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Abstract: In heterogeneous landscapes with temporary water deficit characteristics in southwestern
China, understanding the electrophysiological and morphological characteristics of Bletilla striata
under different water conditions can help to better evaluate its suitability for planting plants in
specific locations and guide planting and production. Using B. striata seedlings as experimental
materials, the maximum field capacity (FC) was 75–80% (CK: control group), 50–60% FC (LS: light
drought stress), 40–45% FC (MS: moderate drought stress), and 30–35% FC (SS: severe drought stress).
In terms of physiological response, the activities of peroxidase (POD) and catalase (CAT) decreased
under drought conditions, but the activity was well under the LS treatment, and the contents of
proline (Pro) and malondialdehyde (MDA) increased. In terms of morphological responses, under
drought conditions, root lengths of the rhizomes (except the LS treatment) were significantly reduced,
the leaf lengths were reduced, and the biomass was significantly reduced. The stomatal size reached
the maximum under the LS treatment, and the stomatal density gradually decreased with the increase
in drought degree. In terms of electrophysiological responses, drought significantly decreased the
net photosynthetic rate (PN) of B. striata, stomatal conductance (gs), and transpiration rate (Tr), but
effectively increased the water use efficiency (WUE). The effective thickness of leaves of B. striata
increased under drought conditions, and drought promoted the formation of leaf morphological
diversity. Our results showed that drought stress changed the physiological and morphological
characteristics of B. striata, and under light drought conditions had higher physiological activity,
good morphological characteristics, higher cellular metabolic energy and ecological adaptability.
Appropriate drought can promote the improvement of the quality of B. striata, and it can be widely
planted in mildly arid areas.

Keywords: Bletilla striata; drought stress; electrophysiological; morphological characteristics; cell
metabolic energy

1. Introduction

The degree and duration of drought affect the survival and development of plants [1–3],
so the ability of plants to withstand water stress is crucial. With global climate change,
drought has become an important factor for restricting global economic development and
leads to declines in crop yields [4–6]. The response and adaptive characteristics of plants
to the environment in the early stage of growth are important prerequisites for screening
suitable pioneer plant populations and building a robust, stable and complex ecosystem.
Ecological restoration species often choose species with strong drought resistance and
growth ability, and water deficit prevents plants from maintaining normal growth, espe-
cially in the seedling stage of plants [7]. Therefore, those plants that use less water to grow
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are preferentially selected for land reclamation in arid areas. Drought reduces the morpho-
logical and physiological traits, reduces the leaf water potential [7] and saps movement due
to alternation of xylem anatomical features in the plants, increases the content of osmotic
substances in plants [8], affects the plant lactones [2], cell ion state, osmotic pressure [8,9],
and reduces plant photosynthetic rate [5,10].

The mechanism of drought tolerance is very complex and when activated at different
stages of plant development, it involves many physiological and biochemical processes
at the cell, tissue, organ and whole plant level [6,11]. At the morphological level, drought
has the greatest impact on stems and roots. Since roots are the only organ for plants to
obtain water from soil, root length, leaf size and leaf biomass are common morphological
traits related to drought resistance [12]. Under drought conditions, plants usually limit
the number and area of leaves, thereby reducing biomass to maintain the water budget
balance [13]. Biomass and root length are the most intuitive responses of plants to drought
stress [3,14]. Deep and thick roots are conducive to water absorption [15,16], while small
and thick leaves are more conducive to reducing leaf surface temperature [12,17]. In
response to drought, plants evolved antioxidants and secondary metabolites to improve
drought resistance [7]. For example, Pro plays an important role as an effective regulatory
substance in plants, which can prevent cell dehydration and increase the concentration
of cell fluid [18]. In addition, osmoregulation may provide seedlings with an ecological
advantage to maintain plant metabolic activity under suboptimal conditions when roots
have not yet reached deep soil moisture [19]. Drought stress reduces photosynthesis
by reducing the unit leaf area and photosynthetic rate, which is mainly due to stomatal
closure or metabolic disorders. Higher WUE is associated with stomatal conductance and
stomatal opening and closing to reduce transpiration [16]. In this study, we investigated the
medicinal value [20] and ornamental value of orchid Bletilla striata (Thunb. ex A. Murray)
Rchb. f. (Figure 1), which is rich in polysaccharides and has the effects of hemostasis,
swelling, and enhancement of body functions [21], is mainly used as a biomaterial in the
medical field [22], and has a well-developed root system, and is often used for ecological
restoration in the Karst area of Southwest China.
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Figure 1. B. striata application value and research ideas.

Electrophysiological indicators can represent the drought tolerance of plants and
are widely used to detect the drought tolerance of plants [23]. Electrophysiology is an
experimental method for electrical measurement and manipulation of living cells, living
tissues and individuals. The earliest research on plant electrophysiology was made in 1873
by Sanderson, who discovered the transmission of electrical signals in the sensitive hairs of
Dionaea Muscipula [24]. When plants are exposed to environmental or external stimuli, the
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electrical signals generated by plants are a direct response to environmental and external
stimuli [25,26]. The plant defense strategy starts from the plasma membrane of plant cells.
Biotic and abiotic interference induces chemical interactions of volatile organic compounds,
triggering plant signal molecules, and imbalance of ion flux generated by plant plasma
membrane in the sensing area. Such different charge distributions generate changes in the
transmembrane potential [27]. When plants are subjected to water stress [28], the effects
of these stressors on plants can be expressed by the plant electrical signals [29–31]. For
example, leaf water potential [28], photosynthetic characteristics [23] and physiological
capacitance (C) [24] of plants under drought stress were measured to quickly detect the
growth state of plants under drought [5,28]. On the other hand, the energy required
for plant growth and development is called the metabolizable energy of plant cells [32],
which is the main form of energy to sustain life activities [33]. It reflects a series of
assimilation and alienation processes in plants, including hydrogen exchange, assimilation
and utilization of inorganic matter, synthesis and transformation of organic matter and
energy, and all other physiological and biochemical processes in the body [34]. Plant
action potential, physiological capacitance and physiological resistance (R) [24] and other
indicators are important parameters for the study of plant electrophysiology. Using the
Nernst equation, the chemical energy in cells can be expressed in the form of electrical
energy. The changes of electrophysiological indicators reflect the changes in the metabolic
energy of plant leaf cells to a certain extent, and can also reflect the ability of plants to resist
stress under different stress [23,26,28]. Therefore, the electrophysiological characteristics of
plants can be used to judge the adverse reactions of plants under adverse environmental
conditions [25,35,36], which provides another method for the determination of the drought
resistance of plants [37].

Karst habitats are highly heterogeneous, with high porosities of stratified limestone
and low water retention capacities, which cause them to be highly susceptible to drought
and pose a threat to plant growth [38]. In the context of decreasing global water resources,
determining the optimal soil moisture content, and the corresponding status of B. striata
can ensure precise irrigation amounts to maximize water conservation. Therefore, this
study analyzed the response characteristics of B. striata seedlings to different drought
treatments, established the correlation between the electrophysiological signals, plant
physiology and morphological indicators of B. striata, and explored the adaptation strate-
gies of B. striata seedlings to the drought environments. This research will help to more
comprehensively understand their growth characteristics and drought tolerance under
limited soil moisture conditions, thereby helping to establish a stable vegetation ecosystem
in water-scarce environment in Karst areas and provide a reference for the selection of
ecological restoration plants.

2. Results
2.1. B. striata Enzyme Activity Analysis

B. striata POD activity increased under the LS treatment and decreased under the SS
treatment (Figure 2a). Compared with CK, the POD activity of B. striata was highest under
the LS treatment (p < 0.01) and was significantly lower under the MS and SS treatments
(p < 0.01).

Figure 2b shows that the CAT activity of B. striata decreased (p < 0.01) with increasing
drought. Compared with the CK, the LS treatment had the highest activity of B. striata CAT
(p < 0.01), and the CAT activity was lowest under the SS treatment (p < 0.01), which showed
that drought stress decreased the CAT activity.

Drought stress promoted the production of B. striata Pro (p < 0.01). Figure 2c shows
that the B. striata Pro contents exhibited a gradual increase with increasing drought, with
the highest Pro contents occurring in the SS treatment group and the lowest Pro contents
occurring in the CK.
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Figure 2. Effects of drought stress on POD, CAT, Pro, and MDA in B. striata. Peroxidase (a), catalase
(b), proline (c), malondialdehyde (d). CK = control group, LS = light drought stress, MS = moderate
drought stress, and SS = severe drought stress. The bars indicate the standard errors of the means
(± SE). The different lowercase letters indicate significant differences according to LSD test.

Figure 2d shows that the B. striata MDA contents gradually increased (p < 0.05).
Compared with the CK, the LS treatment had a lowest MDA content, but the difference
relative to the CK was nonsignificant (p > 0.05). The SS treatment had a highest MDA
content, and the differences between the CK, LS and MS treatments were significant
(p < 0.05).

2.2. B. striata Root Lengths and Biomass Analysis

Drought stress significantly inhibited the elongation of B. striata root lengths. Com-
pared with the CK, the root lengths of B. striata were elongated under the LS treatment,
but the difference was nonsignificant (p > 0.05), while the root lengths became shorter
under the MS (p < 0.05) and SS treatments (p < 0.01), which were significantly differ-
ent from the CK (Figure 3a). Drought stress significantly inhibited B. striata leaf lengths
(p < 0.05). Compared with the CK, the lengths of B. striata leaves became shorter in the
LS, MS and SS treatments, but with an intensification in drought conditions, the lengths
of leaves exhibited an elongation trend, and the overall performance was in the order of
SS > MS > LS (Figure 3a).
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Figure 3. Effects of drought stress on root length (a), leaf length and biomass (b). The bars indicate
the standard errors of the means (±SE). The different lowercase letters indicate significant differences
according to LSD test.
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Drought stress significantly reduced the biomass of the roots and leaves of B. striata
(p < 0.01). Compared to the CK, the biomass of B. striata significantly decreased under the
LS, MS and SS treatments (p < 0.05) (Figure 3b).

2.3. Analysis of B. striata Photosynthetic Characteristics

Drought affected the photosynthetic characteristics of B. striata to different degrees
(Figure 4). Drought stress significantly affected the PN of B. striata (p < 0.01). The PN under
the LS, MS, and SS treatments were significantly lower than that under the CK, with the
highest rate occurring under the SS treatment and the lowest rate occurring under the MS
treatment (Figure 4a). Drought stress significantly reduced the gs of B. striata (p < 0.05),
while the gs was highest for the LS treatment, but was not significantly different from that
of the CK and was lowest for the SS treatment, which was significantly different from the
CK (Figure 4b). Drought stress significantly reduced the intercellular CO2 concentrations
(Ci) in B. striata (p < 0.01); the Ci in the LS, MS and SS treatment were lower than that in
the CK, while the lowest value was for SS treatment, which differed significantly from
the CK, LS, and MS treatments, and indicated that drought stress began to suppress the
Ci (Figure 4c). The B. striata Tr gradually decreased with increasing drought gradients
(p < 0.05); the B. striata Tr under the LS, MS and SS treatments were significantly lower than
that for the CK, and this result indicated that drought stress caused it to reduce Tr to retain
leaf water (Figure 4d).
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Figure 4. Responses of the photosynthetic parameters of B. striata leaves to drought stress. The bars
indicate the standard errors of the means (± SE). The different lowercase letters indicate significant
differences according to LSD test. PN: Net photosynthetic rate (a); gs: Stomatal conductance (b); Ci:
Intercellular CO2 concentration (c); Tr: Transpiration rate (d); LUE: Light use efficiency (e); WUE:
Water use efficiency (f).

Drought stress significantly reduced the light use efficiency (LUE) of B. striata (p < 0.01).
The LUE under the LS, MS and SS treatment were significantly lower than that of the CK;
the highest LUE was observed for the SS treatment and the lowest was observed for the
MS treatment, which was significantly different from that of the CK (Figure 4e). Drought
stress significantly affected the B. striata WUE (p < 0.05) and when compared to the CK,
both of the WUE under the drought adversity treatments were higher than that under the
CK, while the highest WUE occurred for the SS treatment (Figure 4f).
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2.4. B. striata Physiological Capacitance Model

As the clamping force F increases, the C of the B. striata leaves increases, and the C
changes linearly with the clamping force (Figure 5).
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Figure 5. Variation of C of B. striata leaf with clamping force F.

Origin 2018 was used to dynamically fit the experimental data, obtain the parameters
of x0 and h in the equation C = x0 + hF, obtain the function parameters and equations of
the C of the leaves and the clamping force F, and obtain the statistical data of the equation
fit. The values of R2, n and p are shown in Table 1.

Table 1. The equations and parameters of the model of the leaves C with the clamping force (F).

Treatments x0 h Equation

CK 11.54 6.70 C = 11.54 + 6.70F
R2 = 0.99, p < 0.05, n = 76

LS 3.12 9.80 C = 3.12 + 9.80F
R2 = 0.99, p < 0.05, n = 76

MS 8.06 10.28 C = 8.06 + 10.28F
R2 = 0.99, p < 0.05, n = 76

SS 14.68 12.70 C = 14.68 + 12.70F
R2 = 0.98, p < 0.05, n = 76

2.5. B. striata Physiological Resistance Model

As the clamping force F increases, the R of the B. striata leaves decrease, and the R
decreases exponentially with the change of the clamping force F relationship (Figure 6).
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Using Origin 2018 to dynamically fit the experimental data, the parameters of y0, k1
and b1 in the equation R = y0 + e−b1F are obtained, and the R of the B. striata leaves are
obtained as a function of the clamping force F parameters and equations; at the same time,
the equation-fitting statistics R2, n and p values are obtained (Table 2).

Table 2. The equations and parameters of the model of the leaves R with the clamping force (F).

Treatments y0 k1 b1 Equation

CK 2.39 90.82 1.68 R = 2.39 + 90.82e−1.68F

R2 = 0.99, p < 0.05, n = 76

LS 1.05 7.94 0.34 R = 1.05 + 7.94e−0.34F

R2 = 0.99, p < 0.05, n = 76

MS 1.42 15.94 0.57 R = 1.42 + 15.94e−0.57F

R2 = 0.95, p < 0.05, n = 76

SS 0.97 7.82 0.90 R = 0.97 + 7.82e−0.90F

R2 = 0.99, p < 0.05, n = 76

2.6. B. striata Physiological Impedance (Z) Model

As the clamping force F increases, the Z of the leaf decreases, and the Z decreases
exponentially with the change of the clamping force F (Figure 7).
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Figure 7. The change of B. striata leaf Z with clamping force F.

Origin 2018 was used to dynamically fit the experimental data, and obtain the parame-
ters of p0, k2 and b2 in the equation Z = p0 + e−b2F, and obtain the Z of B. striata leaves as a
function of the clamping force F parameters and equations, and simultaneously obtain the
R2, n and p values that the equations fit the statistical data (Table 3).

Table 3. The equations and parameters of the model of the leaves Z with the clamping force (F).

Treatments p0 k2 b2 Equation

CK 0.91 6.06 0.69 Z = 0.91 + 6.06e−0.69F

R2 = 0.98, p < 0.05, n = 76

LS 0.57 4.34 0.47 Z = 0.57 + 4.34e−0.47F

R2 = 0.99, p < 0.05, n = 76

MS 0.82 3.99 0.64 Z = 0.82 + 3.99e−0.64F

R2 = 0.99, p < 0.05, n = 76

SS 0.50 3.89 0.86 Z = 0.50 + 3.89e−0.86F

R2 = 0.99, p < 0.05, n = 76
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2.7. Cell Metabolic Energy Analysis

Compared with CK, the d of LS, MS and SS treatment increased (Table 4). ∆GR-E,
∆GZ-E, ∆GR, ∆GZ and ∆GB showed a trend of first increasing and then decreasing with the
aggravation of drought. Among them, the ∆GR-E, ∆GZ-E, ∆GR, ∆GZ and ∆GB of LS were
larger than CK, MS and SS treatments (Table 4).

Table 4. d and cell metabolic energy of B. striata leaves under different treatments.

Treatments d/(10−12m) ∆GR-E/(1012Jm−1) ∆GZ-E/(1012Jm−1) ∆GR/(J) ∆GZ/(J) ∆GB/(J)

CK 7.54 2.17 2.75 16.32 20.71 18.52
LS 11.03 5.95 4.32 65.60 47.62 56.61
MS 11.57 4.24 2.47 49.06 28.59 38.83
SS 14.29 2.32 2.39 33.13 34.08 33.61

2.8. B. striata Stomatal Feature Analysis

The B. striata stomatal density of the CK was significantly higher than those of the LS,
MS and SS (Figures 8 and 9), while the stomatal lengths of the CK were smaller than those of
the LS and SS, but the stomatal widths were significantly higher than those of the remaining
treatments. Figure 9(a1,a2) shows that the veins on the back of the B. striata leaves in the
CK were clear, with a dorsal texture distribution of the leaf veins, and the back pattern was
more regular and pentagonal, while the stomata were distributed inversely according to
the leaf veins. The leaf surfaces showed no obvious tomenta, the keratin layer was smooth,
the stomata were not sunken, with a large air hole opening and closing, the stomata were
surrounded by rough and uninterrupted annular or pinnate striate projections, and the
stomatal apparatus projected from the epidermis and exhibited an oval shape.

The veins in the lower abaxial part of the leaves of the B. striata LS treatment were
clear, the dorsal texture was distributed by the leaf veins, the back pattern was irregular
and pentagonal, and the leaf surfaces had no obvious tomenta. The distribution of the
B. striata stomata was more regular in the LS, and the density of the leaf stomata decreased
in the LS treatment compared to the CK group (p < 0.05) (Figures 8 and 9), partial stomatal
closure occurred, and the stomata became narrower and longer but were shorter in width
(Figures 8 and 9). Wrinkling of the epidermal part of the leaf was observed in addition
to a smooth and flat inner source of the arch cover inside the air hole, and the exogenous
stratum corneum bulged into ridged thickening and unsmoothed into feathery interrupted
enclosing stomata (Figure 9(b1,b2)).
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Figure 8. Effect of drought stress on the B. striata stomatal. Stomatal length and stomatal width
(a), stomatal density (b). The bars indicate the standard errors of the means (±SE). The different
lowercase letters indicate significant differences according to LSD test.
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Compared with the CK, the B. striata stomatal density of the MS treatment was
significantly lower (p < 0.01), partial closure of the stomata was present, the stomatal
lengths and widths were significantly shorter, the stomata were sunken with smooth and
flat inner sources of the arch covers inside the air holes, the exogenous cuticle was thickened
and raised into ridges, which were unevenly interrupted by plumes that surrounded the
stomata, and there were increased numbers of pentagonal grain folds (Figure 9(c1,c2)).

In the SS treatment, the pattern on the back of the B. striata leaves was irregularly
diamond-shaped or no longer had a specific shape, and the surface texture of the leaves
gradually disappeared and crumpled significantly. The stomata near the leaf veins all
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showed certain degrees of shrinkage and disappearance, the stomata became narrower
and longer, the stomatal widths were significantly lower than those of the CK, LS and
MS treatment, and the stomatal sagging and closure were significantly higher in the SS
treatment. The stomatal densities were significantly lower than that of the CK, but were
higher than those of the LS and MS treatment; the stomata were closed, the inner arch cover
was smooth and flat on the inner source, and the outer cuticle was thickened and raised
into a ridge and was uneven into a feathery interruption that surrounded the stomata
(Figure 9(d1,d2)).

3. Discussion
3.1. Response of B. striata Enzyme Activities to Drought Stress

Drought stress affects photosynthesis in plants [5,10,16], and this disturbance can
lead to oxidative stress responses and the accumulation of reactive oxygen species (ROS)
in plant cells. ROS is ubiquitous in cells, and its production is limited to chloroplasts,
mitochondria and peroxisomes [39]. One of the initial responses of plants to water deficit is
the formation of ROS [40,41], expressed as membrane peroxidation [42]; among them, H2O2
is an important signalling molecule in ROS and plays a role as a signalling molecule in the
process of plant stress [43]. Plants produce ROS when exposed to the stress conditions, such
as drought stress [44], which forced the plants to produce antioxidants [39,41,44], flavonoids,
and secondary metabolites which play a role in protecting the plant by detoxifying ROS
and protecting the plant from abnormal conditions (i.e., stress) and protein and amino
acid stabilization [7,45]. POD and CAT are important protective enzymes in plants that
can effectively scavenge H2O2 (1O2), (•OH) and (O2

−) radicals to prevent membrane lipid
peroxidation when plants are stressed by the external environment [45,46]. Under drought
stress, the increase in Pro in leaves of B. striata was significant (Figure 2c), which is a general
response of plants to abiotic stress. Pro is a compatible solute that acts as a penetrant
and hydroxyl radical scavenger to protect cells from stress damage [39,43]. In response
to drought, oxidative damage (MDA) increased in the leaves of B. striata, and decreased
under mild drought conditions (Figure 2d). To some extent, the production of MDA can be
used to indicate the resilience of plants [47,48].

3.2. Morphological Characteristics of B. striata under Drought Environments

The water deficit treatment of B. striata revealed decreases in root biomass and leaf
biomass when compared to the CK group (Figure 2), which was similar to a previous study
on Vatairea macrocarpa (Benth.) [49]. In response to drought stress, plants usually limit the
number and areas of leaves, which thus reduces the biomass and water balance at the
expense of yield loss [13]. At the morphological level, drought has the greatest effects on
stems and roots, and since roots are the only organs of plants that obtain water from the
soil, the biomass quantities and root lengths are the most intuitive responses of plants to
drought stress [3], and deep and thick root systems facilitate water uptake [15,16]. Unlike
the results of previous studies [15,16], no elongation trends in root lengths were observed in
this study with the deepening of drought, which may be related to the growth morphology
of B. striata. B. striata roots are stem tubers, and when subjected to drought stress, the
plant water is mainly stored in the stem tubers. To maintain the normal physiological
functions, such as leaf photosynthesis, the water stored in the stem tubers is exported to
the aboveground part of the leaves, so any root length growth is not obvious. However,
these roots can withstand prolonged drought and produce new functional root systems
after rehydration.

3.3. Response of B. striata Photosynthetic Characteristics to Drought Stress

Drought stress affects the ultrastructure of leaves, especially the characteristics of
stomata. Stomatal control is the main physiological mechanism of plant drought resistance,
which protects plants from irreversible damage caused by hydraulic failure and carbon
starvation by regulating photosynthesis and transpiration [7,50], and is closely related to the
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physiological activities of plants such as photosynthesis, transpiration and respiration [16].
Stomatal closure is widely considered to be the main determinant of photosynthesis reduc-
tion under drought conditions [51,52]. Stomatal density and size are related to transpiration
unit leaf area, but the contribution of stomatal morphology varies with environmental
conditions, and smaller stomatal size may be beneficial under some conditions [53]. The
reasons for stomatal opening, closing, and partial opening may alter transpiration rates at
the leaf canopy level. Stomatal width was significantly correlated with Tr (Figure 10), and
the decrease in stomatal width in B. striata may also be the main cause of PN inhibition and
gas exchange limitation [16,54]. In this study, drought stress significantly inhibited B. stri-
ata’s stomatal length, stomatal width and stomatal density (Figures 8a and 9), however,
under SS treatment, the stomatal density was abnormally higher than that of LS and MS
treatment. In the case of smaller stomatal morphology, B. striata benefits from changes in
stomatal morphology by increasing the number of stomata to obtain more CO2 [16], while
reducing transpiration.
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Figure 10. Correlation analysis of various of B. striata indicators. The R program was used for plotting,
and the program packages used were “ggplot2” and “GGally”. The blue colors in the graph indicate
that the correlations are positive, the red colors indicate that the correlations are negative, and “*”
indicates the significance level.

Many internal and external factors can lead to gs adjustment, which Cowan and
Farquhar have previously proposed to ensure that CO2 intake is much greater than evap-
oration [53,55]. This critical process at the plant–environment interface becomes critical
when soil moisture conditions are limited. In the present study, the decrease in gs was one
of the main factors for the decrease in PN. Correlation analysis showed that B. striata gs
was positively correlated with Ci (Figure 10), and under limited Ci conditions, the pho-
tosynthetic carbon metabolism changed, and light reactions led to the accumulation of
photosynthetic electron transport components, a decrease in molecular oxygen, an increase
in ROS, and ROS caused B. striata photosynthetic organ damage [16] and a decrease in the
photosynthetic rate.
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A higher WUE was associated with gs and stomatal opening to reduce transpiration [16,55],
and the correlation analysis showed that the gs values were highly positively correlated
with the Tr (Figure 10). In B. striata, a decrease in gs was associated with a decrease in the Tr
and also with a decrease in water loss. The first choice of plants when coping with drought
is to close the stomata; when the stomata are closed, little CO2 is absorbed, and transpiration
is reduced [55]. In the present study, the B. striata Tr decreased when compared to those of
the CK (Figure 4d), while the gs and WUE values decreased, which was similar to the results
of a previous study on Hibiscus rosa-sinensis under drought stress [56]. The water-deficient
treatment of B. striata exhibited a higher WUE (Figure 4f), which indicated that B. striata,
when facing drought conditions, adjusts the amount of water loss by opening and closing
the stomata and sacrificing CO2 absorption, which thereby increasing the instantaneous
WUE, which also explains the higher WUE (Figure 4f) and the larger numbers of closed
stomata (Figure 9(d1,d2)) under severe drought conditions.

3.4. Response of B. striata Electrophysiology to Drought Stress

The amount of water in plants affects the elasticity vulnerability of plant leaf cells.
When plants are subjected to different degrees of environmental stress, the water status
of cells will change immediately, and the electrical signal of plants will also change [23].
In general, the greater the effective thickness of the plant, the larger the vesicles, the more
mature the leaves, and the stronger the water storage capacity [57]. In the present study,
the effective thickness of the leaves of B. striata increased with the increase in the drought
degree, and the main reason may be that large vesicles were formed to store more water
to cope with drought. Therefore, electrophysiological indicators can reflect the leaf water
status of plants [23,26]. The electrical change in plant photosynthesis is an electrical reac-
tion caused by metabolic changes, showing differences in oxygen production and carbon
dioxide consumption, and potential differences between different parts. Therefore, changes
in electrophysiological indicators can reflect changes in photosynthesis and metabolism
of plants. In this study, the characteristics of electrophysiological parameters changed
significantly. With the increase in drought, the physiological capacitance of B. striata gradu-
ally increased (Figure 5), PN decreased, transpiration decreased, and WUE increased. The
changes in photosynthetic indices reflected the unique relationship between physiological
impedance and photosynthetic index of B. striata; the greater the soil water deficit, the
greater the physiological capacitance, and the lower the gs, Tr and LUE of plants. Under
drought conditions, the reduction in water availability usually results in the limited uptake
of total nutrients by crops, thereby reducing the tissue concentration of plants [16]. The
physiological capacitance and physiological resistance [26,28] are significant differences,
so there are differences in the metabolic energy of plant cells. The process of material and
energy distribution during plant growth and development and the adaptive mechanism
of plants under stress are closely related to the source–sink relationship and plant cell
metabolizable energy is another expression of plant physiological activity. From Table 4, it
can be seen that the highest cellular metabolic energy of B. striata leaves under LS treatment,
leaf cells maintain sufficiently high energy reserves to eliminate ROS, allowing the plant
to adjust its metabolism and generate an appropriate adaptive response [44]. Therefore,
B. striata under light drought conditions has a more flexible source–sink relationship, and
has a strong adaptability to drought conditions. The change characteristics of its cellular
metabolizable energy may be an effective stress marker under environmental constraints.
Such changes in physiology, photosynthetic properties, cellular metabolic energy, and
stomatal characteristics of B. striata allow them to better adapt to a wider range of environ-
mental stresses.

4. Materials and Methods
4.1. Experimental Materials and Experimental Design

The experiments were conducted at the Guizhou Normal University campus (106◦43′08′′ E,
26◦35′31′′ N), with an altitude of 1096 m, average annual temperature of 15.0 ◦C, annual
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sunshine duration of 1252.8 h and average annual relative humidity of 82%; the soil used for
the experiment consisted of yellow loam. B. striata tissue culture seedlings were purchased
from Guizhou Anlong Biotechnology Co., Ltd. (Guizhou, China). The pot planting method
was adopted (pot height 12 cm, pot bottom diameter 8 cm, and pot mouth diameter 15 cm);
the annual B. striata seedlings with consistent growth were selected as the test materials
and were randomly divided into the following four groups, the maximum field capacity
(FC) was 75–80%, 50–60% FC, 40–45% FC, 30–35% FC, which were recorded as control
group (CK), light drought stress (LS), moderate drought stress (MS) and severe drought
stress (SS); each group consisted of 5 pots with 1 plant per pot; each pot was weighed to
maintain the relative soil moisture content within the defined range [52]. This process took
3 weeks. The soil water contents were tested every day to replenish any deficient amounts.

4.2. POD Activity Assay

POD, CAT, Pro, and MDA were measured using UV-Visible spectrophotometers (UV-
Vis Spectrophotometer 6010, Agilent Technologies Shanghai Co.). Measurements of POD
activity was performed according Thongsook [58] and Mou [59], with appropriate adjust-
ments. Catalyzed by peroxidase, H2O2 oxidizes guaiacol to a brown product, which has a
maximum absorbance at 470 nm. B. striata leaves (0.5 g) were ground into a homogenate
in an ice mortar with phosphate buffer, transferred the homogenate into a centrifuge tube
and centrifuged at 8000 r/min for 15 min at 4 ◦C. The supernatant was transferred to a
volumetric flask, the volume fixed at 25 mL and stored at low temperature. The enzyme
solution boiled in hot water was used as a control, and the enzyme reaction system con-
sisted of 3 mL of 0.05 mol/L pH = 7.0 phosphate buffer, 1.0 mL of 0.3% H2O2, 1.0 mL of
0.2% guaiacol and 0.1 mL of enzyme solution. The absorbance was measured at 470 nm,
with A470 in each minute. A change of 0.01 was considered as 1 unit of peroxidase activity.

4.3. CAT Activity Assay

H2O2 has a strong absorption at the wavelength of 240 nm, and the activity of catalase
can be measured by measuring the rate of change of absorbance. First, 0.5 g of leaves
were added to 0.1 mol/L pH = 7.0 phosphate buffer and ground into a homogenate,
centrifuged to take the supernatant, 0.2 mL enzyme solution was added, 1.5 mL pH = 7.8
phosphoric acid, 1 mL distilled water, 0.3 mL 0.1 mol/L H2O2, the absorbance was recorded
at 240 nm. One unit of CAT activity was defined as the amount of enzyme that used 1 µmol
H2O2 min−1 [60].

4.4. Pro Content Assay

Pro was determined by the colorimetric method using hydrated ninhydrin. When
plant samples were extracted with nitro salicylic acid, Pro was free in the salicylic acid
solution, and the solution turned red after heating with acidic ninhydrin. Then the pigment
was transferred with toluene, colorimetry was performed at 520 nm, and then the amount
of Pro was checked from the standard curve [61].

4.5. MDA Content Assay

MDA content was determined by the thiobarbituric acid (TBA) colorimetric method [55].
B. striata leaf samples (0.5 g) were added to 5% trichloroacetic acid (TCA) to grind into a ho-
mogenate, the homogenate was centrifuged at 8000 r/min for 20 min, and the supernatant
was the sample extract. Next, 1 mL of supernatant was placed in a test tube, 2 mL of 0.67%
TBA was added, and the mixture was mixed well and boiled for 30 min in a 100 ◦C water
bath. The liquid was centrifuged at 10,000 r/min, and the supernatant was transferred to a
cuvette, subtract the absorbance at 600 nm from the absorbance at 532 nm [60,62,63].
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4.6. B. striata Biomass and Growth Parameters Assay

The roots length and leaves length of B. striata were measured by tape measure,
accurate to 0.01; the fresh weight of B. striata roots and fresh weight of leaves were measured
by analytical balance, accurate to 0.01.

4.7. B. striata Photosynthetic Parameters Assay

Using the American portable photosynthetic system Li-6400XT (LI-COR Inc., Lincoln,
NE, USA), three pots of each plant of CK, LS, MS, and SS groups of B. striata were selected
for the determination of photosynthetic parameters in October 2019. The PN, gs, Ci, Tr,
WUE and LUE of the B. striata leaves were recorded during the measurements of the
photosynthetic parameters in sunny and well-lit daytime periods at 10:00–11:00 am. The
average atmospheric temperature during the measurement period was 21.19 ◦C, the average
atmospheric CO2 concentration was 283.95 µmol·mol−1, and the average atmospheric
relative humidity was 32.43%.

4.8. Establishment of Electrophysiological Model and Acquisition of Cell Metabolic Energy

Using an LCR tester (model 3532-50, HIOKI, Nagano, Japan), referring to Wu [57], the
physiological capacitance, physiological resistance, and physiological impedance of the
B. striata leaves were measured. The effect of the LCR tester on plants The best measurement
frequency is 3 KHz, and the best measurement voltage is 1.5 V. The specific effective
thickness d (10−12 m) of B. striata leaf was calculated based on C, R, Z, the unit metabolic
energy of plant leaf cell based on R ∆GR-E (J/m), and the unit metabolism of plant leaf cell
based on Z energy ∆GZ-E (J/m), plant leaf cell metabolic energy ∆GR (10−12 J) based on
R, plant leaf cell metabolic energy ∆GZ (10−12 J) based on R, and plant leaf cell metabolic
energy ∆GB (10−12 J).

4.9. Physiological Capacitance

The cytosol in the plant has a cellular vesicle solute, and the vesicle solute in the plant
will change accordingly when it is stressed by adversity, while the cellular solute in the
plant leaves is used as a dielectric, and the conductivity of the vesicle solute can be well
judged according to the plant adversity [26,37,57]. The C of plant leaves is obtained by
increasing the clamping force by stacking iron blocks, and the change in clamping force
leads to a change in cytosolic solute concentration in leaves and a change in cytosolic solute
conductivity of B. striata leaf tissue [26,57].

By the gravimetric equation:

F = (M + m)g (1)

where F is the clamping force, N; M is the mass of the iron block, m is the mass of the plastic
rod and electrode sheet, kg; and g is the acceleration of gravity of 9.8, N/kg.

The Gibbs free energy equation is expressed as ∆G = ∆H + PV, the energy equation
of a capacitor W = 1

2 U2C, and the equation of the plant cell subjected to pressure P = F
S .

W is the energy of the capacitor, which is equal to the work transformed by the Gibbs
free energy ∆G, W = ∆G; ∆H is the internal energy of the leaf system, P is the pressure
on the leaf cells of B. striata, V is the volume of the leaf cells of B. striata, U is the voltage
parameter of the test setup, and C is the physiological capacitance of B. striata. Where the
pressure equation F is the clamping force and S is the effective area under the action of the
pole plate, so the C of the plant leaves varies with the clamping force F model as

C =
2∆H
U2 +

2V
SU2 F (2)

Let x0 = 2∆H
U2 , h = 2d

U2 , and Equation (2) can be deformed as

C = x0 + Hf (3)
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4.10. Physiological Resistance

When external drought stress occurs, plant leaf water decreases, affecting changes in
cytosol water thus leading to changes in ion concentration inside and outside the plant leaf,
affecting the transmission of resistive current ions. The relationship between the physiolog-
ical resistance of plant cells and drought conditions in leaves was derived from the Nernst
equation based on the difference between internal and external ion concentrations [57].

The expression of the Nernst equation is given by

E− E0 =
R0T

nRF0
ln

Ci

Co
(4)

The internal energy of the electric potential E can be converted into work performed
by pressure, which is proportional to PV, PV = a E, i.e.,

PV = Ae = a E0 +
a R0T
nRF0

ln
Ci

Co
(5)

where P is the pressure on the plant cell, a is the electric potential conversion energy
coefficient, V is the plant cell volume; and P is the pressure on the plant body cell, P = F

S ,
where F is the clamping force and S is the effective area under the action of the pole plate.

Thus, (5) can become

V
S

F = a E0 − a R0T
nRF0

ln
CTR− f0

f0
(6)

Further deformation, we can obtain:

R =
f0

CT
+

f0

CT
e

nRF0E0

R0T e(−
VnRF0
Sa R0T F) (7)

In Equation (8), R is the physiological resistance, and since d = V
S , Equation (8) can be

deformed as follows:

R =
f0

CT
+

f0

CT
e

nRF0E0

R0T e(−
d nRF0
a R0T F) (8)

In Equation (8), d, a, E0, R0, T, nR, F0, CT, and f0 are fixed values, let y0 = f0
CT

,

k1 = f0
CT

e
nRF0E0

R0T , b1 = d nRF0
a R0T , thus, the Equation (8) can be deformed as

R =y0 + k1 e−b1F (9)

In Equation (9), y0, k1 and b1 are the parameters of the model. Therefore, the metabolic
energy per unit of plant leaf cell based on physiological resistance ∆GR-E = a E0

d =
ln k1−ln y0

b1
.

Metabolic energy of plant leaf cell based on physiological resistance ∆GR = ∆GR-Ed.

4.11. Physiological Impedance

The magnitude of impedance in the same plant depends on the concentration of
cytosolic solute in response to the physiological impedance electrolyte, and when the plant
is subjected to external environmental changes, the ensuing changes in cellular electrolytes
lead to changes in physiological impedance inside and outside the membrane, obeying the
Nernst equation [57].

Expression of the Nernst equation.

E− E0 =
R0T

nZF0
ln

Qi
Qo

(10)
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The internal energy of the electric potential E can be converted into work performed
by pressure, which is proportional to PV, PV = a E, i.e.,

PV = aE = a E0 +
a R0T
nZF0

ln
Qi
Qo

(11)

Where P is the pressure on the plant cell, a is the electric potential conversion energy
coefficient, V is the plant cell volume; the pressure P on the plant cell can be found by the
pressure formula, where F is the clamping force and S is the effective area under the action
of the pole plate.

Therefore, (11) can become

V
S

F = a E0 − a R0T
nZF0

ln
QZ− J0

J0
(12)

Further deformation, we can obtain:

Z =
J0
Q

+
J0
Q

e
nZF0E0

R0T e(−
VnZF0
Sa R0T F) (13)

In Formula (14), Z is the physiological impedance. Since d = V
S , Formula (13) can be

transformed into:

+
J0
Q

e
nZF0E0

R0T e(−
d nZF0
a R0T F) (14)

where d, a, E0, R0, T, nZ, F0, Q, J0 are all fixed values, let p0 = J0
Q , k2 = J0

Q e
nZF0E0

R0T , b2 = d nZF0
a R0T ,

thus Equation (14) can be deformed as

Z = p0 + k2 e−b2F (15)

where p0, k2 and b2 are the parameters of the model. Therefore, the metabolic energy
per unit of plant leaf cell based on physiological impedance ∆GZ-E = a E0

d =
ln k2−ln p0

b2
.

Metabolic energy of plant leaf cells based on physiological impedance ∆GZ = ∆GZ-Ed. ∆GB
is the average of ∆GR and ∆GZ.

4.12. B. striata Stomatal Scanning

The drought-treated B. striata leaves were removed, the upper and lower epidermal
dust on the leaves was wiped off with skimmed cotton, a blade was used 3/1 from the
main leaf veins to take sample sizes of approximately 3 mm × 3 mm size from the leaves,
double-sided adhesive was fixed in the sample table, and a JFC-1600 sputtering instrument
was sprayed with platinum. The samples were placed on a scanning electron microscope
(KYKY-1000B, Shimadzu, Kyoto, Japan), and the cellular structure characteristics of the
B. striata leaves were observed at ×1000 magnification. The B. striata leaf structures were
photographed by a digital microscope imaging system and were calibrated by the digital
ranging software, Motic Images Advanced 3.0. The stomatal density was measured by
taking digital photos of visual fields in different directions at ×100 magnification. The
number of stomata in each visual field was counted (four visual fields were averaged), and
the area of the visual field was obtained, so stomatal density (mm2) = stomata number/S.
Where visual field area: The length and width of the scanning image of the electron
microscope are 22.8 cm and 16.5 cm, and the length of the 100 µm ruler is 1.7 cm. The actual
length of the field of view is 22.8/1.7 × 100 µm = 1341.18 µm, and the actual width of the
field of view is 16.5/1.7 × 100 µm = 970.59 µm. Visual field area =1341.18 µm × 970.59 µm
= 1,301,735.90 µm2 = 1.30 mm2.



Plants 2022, 11, 2313 17 of 20

4.13. Statistical Analysis

Data were processed with MS-Excel® 2016 (Microsoft Inc., Redmond, WA, USA) and
SPSS 23 (SPSS Inc., Chicago, IL, USA) software. One-way analysis of variance (ANOVA) and
the least significant difference test (LSD) were used for significance testing (p < 0.05). The
data are shown as the means± SE. Graphs were prepared using Origin 2018 (Northampton,
MA, USA). The R program was used for plotting, and the program packages used were
“ggplot2” and “GGally”, The detailed code is as follows:

install.packages(“ggplot2”)
install.packages(“GGally”)
library(ggplot2)
library(GGally)
ppo<-read.csv(choose.files(),header = TRUE,row.names = 1)
ggpairs(iris,columns=1:4,aes(color=Species),upper=list(continuous=wrap(‘cor’,size=3)),

lower = list(continuous=‘smooth’))iris
install.packages(“corrplot”)
library(corrplot)
ppo<-read.csv(choose.files(),header = TRUE,row.names = 1)
M<-cor(ppo)
res1<-cor.mtest(M,conf.level=.95)
res2<-cor.mtest(M,conf.level=.99)
p.mat=res1$p
corrplot(M,order=‘hclust’,type=‘upper’,tl.pos=‘d’,p.mat=res1$p,sig.level=c(0.001,0.01,

0.05),insig = ‘label_sig’,pch.cex=1,tl.srt = 0,tl.cex = 0.5,cl.cex = 1)
corrplot(M,add=TRUE,type=‘lower’,method=‘number’,order=‘hclust’,diag=FALSE,tl.

pos=‘n’,number.cex = 0.58)

5. Conclusions

For Karst areas with seasonal water shortages, the reasonable selection of cultivated
species is beneficial to regional plant restoration and economic cost savings. Under drought
stress conditions, the physiological characteristics and morphology of B. striata changed
significantly, showing low PN, gs, Tr, LUE and high WUE. In B. striata, the morphological
adaptation mode was small and thick leaves and long roots, and the water utilization
strategy was to increase stomatal length, decrease stomatal density and increase cell metab-
olized energy under light drought conditions. B. striata under mild drought showed more
obvious morphological and physiological avoidance and adaptation to arid environments.
It is generally believed that plants grow well in an environment adapted to soil moisture.
However, in this study, severe drought and a humid environment were not conducive to the
growth of B. striata, and proper drying (i.e., LS treatment) can promote the improvement
of its quality. There was a significant correlation between the electrophysiological indexes
and photosynthetic indexes of B. striata, which could jointly characterize the response of
the growth and development of B. striata to soil water, but the correlation between the elec-
trophysiological indexes and photosynthetic indexes was not obvious. In the general trend,
the growth index and electrophysiological index of B. striata were consistent. Therefore,
plant electrophysiological information can be used as another means to judge the state
of plant soil water deficit. These findings will be beneficial to the selection of cultivated
species in arid areas and the rapid monitoring of plant drought.
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60. Güneş, A.; Kordali, Ş.; Turan, M.; Bozhüyük, A.U. Determination of antioxidant enzyme activity and phenolic contents of some
species of the Asteraceae family from medicanal plants. Ind. Crops Prod. 2019, 137, 208–213. [CrossRef]

61. Ábrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. Plant Stress Toler. 2010,
639, 317–331.

62. Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches
ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [CrossRef]

63. Heath, R.L.; Packer, L. Photoperoxidation in isolated. Chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch.
Biochem. Biophys. 1968, 125, 189–198. [CrossRef]

http://doi.org/10.1111/nph.16525
http://www.ncbi.nlm.nih.gov/pubmed/32150759
http://doi.org/10.1016/j.envexpbot.2020.104111
http://doi.org/10.1007/s11099-005-5140-2
http://doi.org/10.1021/jf0481610
http://doi.org/10.1016/j.ecoenv.2010.10.040
http://www.ncbi.nlm.nih.gov/pubmed/21075449
http://doi.org/10.1016/j.indcrop.2019.05.042
http://doi.org/10.1104/pp.010497
http://doi.org/10.1016/0003-9861(68)90654-1

	Introduction 
	Results 
	B. striata Enzyme Activity Analysis 
	B. striata Root Lengths and Biomass Analysis 
	Analysis of B. striata Photosynthetic Characteristics 
	B. striata Physiological Capacitance Model 
	B. striata Physiological Resistance Model 
	B. striata Physiological Impedance (Z) Model 
	Cell Metabolic Energy Analysis 
	B. striata Stomatal Feature Analysis 

	Discussion 
	Response of B. striata Enzyme Activities to Drought Stress 
	Morphological Characteristics of B. striata under Drought Environments 
	Response of B. striata Photosynthetic Characteristics to Drought Stress 
	Response of B. striata Electrophysiology to Drought Stress 

	Materials and Methods 
	Experimental Materials and Experimental Design 
	POD Activity Assay 
	CAT Activity Assay 
	Pro Content Assay 
	MDA Content Assay 
	B. striata Biomass and Growth Parameters Assay 
	B. striata Photosynthetic Parameters Assay 
	Establishment of Electrophysiological Model and Acquisition of Cell Metabolic Energy 
	Physiological Capacitance 
	Physiological Resistance 
	Physiological Impedance 
	B. striata Stomatal Scanning 
	Statistical Analysis 

	Conclusions 
	References

