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Abstract: The characteristic growth habit, abundant green foliage, and aromatic inflorescences of
cannabis provide the plant with an ideal profile as an ornamental plant. However, due to legal
barriers, the horticulture industry has yet to consider the ornamental relevance of cannabis. To
evaluate its suitability for introduction as a new ornamental species, multifaceted commercial criteria
were analyzed. Results indicate that ornamental cannabis would be of high value as a potted-
plant or in landscaping. However, the readiness timescale for ornamental cannabis completely
depends on its legal status. Then, the potential of cannabis chemotype V, which is nearly devoid of
phytocannabinoids and psychoactive properties, as the foundation for breeding ornamental traits
through mutagenesis, somaclonal variation, and genome editing approaches has been highlighted.
Ultimately, legalization and breeding for ornamental utility offers boundless opportunities related to
economics and executive business branding.
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1. Introduction

Cannabis (Cannabis sativa L.), belonging to the Cannabaceae family, is one of the
world’s oldest domesticated crops. This multi-purpose plant is used for food (e.g., oil,
seeds, herbal tea), raw fiber (e.g., textiles, ropes, building materials), bioenergy, recreation,
and medicine [1] (Figure 1).
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Figure 1. A schematic representation of different pharmacological and industrial applications
of cannabis.
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Additionally, cannabis remains an important part of several traditional cultures and
a feature of ethnological myths [2]. Although there exist several complications when
defining cannabis genetics (i.e., species nomenclature), genetic differentiation between drug
(marijuana)-type (rich in ∆9-tetrahydrocannabinol (THC)) and seed/fiber-type (containing
low levels of THC) remains well-founded [3].

Cannabis is a vigorous and fast-growing crop [4]. Due to its variable growth habit,
abundant green foliage, and distinguishable leaves [4], cannabis can be an attractive orna-
mental plant. The short, strongly branched cultivar “Panorama” was bred and commercial-
ized by Iván Bócsa as a Hungarian ornamental crop in the 1980s [5]. This cannabis strain
remains one of the only ornamental cultivars recognized by horticulturalists. Furthermore,
decorative cannabis bonsai and terrarium products are sold by several retail companies in
some countries such as Canada. However, legal restrictions and difficulties differentiating
this crop from illegal genotypes has limited its utility as a commonly adopted ornamental
plant [5]. Additionally, some in the horticultural industry regard cannabis as a toxicity risk
for small children and domestic pets/animals [6]. This reasoning must be re-assessed, since
other medicinal plants (e.g., Euphorbia pulcherrima, Catharanthus roseus, Digitalis purpurea,
Papaver somniferum, Dieffenbachia seguine, Echinopsis pachanoi, Nerium oleander, Artemisia ab-
sinthium, Rhododendron ponticum) are much more psychotropic and/or toxic, yet are exten-
sively cultivated worldwide as high value ornamental crops [6].

In reality, cannabis is much less toxic than many popular house plants and this nega-
tive stance related to the toxicity of cannabis is largely a result of extensive propaganda
aimed at demonizing the species rather than fact. For instance, handling and consuming
Philodendron or Dieffenbachia, two popular house plants, can lead to allergic reactions due
to their production of calcium oxalate [7,8]. Additionally, accidental exposure to Datura
and Brugmansia as two popular house plants results in 20% of the fatal outcomes, being
the leading cause of death attributed to plant exposures [9]. In contrast, cannabis in its
fresh form has only been reported to cause mild allergic responses due to cannabinoids
and pollen [10]. Moreover, the bulk of cannabinoids present in the fresh plant is in their
acid form and is not psychoactive. Most allergic responses can occur only after the plant is
processed and the compounds convert into their non-acid form [11]. Moreover, the two
main allergens of cannabis include cannabinoids found in leaves and/or inflorescence, and
pollen grains from male flowers [10,11]. These concerns can be overcome by breeding femi-
nized chemotype V cannabis strains with an undetectable amount of phytocannabinoids
(almost zero phytocannabinoids) for producing ornamental cannabis. Since feminized
chemotype V varieties produce almost no phytocannabinoids and zero pollen, the allergic
effects of cannabis can easily be quelled. Given the more recent liberalization of cannabis
regulations around the world, including the ability for individuals to cultivate plants at
home in many regions, there is significant potential to develop ornamental or multi-purpose
cultivars. Moreover, people lacking negative social pre-conceptions toward cannabis do
grow cannabis as featured ornaments.

Breeding new cannabis cultivars with high pharmacological potential has been the
focus of many researchers, due to the ever-growing demand for pharmaceutical and recre-
ational cannabis [12,13]. As a result, numerous cannabis breeding methods have been
devised and refined over the past few years, giving rise to medicinal-grade cultivars
with a variety of chemotypes [14,15]. Ongoing efforts to develop low-THC cultivars with
medicinal and industrial importance provide a solid foundation to develop ornamental
cannabis strains with reduced risk of diversion. Additionally, several morphological mark-
ers (e.g., variegated foliage) represent recognizable characteristics that distinguish protected
cannabis varieties from those unprotected, allowing specific cultivars with valuable orna-
mental characteristics to be identified [16]. Despite the ornamental feasibility of cannabis,
its suitability for the ornamental industry remains largely unrecognized, and studies tend
to focus on botany [17], cultivation [18,19], propagation [20,21], and agricultural [4] aspects
of cannabis.
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Ornamental plants are critical to the beautification of both interior and exterior set-
tings. These scenic atmospheres can prompt emotional responses that increase demand for
certain plants and drive the horticultural industry [22]. Commercial trade of ornamental
plants represents a globally growing component of the horticultural industry that currently
contributes billions of dollars per year and is predicted to increase by 6–9% annually [23].
Based on consumer preference, market potential, and aesthetic significance [24], introduc-
tion of new and exotic alternatives has become the primary means to meet rising demands
for ornamental plants [25]. However, several requirements and criteria must be carefully
considered when assessing the suitability of new ornamental plants before introducing
them to market.

By assessing multifaceted criteria standardized by the industry, this study set out to
evaluate the suitability of cannabis for introduction as an ornamental horticultural specialty
crop through an unbiased lens. Related opportunities and challenges of introducing
such plants to different facets of the ornamental plant sector are then presented and
highlighted. Finally, promising approaches to breeding ornamental traits into cannabis
have been discussed. Ultimately, this work summarizes various ways to develop and
produce novelty cannabis cultivars with marketable ornamental features of high value to
the horticultural industry.

2. Cannabis as a New Ornamental Plant

Introducing a new ornamental crop is a complex process due to the diverse range of
selection criteria that can be applied. Criteria for bedding/garden/landscape plants focus
on growth habit, vegetative and reproductive period, plant height, concomitant survival
rate, and tolerances to biotic and abiotic stress [26]. For potted plants, requirements
for consideration include leaf shape, leaf length, leaf texture and shine, stem rigidity
and appearance, and flower/inflorescence color and size [27]. In the current study, we
aimed to provide an unbiased assessment of cannabis’ ornamental potential by utilizing
the procedure developed by Krigas et al. [28], which accounts for all subsectors of the
ornamental industry (e.g., cut-flowers, pot plants, bedding plants). This evaluation method
contains three levels: (i) potential in the ornamental sectors, (ii) sustainable exploitation
feasibility, and (iii) readiness timescale for new value chain creation (Figure 2a).

At the first level (Figure 2b), a point-scoring approach with twenty sector-specific
markers (frost hardiness, shade tolerance, wild collections, altitudinal range, blooming pe-
riod, compactness, environmental tolerance, height, breeding possibility, botanical holidays,
cut flower eligibility, salt tolerance, impressive flowers, leaf color, plant symmetry, seasonal
phenotypic changes, attractiveness of leaf shape, eligibility as foliage plant, e-trade over the
internet, and shining of leaf texture) was used to evaluate the general ornamental potential
of cannabis based on the available literature [4,29–39]. Then, the relative percentage of the
ornamental potential of cannabis was calculated based on the following equation:

Ornamental potential of cannabis =

(
∑ Score of each attribute

∑ Maximum score of each attribute

)
× 100

Results specify that cannabis has an ornamental potential score of 78.33% compared to
a standard 67.5% score [28]. This indicates a 10.83% higher ornamental potential relative to
the standard for introduction.
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Figure 2. A schematic representation of the methodology for evaluating cannabis to introduce as an
ornamental crop. (a) simplified schematic view of the multifaceted criteria at three levels for assessing
cannabis in the ornamental industry, (b) evaluation of cannabis ornamental potential based on twenty
attributes, (c) evaluation of cannabis sustainable exploitation feasibility based on twelve attributes,
and (d) requirements of the readiness timescale for ornamental cannabis production.
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To evaluate the ornamental potential of cannabis as a potted plant, the following
equation was used:

Suitability as potted plant
= 0.75 × (the score for leaf color
+ the score for plant symmetry
+ the score for the blooming period
+ the score for impressive flowers
+ 0.25× (the score for existing prices in the electronic trade
+ the score for seasonal phenotypic changes
+ the score for compactness of form
+ the score for height
+ the score for the attractiveness of leaf)

Results indicate that cannabis shows a high suitability (77.45%) for consideration as a
potted plant.

Additionally, the following equation was used to assess the suitability of cannabis
for landscaping.

Suitability for landscaping
= 0.75 × (the score for water demand)
+ the score for environmental tolerance
+ the score for altitudinal range
+ the score for frost hardiness
+ the score for seasonal phenotypic changes
+ the score for height + the score for plant symmetry
+ the score for compactness of form
+ the score for blooming period)
+ 0.25 × (the score for existing prices in the electronic trade
+ the score for leaf color
+ the score for the attractiveness of leaf shape
+ the score for impressive flowers

Results exemplify cannabis’ high suitability (87.63%) for landscaping. Due to their
well-documented tolerance to heavy metal stress, industrial hemp can be employed for
phytoremediation in radioactive and contaminated soils [40,41]. This, along with its high
potential for landscape planting, makes ornamental cannabis an ideal and valuable candi-
date for landscapes that surround nuclear, oil, metal, and other related factory lots. Thus,
landscapes in industrial areas can be improved by including ornamental cannabis to reduce
soil contaminants, while providing pleasant aesthetics and distinct aromas.

Based on this assessment, cannabis has great ornamental potential. However, the score
for existing prices in the trade depends on the legal status of cannabis. Hence, legalization
can further increase the value of cannabis as an ornamental crop. An internet search
identified select retail companies that make decorative cannabis available to customers of
specific regions, identifying an existing market for decorative cannabis bonsai and terrarium
products. However, as previously mentioned, legal obstacles associated with cannabis
cultivation continue to present major bottlenecks for all aspects of the cannabis industry [42].
This barrier is difficult to overcome, and would require fundamental restructuring of
regulations on both national and international levels [14]. Thanks to recent advances in
molecular markers and genetic engineering methods (e.g., CRISPR), it is possible to detect
and/or produce cannabis with very low levels of THC [43,44]. Though there could still
be complications differentiating ornamental from medicinal varieties, cannabis cultivars
that produce low cannabinoid levels might help the ornamental industry to overcome legal
barriers and prevent unwanted diversion. Additionally, some other scores (e.g., the score
for impressive flowers) can be enhanced with plant breeding methods, which will later
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be discussed in more detail (see the section “breeding and biotechnological methods for
producing ornamental cannabis”).

Arguably, certain sector-specific markers can only be evaluated subjectively (impres-
sive flowers, cut flower eligibility, attractiveness of leaf shape), whereas others remain de-
pendent on cultivar (seasonal phenotypic changes, leaf colour, blooming period) (Figure 2b).
This has extensive implications when evaluating cannabis using such methods, since there
are many different cultivars of cannabis, each with different phenotypic properties and
growth characteristics. Likewise, while many people may enjoy the aesthetics of cannabis
flowers, others would strongly dislike it, largely due to its history and cultural associations.
To avoid a biased evaluation, we considered only the minimum eligibility scores for these
subjective attributes. Still, results demonstrate high suitability scores overall, regardless of
using minimum eligibility scores, and it is possible that cannabis might have scored higher
based on evaluator preference, or cultivar specificities.

At the second level (Figure 2c), a partial scoring of twelve markers (existing cultiva-
tions, cultivation needs, existing cultivation protocols, water demand, known propagation,
seed germination success, vegetative propagation success, distribution in national regions,
phytogeographic regions, ex-situ conservation in institutions, protection status, threat
category, and commercial products on market) was employed to evaluate the sustainable
exploitation feasibility of cannabis in the ornamental industry [10,30,33,37,45–58].

Using these markers, the relative percentage of the sustainable exploitation feasibility
of cannabis was calculated based on the following equation:

Sustainable exploitation feasibility of cannabis

=

(
∑ Score of each attribute

∑ Maximum score of each attribute

)
× 100

A very high sustainable exploitation feasibility (80.56%) for cannabis in the ornamental
industry was achieved due to the amount of available information related to botany [4],
biology [30], agriculture [42,59], propagation [60], and cultivation [20] of cannabis.

At the third level, general analyses of SWOT (strengths, weaknesses, opportunities,
and threats) and GAP are fundamental prerequisites in determining the readiness timescale
for new value chain creation (Figure 2a). Introducing ornamental cannabis has several
potential economic (e.g., creating jobs, improving the ornamental industry) and environ-
mental benefits. For instance, we previously mentioned several environmental benefits
of introducing cannabis to the landscape industry (e.g., reducing the level of nitrate in
groundwaters, decreasing disease and pests in other plants, absorbing more carbon [42],
improving soil conditions [61], and reclaiming heavy metal contaminated soils). These
benefits outweigh the value of many currently available ornamental landscaping plants
such as Sambucus racemosa, Rhus typhina, Deutzia gracilis, Melianthus major, and Salix integra.

Since numerous attributes at the third level (e.g., estimated exploitation of distribu-
tion channels, estimated difficulty for value chain creation, estimated attraction of new
producers-retailers, possibility to overcome legal restrictions) completely depend on the
legal status of cannabis (Figure 2d), decriminalization is critical before introducing cannabis
into ornamental horticulture industries. Although cannabis remains illegal in many coun-
tries, rescheduling of cannabis by the United Nations [62] has provided the preliminary
framework necessary for associated countries to reconsider their laws and regulations
related to cannabis products. Alternatively, countries that have already legalized cannabis
(e.g., Canada, The Netherlands, Malta, and Uruguay; industrial hemp is cultivated legally
in most European countries, for varieties registered in the European catalog and their THC
levels are <0.2%) could initiate their ornamental cannabis industries in a short time, with
minimal adjustments to policies.
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3. Breeding and Biotechnological Methods for Producing Ornamental Cannabis

Applications of sequencing technologies and molecular genetic markers has resulted
in boundless advances related to cannabis breeding for desirable horticultural characteris-
tics [63]. Various molecular genetic markers have also been employed in the cannabis field
to analyze genetic variations, sex determination, chemotype inheritance, and genetic map-
ping (reviewed by Hesami et al. [30]). For instance, Mandolino and Carboni [44] employed
molecular markers to study chemotype inheritance in cannabis. They discovered a chemo-
type with an undetectable amount of phytocannabinoids (almost zero phytocannabinoids)
and classified it as chemotype V [44]. Johnson and Wallace [64] employed genotyping by
sequencing (GBS) to evaluate chemotype inheritance in cannabis. They also found several
accessions with no detectable phytocannabinoids (chemotype V). Since this chemotype
of cannabis produces virtually no phytocannabinoids, it can overcome some legislation
related to cannabis. Therefore, chemotype V represents an ideal candidate for breeding and
producing ornamental cannabis strains.

High-throughput genotyping approaches (e.g., GBS) have also resulted in the detection
of single nucleotide polymorphism (SNP) markers, and the construction of a genetic
linkage map for cannabis [65]. Such approaches can be useful to identify candidate genes
and favorable SNP alleles for different ornamental cannabis breeding objectives such
as stress resistance- and flowering-related characters [51]. Another advanced approach,
genome-wide association study (GWAS), is useful for understanding complex traits (e.g.,
plant architecture, leaf character, florogenesis, stress resistance) and identifying related
candidate genes [66] for breeding ornamental cannabis. Although project goals can vary
among ornamental breeders, the production of novel cultivars with specialty traits and
high commercialization potential is the most important theme of these cannabis breeding
ventures. The principal economically valuable and commercially important traits for
breeding ornamental cannabis (for both potting and landscaping plants) are presented in
Figure 3.
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Different biotechnological and breeding approaches such as crossing methods, poly-
ploid induction, mutagenesis, in vitro-based breeding methods (e.g., embryo rescue, so-
maclonal variation), and genome engineering can also be employed to produce ornamental
cannabis (Figure 4). There are several exceptional review papers presenting different



Plants 2022, 11, 2383 8 of 15

biotechnological and breeding strategies for cannabis, including crossing [67], domestica-
tion [18], polyploid engineering [68], plant tissue culture [60], and genetic engineering [68].
The methods presented in these review papers can also be used for breeding and pro-
duction of ornamental cannabis. Here, we discuss and highlight select methods such as
mutation breeding, somaclonal variation, and genome editing for producing ornamental
cannabis varieties.
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cannabis.

3.1. Mutation Breeding

Detection and selection of mutants with high commercial value is a common method of
introducing new cultivars to the ornamental industry [69]. Different types of spontaneous
mutations (germline mutations, somatic mutations, and epimutations), either beneficial
or deleterious, occur in cannabis just like in other plants. Adamek et al. [70] showed that
somatic mutations occur with high frequency in cannabis and that these mutations differ in
various parts of individual plants. There are several cannabis genotypes and/or cultivars
with valuable ornamental features that were presumably selected based on spontaneous
mutations (Figure 5). For instance, genotypes with whorled phyllotaxy, containing three
or more leaves at each node, have resulted from spontaneous somatic mutations. In
addition, “Ducksfoot” strains were also derived from spontaneous mutation. This strain is
of high value as a potted plant due to its webbed leaves and beautiful purple inflorescences.
Australian Bastard Cannabis (ABC) is yet another potential mutant for the potted plant
industry, bearing a succulent shrub-like shape that contains shiny, small, smooth, and
non-serrated leaves. The cultivar “Divina”, introduced by Casano [6], is a mutant with
albinism that produces variegated leaves and tissues. This is the only selected mutant
introduced as an ornamental cannabis plant.
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In addition to spontaneous mutations, induced mutation is considered a robust ap-
proach to developing novel cannabis cultivars with valuable ornamental characteristics
(e.g., biotic and abiotic stress tolerance, foliage traits, floral traits, growth habit and pattern,
photoperiodism) for the horticultural industry [71]. To date, over 728 species-specific
ornamental mutant cultivars have been released worldwide [69]. Recent advances in mu-
tagenesis technology (both technical details and ideas) have driven ornamental breeder
focus toward induced mutation techniques for introducing new ornamental varieties. Since
mutagenesis alters only select traits of elite cultivars [72], this technique can be useful
for plants such as cannabis that are asexually propagated. Moreover, the heterozygous
nature of cannabis is an advantage allowing a high frequency of induced mutations. Both
chemical (alkyl group) and physical (gamma rays and heavy ions) mutagens can be applied
to different forms of cannabis, such as in vitro plantlets, floral tissues, leaves, cuttings,
seedlings, and seeds [69]. The dosage and exposure time of mutagens directly influences
the type and frequency of mutations. Therefore, it is necessary to optimize such procedures
to successfully induce mutation [73]. Fuochi et al. [74] employed radiation-based muta-
genesis and produced two low-THC cultivars of cannabis (less than 0.17%) with yellow
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distal leaflets and red petioles. These cannabis cultivars represent exceptional candidates
for introduction to the ornamental industry.

The main challenge with mutagenesis is the formation of chimeras, by which mutations
occur in a single cell, then develop into cell layers that can emerge as a fine strip on a portion
and/or entire organ (e.g., leaf, floret, branch). Isolating chimeric tissue is a critical step in
mutagenesis. Thankfully, advanced plant tissue culture techniques allow the separation and
establishment of chimeric mutant tissue in their pure form (reviewed by Ibrahim et al. [73]
and Datta [69]).

3.2. Somaclonal Variation

Somaclonal variation refers to all forms of in vitro culture-mediated phenotypic vari-
ation, potentially due to spontaneous mutation, chromosome mosaics, or epigenetic ma-
chinery [60]. Somaclonal variations can appear in calli, isolated protoplasts, tissues, and
organs as well as in vitro raised plantlets [20]. It is only on occasion that plant tissue culture
scientists detect somaclonal variations with commercial value and introduce them as new
ornamental cultivars [75]. Since a high frequency of somaclonal variation is required for
practical application, this method cannot be routinely employed for developing novel
cultivars. However, there are several successful examples of somaclonal variants in the
ornamental industry, including the distinct foliar pattern and large canopy of the Dieffen-
bachia plant [76], biotic stress tolerance of carnations [77], and size and number of flowers
per begonia plants [78]. Although there are currently no cannabis cultivars derived by these
means, indirect organogenesis can be considered an alternative method for introducing
new varieties through somaclonal variation [60,79].

3.3. Genome Editing

Functional and structural information of gene regulatory networks are necessary for
developing genome editing-based approaches. Although the whole-genome sequence in
cannabis has been reported, the heterozygosity and complexity of the cannabis genome, cou-
pled with challenges related to plant regeneration, have slowed the development of genome
editing approaches [80]. In fact, reliable and accurate genomic resources are of paramount
importance for designing single guide RNAs (sgRNAs) [81]. We have previously reviewed
online tools containing cannabis genome resources for designing sgRNAs, the strategies to
avoid off-target activities, different methods of gene transformation (e.g., Agrobacterium-,
biolistic-, and virus-mediated delivery), and the application of morphogenic genes in
cannabis elsewhere [68].

Most CRISPR-based methods rely on double-strand breaks (DSBs), which involves
cleaving the double-strand DNA at a target site. With lack of any template, non-homologous
end joining (NHEJ) functions to repair cleavages results in small insertions or deletions
(indels). In the presence of a template, homology-directed repair (HDR) can induce desired
point mutations or indels at target sites [82–85]. In relation to cannabis, Zhang et al. [86]
successfully employed the NHEJ-based CRISPR/Cas9 method to knock out the phytoene
desaturase gene (CsPDS1). DNA sequence encoding and Cas9 were introduced to immature
zygotic cannabis embryos through Agrobacterium-mediated gene transformation, creating
albino plantlets [86]. Such approaches may also be employed to introduce new varieties
of cannabis with valuable ornamental traits. Additionally, there are some new variants
of CRISPR (e.g., CRISPR-mediated prime editor, CRISPR-mediated base editor, CRISPR
interference (CRISPRi), CRISPR activation (CRISPRa), and CRISPR-mediated epigenome
editing) that can be used to produce novel ornamental cannabis varieties.

Knocking out protein-coding genes to improve ornamental traits of cannabis might
be necessary but could prove to be problematic. Removing indispensable genes from the
cannabis genome can lead to pleiotropic and/or lethal effects. Conditional CRISPR/Cas
systems represent the best solution for tackling this obstacle. With the application of differ-
ent tissue-specific promoters, Cas9 expression can be limited to particular cell types [87],
restricting CRISPR-mediated genome engineering to specific tissues or organs (Figure 6).
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Recently, the conditional CRISPR/Cas system was successfully used to determine gene
function in the stomatal lineage and root systems [88]. The methods described can thus be
used to meet important objectives in developing ornamental cannabis lineages, including
generating trichomes that produce only low levels of phytocannabinoids (i.e., specific
organ) and manipulating growth habits or leaf color through genome editing.
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4. Conclusions

Cannabis is a vigorous and fast-growing plant, valued for its aromatic inflorescences,
green leaves, and beautiful leaflets. However, legal barriers and decades of stigmatization
have largely limited its utility as an ornamental plant. Here, we have analyzed multifaceted
commercial criteria at three levels (i.e., potential in ornamental sectors, sustainable exploita-
tion feasibility, and readiness timescale for new value chain creation) as considerations
for introducing cannabis as a new ornamental plant. Results indicate that cannabis has
high ornamental potential as both a potted plant and landscaping plant, with high feasibil-
ity for sustainable exploitation. Furthermore, biochemical, physiological, morphological,
and phenotypic variations among cannabis genotypes, along with tolerance to stressful
conditions, can contribute to sustainable production of ornamental cannabis. However,
the readiness timescale for ornamental cannabis production completely depends on the
decriminalization and social attitude toward this plant in each country of interest. Cannabis
chemotype V, which produces virtually zero phytocannabinoids can be used as the foun-
dation of ornamental cannabis research by overcoming certain legal barriers. Ultimately,
mutagenesis and genome engineering-based approaches can facilitate cannabis’ introduc-
tion to the ornamental sector to further advance both horticultural and cannabis-related
fields. Although the genome editing methods can be considered a promising approach
for producing ornamental cannabis, genetically modified plants cannot be freely sold and
cultivated in Europe, and thus the genome editing procedure described in this study is not
currently possible for Europe.
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