside, laricitrin, and daidzein [26]. These unique-species flavonoid metabolites were
not detected in either YFM and PFM. Hongmei et al. [27] found that the chromosome set
was highly similar in yellow-flowered M. ruthenica and purple-flowered M. ruthenica based
on karyotype analysis, which suggests a close relationship between them. The study of
inter simple sequence repeats also revealed that M. ruthenica with purely yellow flowers
was closely related to M. ruthenica with purple-reddish flowers, rather than M. falcata [5].
Hence, M. ruthenica with purely yellow flowers could be defined as a variety of M. ruthenica.

Among these detected flavonoids, C3G was the major anthocyanin in the M. ruthenica
species. The over-accumulation of the C3G in PFM was 1,770 times more than YFM (Table 1),
which implies changes in the regulation of anthocyanin pathway genes. The relationship
between phenotypic variation, metabolic products, and the regulation of anthocyanin
pathway genes has been described through studies on colorful flowers [28]. Either a
change in gene expression or loss-of-function of the ABP genes could be responsible for the
failure of anthocyanidin accumulation, which further impacts the floral color. Compared
with PFM, anthocyanin biosynthesis in YFM is blocked by low expression levels of most
structural genes, including 4 CHS, 2 CHI, 3 F3H, 2 F3′H, 4 DFR, 2 ANS, and 2 UFGT genes,
which might disrupt anthocyanin accumulation, leading to the loss of the purple color
and the presentation of pale-yellow petals. (Figure 7). Single or multiple ABP genes are
downregulated, resulting in reduced anthocyanin accumulation, which has been found in
lotus (Nelumbo nucifera) with yellow flowers and alfalfa with white flowers [29–31]. Thus,
the loss of purple flower coloration in YFM was attributed to the downregulation of these
genes, resulting in reduced C3G accumulation.

4. Materials and Methods
4.1. Plant Materials

Germplasms of PFM and YFM were provided by China National Forage Germplasm
Bank and planted in the experimental station (with a random plot size) at the Institute of
Grassland Research, China Academy of Agricultural Sciences, in 2016. The floral color of
these two M. ruthenica phenotypes was stable for the entire duration of the study. Petal
samples were collected during the flowering and bud phases for targeted metabolomic and
transcriptomic analyses, respectively. A total of three biological samples, each from three
independent plants, were used in the experiment.

4.2. Metabolite Extraction and Detection

To determine total flavonoids, extraction and targeted metabolite profiling were per-
formed by Ollwe gene Technologies Co., Ltd. (Nanjing, China). Briefly, 100 mg powder
of each freeze-dried petal sample was extracted using 3 mL of 75% methanol (containing
1% acetic acid). After 30 s of vortexing, the mixture was sonicated at 4 ◦C for 30 min
and centrifuged at 10,000× g for 15 min. Finally, the supernatant solution was filtered
(0.22 µm pore size) and used for further analysis by ultra-performance liquid chromatogra-
phy (UPLC). In addition, a quality control sample was prepared by mixing equal aliquots
of the supernatants from all of the samples [32].
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Analysis of flavonoids was conducted by UPLC-MS using an XCIEX AD system (AB
Sciex, Framingham, MA, USA) equipped with an Acuity UPLC BEH C18 column (1.7 µm,
2.1 × 150 mm; Waters Corp., Milford, MA, USA) as previously described by Pang et al. [32].
The solvent gradient was composed of solvent A (1% phosphoric acid), and B (acetonitrile)
run at a flow rate of 300 µL/min. A: 0–0.5 min, 90%; 0.5–15 min, 40%; 15–16.01 min, 2%;
16.01–18 min, 2%; 18–18.01 min, 90%; 18.01–20 min, 90%. B: 0–0.5 min, 10%; 0.5–15 min,
60%; 15–16.01 min, 98%; 16.01–18 min, 98%; 18–18.01 min, 10%; 18.01–20 min, 10%.

The quadrupole time of flight (Q-TOF) profile was assessed in both positive and
negative ion modes, and the parameters of ion source were set as the following: curtain
gas, 35 psi; ion source gas 1, 55 psi; ion source gas 2, 60 psi; temperature, 500 ◦C; ion spray
voltage, +5000/−4500 V.

UPLC-MS data analysis was performed as previously described [33]. The relative
contents were determined from UPLC-MS peak areas obtained using the MarkerLynx 4.1
software [34]. PCA is used for understanding the relationships among the data matrix, and
OPLS-DA is used for calculating the corresponding variable importance in projection values;
they were performed to evaluate differentially expressed metabolites using SIMCA 16.0.2
software (Sartorious, Göttingen, Germany). The annotations of the detected metabolites
were compared with the laboratory database (Novogene, Beijing, China).

4.3. RNA Extraction and Transcriptomic Analysis

Total RNA was extracted from the petal samples using the TRIzol reagent (Invitrogen,
Waltham, MA, USA) following the manufacturer’s instructions. The purity, concentration,
and integrity of the samples were assessed using Nanodrop, Qubit 2.0 (both from Thermo
Fischer Scientific, Waltham, MA, USA) and Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA), respectively, to guarantee the eligibility of the samples for sequencing. All
samples were sent to Biomarker Co., Ltd. (Beijing, China), and six cDNA libraries (including
three replicates) were constructed and sequenced using the HiSeq 2000 platform (Illumina,
San Diego, CA, USA) and the sequencing by synthesis technique.

Transcriptome assembly was accomplished using the Trinity software, and gene func-
tion was annotated based on the NR, Pfam, KOG/COG/eggNOG (Clusters of Orthologous
Groups of proteins), Swiss-Prot, KEGG, and GO databases. Gene expression was esti-
mated by RNA-Seq using expectation–maximization, and DEGs were analyzed using
DESeq2 (https://bioconductor.org/packages/release/bioc/html/DeSeq2.html, accessed
on 30 November 2020).

4.4. qRT-PCR

Total RNA was extracted using the method above. Based on the manufacturer’s
protocol, the first-strand cDNA synthesis was performed using FastKing gDNA Dispelling
RT SuperMix Kit (Tiangen, Beijing, China). The specific primers for qRT-PCR were designed
using Primer 5.0 software (PREMIER Biosoft, San Francisco, CA, USA) and synthesized
by Sangon Biotech Co., Ltd. (Shanghai, China). qRT-PCR analysis with three biological
repeats per sample was performed using the QuantStudio 6 real-time PCR system (Applied
Biosystems, Waltham, MA, USA) with 2×SG Fast qPCR Master Mix (Low Rox) (Sangon
Biotech, Shanghai, China). EF-1α was used as an internal reference gene for normalization.
Gene expression was calculated using the 2−∆∆CT method.

5. Conclusions

We found that YFM is closely related to PFM, and M. ruthenica with purely yellow
flowers could be defined as a variety of M. ruthenica. The loss of purple color in YFM
with pale-yellow petals can be primarily attributed to ABP gene downregulation, leading
to reduced C3G accumulation. The information about flavonoids and floral coloration
mechanism provided in this study could be used to classify M. ruthenica species. Therefore,
studying plants’ taxonomical characteristics combined with their molecular and physiolog-
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ical characteristics will contribute to further research on forage crop species with similar
external morphologies and their breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11182408/s1, Figure S1: The preliminary statistics analysis
(PCA, a) and orthogonal partial least-squares discrimination analysis (OPLS-DA, b) of metabolites.
Figure S2: Volcano plot analysis. Table S1: Statistic Reads of RNA-Seq data. Table S2: Unigenes
functional annotation statistics table. Table S3: Result of GO database. Table S4: KEGG pathway
analysis. Table S5: Differential expressed genes of PFM and YFM. Table S6: Upregulated genes in
YFM vs. PFM. Table S7: Downregulated genes in YFM vs. PFM. Table S8: Specific quantitative
primers for qRT-PCR.
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