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Abstract: Brassica rapa is one of the most important leafy vegetables worldwide, and has a long
history of cultivation. However, it has not been possible to completely control the damage of
turnip mosaic virus (TuMV), a serious virus in B. rapa, to production. In this study, the genome-
wide identification and expression detection of elF family genes from B. rapa in response to TuMV
resistance were analyzed, including the identification of elF family genes, chromosomal distribution,
three-dimensional (3D) structure and sequence logo analyses, and the expression characterization
as well as differential metabolite analysis of elF family genes in resistant/susceptible lines, which
may further prove the whole-genome tripling (WGT) event in B. rapa evolution and provide evidence
for the functional redundancy and functional loss of multicopy elF genes in evolution. A qRT-PCR
analysis revealed that the relative expressions of elF genes in a susceptible line (80461) were higher
than those in a resistant line (80124), which may prove that, when TuMV infects host plants, the
elF genes can combine with the virus mRNA 5’ end cap structure and promote the initiation of
virus mRNA translation in the susceptible B. rapa line. In addition, the metabolite substances were
detected, the differences in metabolites between disease-resistant and disease-susceptible plants
were mainly manifested by altered compounds such as flavonoids, jasmonic acid, salicylic acid,
ketones, esters, etc., which inferred that the different metabolite regulations of elF family genes and
reveal the resistance mechanisms of elF genes against TuMV in brassica crops. This study may lay a
new theoretical foundation for revealing eIF family gene resistance to TuMV in B. rapa, as well as
advancing our understanding of virus-host interactions.
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1. Introduction

In plants, the cap-binding protein elF4E can interact with elF4G to form the elF4F
complex, which can recognize the mRNA 5’ end cap structure and promote the initiation
of mRNA translation [1]. elF4G, the multi-subunit elF3, and the 40S ribosomal subunit
can form an initiation ternary complex, the 43S initiation complex, which facilitates the
formation of the elF4F complex. In all eukaryotic organisms, the eI[F4E amino acids are
highly conserved, which can interact with the mRNA 5’ cap structure [2]. What is similar is
that elF4G, which can interact with elF4E, only recognizes a conserved YXXXXL® motif,
and the elF4F complex (eIF4G/elF4E) forms to initiate the initiation of mRNA translation
in plants [3,4]. Besides elF4G, the eIlF4E protein can combine different elF proteins, namely
4E-BP1, p20, 4E-T, PGL-1, etc., which could present various functions, including mRNA
transport from the nucleus to the cytoplasm, mRNA turnover, the initiation of mRNA
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translation, and mRNA translational repression [5]. In addition to plants, multiple elF4E
genes can be identified in many organisms, including fish, flies, birds, mammals, frogs,
and nematodes [2,6]. Additionally, many eIF4E genes cannot interact with eIF4G and other
proteins, which would provide evidence for the functional redundancy and functional loss
of multi-copy elF genes. Many studies have found that there is at least one eIlF4E gene for
the initiation of mRNA translation, and that other elF genes could be responsible for abiotic
stress, cell development, antiviral defense, e[FAE/iso4E promotes translation termination
by binding to VPg protein and enhances elF4E/iso4E binding to virus in vitro [7,8].

In plants, there are multi-copy elF4E genes and isomers; elF4E and its isomers are
divided into three classes, which are based on the conservation of Tre43 and Tre56 in
the amino acid sequences [2,9]. All of the three classes of eI[F4E genes have different
functions, including mRNA 5’ cap-binding, interaction with eIF4G or other proteins, and
the regulation of the expression of various tissues, which may all provide evidence for the
initiation of translation regulation [10]. As mentioned above, eIF4E can interact with eIF4G
to form the elF4F complex, and in plants, in a similar manner to eIF4E, elF4G also has
isomers, which have multi-copies to interact with e[F4E and elF(iso)4E to form elF4F and
elF(iso)4F complexes. The functions of several different elF genes have been reported in
different plant species (Table 1). With the further understanding of elF family genes, more
and more elF genes will be discovered to be resistant to various viruses in plants.

Table 1. The functions of elF genes have been reported in different plant species.

Plant Species Genes Effect References
Arabidopsis thaliana elF4E Resistance to C1YVV [11]
Arabidopsis thaliana elF(iso)4E Resistance to TuMV /LMV [12,13]
Arabidopsis thaliana elF4G Resistance to CMV/TCV [14]

Brassica rapa elF(iso)4E Resistance to PPV /TuMV [15-17]
Capsicum spp. elF(iso)4E Resistance to PVMV/ChiVMV [18]
Capsicum spp. elF4E Resistance to PVY/TEV /PepMoV [19-21]

Citrullus lanatus elF4E Resistance to ZYMV [22]
Hordeum vulgare elFAE Resistance to BaMMV /BaYMV [23]
Lactuca sativa elFAE Resistance to LMY [24]
Oryza sativa elFAG Resistance to RTSV [25]
Phaseolus vulgaris elF4E Resistance to BCMV/C1YVV [26]
Pisum sativum elFAE Resistance to PsBMV/BYMV/C1YVV [27]
Prunus armeniaca elFAE Resistance to PPV [28]
Prunus domestica elF(iso)4E Resistance to PPV [29]
Ryza spp. elF(is0)4G Resistance to RYMV [30-32]
Solanum habrochaites elFAE Resistance to PVY/TEV [33]
. Interact with the tobacco etch virus (TEV)
Wheat elF4G and elF(is0)4G 5/ cap; initiate TEV RNA translation [34]
Wheat elFAG Resistance to TEV [34]

In brassica crops, many genes that demonstrate resistance to TuMV have been mapped,
such as TuRBO01 [35], TuRBO02 [35], TuRBO03 [36], TuRB04 [37], TuRBO05 [38], ConTRO1 [17],
retr01 [17], retr02 [39], retr03 [40], the elF(iso)4E gene has been shown to be strongly linked
to the brassica recessive resistance genes retr01, retr02, and trs [15,17,39]. The recessive gene
retr(2 was identified as an elF(iso)4E gene, which is resistant to a TuMV C4 isolate in B.
rapa [15,39], and because of a natural mutation in retr02, resulting in elF(iso)4E mis-splicing
and losing functionality, retr02 showed broad-spectrum resistance to TuMV in B. rapa.
In addition, there are many elF(iso)4E copies, which may enable function redundancy,
resulting in various resistances in B. rapa [16]. The yeast two-hybrid technique (Y2H) was
used to identify some key amino acids in the elF(iso)4E protein during interaction between
elF(iso)4E and TuMV VPg [15]. Furthermore, in our previous studies, three elF(is0)4E
copies and five elF4E copies were identified in B. rapa, and through yeast two-hybrid
technique (Y2H) as well as bimolecular fluorescent complimentary (BiFC) assays, it was
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observed that all of the eIF4E copies could not interact with TuMV VPg, but that elF(iso)4E
could [41,42]. Further research showed that some SNPs played an important role in the
interaction between TuMV VPg and elF(iso)4E copies, such as the SNPs A154C/Ts5,C
in TuMV VPg and the SNP Tjp4C in elF(iso)4E.c [41,42]. In addition to the refr01 and
retr02 genes, the retr03 gene was cloned in brassica crops, and the retr03 gene was the
eukaryotic translation initiation factor 2B-beta (eIF2Bg), which could encode the eIF2B
protein interacting with GTP-binding proteins to form the eIF2-GTP complex in the process
of the initiation of translation [40]. More and more elF family genes have participated in the
TuMV resistance group in B. rapa; however, the genome-wide identification and expression
analysis of the elF supergene family from B. rapa in response to TuMV resistance have not
been proceeded with.

In this study, the genome-wide identification and expression detection of the elF
gene family from B. rapa in response to TuMYV resistance were analyzed, including the
identification of elF family genes, chromosomal distribution, the identification of physic-
ochemical properties, phylogenetic analysis, evolutionary analysis, conserved analysis,
and the expression characterization of elF family genes in resistant/susceptible lines. The
aim of the study is to select the elF family genes with special domains, which may be
associated with TuMV resistance in Brassica rapa. This study may provide a new theoretical
foundation for revealing elF family gene resistance to TuMYV in B. rapa, as well as advancing
our understanding of virus-host interactions.

2. Results
2.1. Identification of elF Family Genes in B. rapa and Arabidopsis thaliana

Twenty-three and sixty-three elF family genes were identified from A. thaliana and B.
rapa, respectively. The detailed names and corresponding relationships of A. thaliana and B.
rapa genes mentioned below are shown in Table S1. Including five elF genes in A. thaliana,
each elF gene only has one homologous gene in B. rapa, these are AT5G57870, AT5G06000,
AT3G13920, AT3G60240 and AT4G33250. However, other elF genes in A. thaliana could
correspond to two or more elF gene copies in B. rapa. Five elF genes in A. thaliana are homolo-
gous to two elF genes in B. rapa, these are AT4G01290, AT2G39990, AT4G33250, AT1G13020,
and AT1G29550. Twelve elF genes in A. thaliana are homologous to three elF genes in B.
rapa, these are AT5G35620, AT2G24050, AT5G20920, AT5G27640, AT3G56150, AT3G57290,
AT3G11400, AT3G19760, AT3G26400, AT4G18040, AT1G76810, and AT3G55620, which
may verify the triple process in the B. rapa genome from the A. thaliana genome. In partic-
ular, the AT1G54270 gene in A. thaliana is homologous to eight elF genes in B. rapa, and
these are BraA01g037700.3C, BraA03g015000.3C, BraA03g036200.3C, BraA05g016480.3C,
BraA05g033110.3C, BraA06g000760.3C, BraA08g001040.3C, and BraA08g001050.3C, which
are the members of eukaryotic initiation factor 4A, and function in nucleic acid binding
and ATP binding. Next, the AT4G11420 gene in A. thaliana is homologous to five elF
genes in B. rapa, and these are BraA(02g028410.3C, BraA02g028420.3C, BraA03g027600.3C,
BraA03g050990.3C, and BraA09g027030.3C, which could encode a subunit of eukaryotic
initiation factor 3 and be required for the binding of mRNA to 40S ribosomal subunits.

2.2. Phylogenetic Analysis of eIF Family Genes Sequences

To study the evolutionary relationships of elF family genes, a total of 23 and 63 elF
protein sequences from A. thaliana and B. rapa were used to construct a phylogenetic tree
(Figure 1). As the protein sequences of nine genes of B. rapa are too short and not highly
conservative, they are not reflected in the figure. Combined with 23 elF family genes in
Arabidopsis, 54 elF genes were mainly divided into six categories, namely, class I (elFiso
family genes), class II (eIF2 family genes), class III (elF3 family genes), class IV (elF4 family
genes), class V (elF5 family genes), and class VI (elF6 family genes), the details can be
found in Table S1. Class IV (elF4 family genes) was the largest group, which included
24 genes (12 elF4A, 5 elF4B, 5 elF4E, 1 elF4K, and 1 elF4G), and it was followed closely by
class III, which included 21 elF3 genes (5 elF3A, 3 elF3B, 3 elF3C, 3 elF3E, 2 elF3F, 4 elF3G,
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and 1 eIF3K). Class I was the elFiso family genes, which included seven genes, and class
II/V/VIhad the same and the fewest genes, containing three genes each.
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Figure 1. Phylogenetic analysis of 23 and 63 elF family protein sequences from A. thaliana and B. rapa.
Orange represents CBE genes, red represents class I (elFiso family genes), yellow represents class
II (eIF2 family genes), blue represents class III (eIF3 family genes), green represents class IV (elF4
family genes), light grey represents class V (elF5 family genes), pink represents class VI (elF6 family
genes), and grey represents A. thaliana.

2.3. Chromosomal Distribution of eIF Family Genes in B. rapa

A total of 63 elF family genes were identified in B. rapa, and the elF family genes were
renamed according to their homology with A. thaliana genes from high to low (Table S1).
The position of each gene on the chromosome is shown in Figure 2. There was only one
gene (elF4E.d) located on A07, and only two genes located on A06 (e[F4A2.f and elF4B1.a)
and A10 (elF2B.c and elF3G2) (Figure 2). On A04 and AQ5, there were six elF genes
each, and on AQ1, A02, and A0S, there were seven elF genes each (Figure 2). There were
13 elF genes on A03, and these were elF6A.a, e]lF4A2.b, elF3F.a, elF3A.c, CBE1.a, elF3G1.b,
elF4A2.c, eIF4A-IILb, eIF4E.b, elF3A.d, elF(is0)4G2.c, elF5B.c, and elF3B.a, which may be
inferred to include more functions in A03. Next, there were 12 elF genes located on A09. In
addition, the functions of some elF family genes have been verified, and the chromosomal
distribution of the elF family genes was consistent with previous studies [17,39].

2.4. Identification of the Physicochemical Properties of eIF Family Genes

A comparative genomic analysis showed that B. rapa and A. thaliana diverged from
each other approximately 96 to 16 million years ago, that a whole-genome tripling (WGT)
event occurred between 5.4 and 9 million years ago in B. rapa, and that there were three
similar copes of genes with high-density distinct sub-genomes (MF1, MF2, and LF) [43]. In
this study, there were 63 elF family genes identified in B. rapa, including 25 genes located in
the LF sub-genome, 24 genes located in the MF1 sub-genome, and 14 genes located in the
MF2 sub-genome (Table S1). As we mentioned above, from 23 elF genes in Arabidopsis,
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12 of them are homologous to three elF gene copies in B. rapa. Due to the WGT event, it
was pondered whether the three elF gene copies could be distributed on the MF1, ME2,
and LF sub-genomes. In fact, they were not. There were only four elF genes (AT5G35620,
AT3G11400, AT3G19760, and AT4G18040) in A. thaliana that corresponded to three gene
copies in B. rapa that were located on the MF1, MF2, and LF sub-genomes. Additionally,
the corresponding three genes in B. rapa from the other eight elF genes in A. thaliana were
located on the LF/MF1 or LF/MF2 sub-genomes, at least one gene of the three copy genes
was located on the LF sub-genome, which may imply that the LF sub-genome played an
important role in the B. rapa genome. In addition, the 63 elF family genes’ sequences were
analyzed, and the cDNA sequences of the 63 elF family genes were 219-3897 bp, while
the protein sequences were 72-1298 aa. The large differences in the lengths of the protein
sequences may suggest that the elF family genes have different functions.
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Figure 2. Chromosomal distribution of 63 elF family genes from A01 to A10 of Brassica rapa.

2.5. Evolutionary Analysis of eIF Family Genes in B. rapa

The elF family genes were further verified as going through genome tripling during
B. rapa evolution based on whole-genome tripling (WGT), and to verify this hypothesis,
the TBtools software was used to analyze the collinearity of sub-genomes in B. rapa. The
results showed that the homologous gene pairs of elF family genes were in the collinearity
analysis section among different sub-genomes (Supplementary Figure S1). These results
provide strong evidence for the hypothesis that elF family genes were obtained through
whole-genome tripling (WGT). In addition, the collinearity of the elF family genes between
A. thaliana and B. rapa genomes was also analyzed, and the results show that all of the
63 elF family genes in B. rapa could match the homologous genes in A. thaliana through
WGT during evolution (Figure 3). During the evolutionary selection pressure, there are
many multi-copy genes and functional redundancy genes in B. rapa, most elF family genes
were strongly purified and selected, and only a few genes differentiated and produced new
biological functions.
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Arabidopsis thaliana

Figure 3. The collinearity analysis of elF family genes between B. rapa and A. thaliana. A01 to A10
represent 10 chromosomes in B. rapa, Chr1l to Chr5 represent 5 chromosomes in A. thaliana.

2.6. Conserved Analysis of the Gene Sequences and Gene Structures

To understand the structural diversity and structural characteristics of the 63 elF family
genes in B. rapa, a motif analysis of the 63 eIF amino acid sequences was carried out by the
MEME program. A total of 11 motifs were identified in the elF genes, and the numbers and
types of motifs in the elF family genes were significantly different between groups, which
indicated that the amino acid sequences and gene structures of the elF family were not
conserved and had functional differences. Only one elF gene (BraA09g046880.3C) contained
four motifs, and two elF genes (BraA04g001980.3C and BraA02g016220.3C) contained three
motifs. Most of the other elF genes contained two motifs (Figure 4). In addition, to
better study gene expression and transcriptional regulation, the cis-acting elements in the
63 elF family genes’ promoter regions were analyzed by TBtools (Figure 4 and Table S3).
Among the identified cis-acting elements, mainly stress- and hormone-related cis-acting
elements were analyzed, and 203 were related to hormones, including gibberellin (GA),
auxin (IAA), and abscisic acid (ABA). The light response elements (150) were the most
common type, accounting for 30% of all of the identified cis-acting elements. A total of
498 cis-acting elements were related to stress, such as anaerobic conditions, drought, and
low temperatures. Among these elements, the numbers of defense- and antioxidant-related
reaction elements were higher. The results of these cis-acting elements suggested that elF
family genes may play an important role in hormone regulation and stress responses in B.
rapa. In addition to the motifs and cis-acting elements analysis, the exons and introns of elF
family genes were analyzed and identified by TBtools (Figure 4). The number of exons of
BraA09g046880.3C was the highest, containing 15 exons. A total of 12 elF genes had 10 to
14 exons, 16 elF genes had 6 to 9 exons, and 34 elF genes had less than or equal to 5 exons.
There were significant differences in the number of exons among different elF family genes,
and the genes were not relatively conserved in B. rapa.

2.7. Three-Dimensional (3D) Structure and Sequence Logo Analyses of eIF Proteins

For confirming the functions of the protein structures, three-dimensional (3D) struc-
tural models of the elF proteins were constructed, which were very different (Figure 5). The
structure of the elF(iso)4E protein is highly similar to that of the eIF4E protein, including
eight B-strands, three a-helices, and three extended loops, which could form an inwardly
depressed hydrophobic core structure that could be combined with the mRNA cap struc-
ture, playing an important role in resistance to TuMV in B. rapa [41,42]. The structure of
the eIF3B protein contains RNA recognition motif (RRM), which consists of four strands
and two helices arranged in an alpha/beta sandwich, with a third helix present during
RNA binding [44]. The structure of the eIF6A protein also plays a role in the initiation
of translation, acting as the translational GTPase that catalyzes the joining of the 40S and
60S subunits to form the 80S initiation complex with the initiator methionine-tRNA in the
P-site base-paired to the start codon. Additionally, GTP binding and hydrolysis induce
conformational changes in the enzyme that render it active for productive interactions with
the ribosome [45]. The planform of the elF5B protein structure is similar to a pentagon,
which is endowed with special functions. The elF5B protein may participate in various
redox reactions, through the reversible oxidation of its active center dithiol to disulfide,
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and catalyzes dithiol-disulfide exchange reactions [46]. The structure of the eIF4A protein
looks similar to a dumbbell, which encodes an ATP-dependent RNA helicase. The ATP-
dependent RNA helicase is a subunit of the elF4F complex involved in cap recognition, and
is required for mRNA binding to the ribosome. In the current model of the initiation of
translation, e[F4A unwinds RNA secondary structures in the 5-UTR of mRNAs, which
is necessary to allow for the efficient binding of the small ribosomal subunit in addition
to subsequent scanning for the initiator codon [47]. Furthermore, in addition to the elF
proteins above, the structures of other elF proteins also show various three-dimensional
(38D) structures and functional characteristics (Supplementary Figure S2).
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Figure 4. Conserved analysis of the 63 elF family genes, including clustering analysis, amino
acid sequences motif analysis, promoter cis-acting elements analysis, and the evaluation of exons
and introns.
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Figure 5. Three-dimensional (3D) structure analyses of the elF(iso0)4E, eIF3B, eIF6A, elF4E, elF5B, and
elF4A proteins of B. rapa. The white arrowheads of elF(iso)4E and eIF4E were previously predicted to
be key sites affecting TUMYV resistance.

Besides the three-dimensional (3D) structures, the sequence logos of the elF family
proteins were also analyzed (Figure 6). When the eIF3A.d sequence acted as the query, and
the 184 to 243 amino acids of the elF3A protein were analyzed, which encoded a conserved
[3-strand, it was found that the 11 sites, including 191/192/195, did not have obvious amino
acid biases. When the elF(is0)4G1 sequence acted as the query, and the 218 to 277 amino
acids of the elF(is0)4G protein were analyzed, which encoded a conserved «-helic, it was
found that the 12 sites, including 219/223/233, did not have obvious amino acid biases.
When the elF4E.e sequence acted as the query, and the 181 to 240 amino acids of the elF4E
protein were analyzed, which encoded a conserved extended loop, it was found that the
187/224 /225 sites had obvious amino acid biases, while the 191 /226 sites did not. When the
elF4A2.b sequence acted as the query, and the 238 to 297 amino acids of the el[F4A2 protein
were analyzed, which encoded a conserved x-helix, it was found that the 262/264/275/279
sites had obvious amino acid biases. From the 3D structure analysis, it can be seen that the
structure of the elF(iso)4E protein is highly similar to that of the elF4E protein; therefore,
the sequence logo of elF(iso)4E combined with eIlF4E was analyzed. When the elF(iso)4E.a
sequence acted as the query, and the 134 to 193 amino acids of the elF(iso)4E—eIF4E proteins
were analyzed, which encoded a conserved hydrophobic core structure, it was found
that the 176 site has an obvious amino acid bias, while the 149/168 sites did not. In the
co-evolution process of elF genes, some amino acids were selected to turn into key amino
acids for functions, and other amino acids were not selected to have amino acid biases.
Analyzing the elF family protein sequence logos would be helpful in screening the key
amino acids for functions.



90f19

Plants 2022, 11, 2248

elFF3A

[ [ em— L
— —
o X
e
L&z —( 057
lese P —
(W 7 -
< oz — e
DT -
17 B 0ET
— -« = S
RBsoz R ———]
Fa .
e — g
[ -t S—rez
09z D (Oezz
65T Jieze
= -
ese [
C s —i2
« “5ssz ————— I
(rse ———
L Nesz (Lo
[ - _=5si
L |15z D ————————_
% o os oz
_ LA_6t2 = badz4
S oz o e 1z
o LT S -— 012
H vz q/s0z
= W
O Tovz —
— )90z
zve ASMNM
|ove ——0z
«__psez P 202
Jecz —0Z
Jeeg B ——L
— =1 e
—GET —_— 861
— el
|eez LLIQ9s:
«__peee COsse
-I--nu SE[Cver
0£Z €61
= W e
82z 118
EE — e
p— VLM“"
-_— 52z ———
"hﬁqmm e = 7i:D
czz e
Lz L
122 — L
— W<
o1z [ c— L

elF4A2

elF(is0)4E-eIF4E

Figure 6. The sequence logo analyses of the elF3A, elF(is0)4G, eIF4E, elF4A2, and elF(iso)4E-eIF4E

proteins of B. rapa.

2.8. Expression Characterization of elF Family Genes in Resistant/Susceptible Brassica rapa Lines

To study the biological functions of elF family genes, transcriptome analysis was
performed to detect different expressions in the resistant (80124CK), inoculated-resistant

(80124), susceptible (80461CK), and inoculated-susceptible (80461) Brassica rapa lines. Be-

tween 80124CK and 80124, some different expression genes were screened (Supplementary

Figure S3A). Compared with 80124CK, the BraA02g011990.3C gene was a little upregulated

in 80124, and the BraA05g033110.3C gene was downregulated in 80124. The expres-

sion of the four genes (BraA01g037700.3C, BraA05g016480.3C, BraA05g033110.3C, and

BraA04g003350.3C) was much higher than that of the other 59 genes in 80124CK and

80124. However, between 80461CK and 80461, there were many different obvious ex-

pression genes (Supplementary Figure S3B). Compared with 80461CK, BraA05g033110.3C,

BraA04g003350.3C, BraA08g009170.3C, BraA02g016220.3C, BraA09g046880.3C, and
BraA02g011990.3C were upregulated in 80461, while BraA02g009210.3C, BraA03g034780.3C,
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BraA03g029890.3C, BraA(09g046440.3C, and BraA05g016480.3C were downregulated in
80461 (Supplementary Figure S3B). The numbers of different expression genes were even
greater between 80124CK and 80461CK (Figure 7). Compared with 80124CK, BraA01g037700.3C,
BraA05g033110.3C, BraA09g046440.3C, BraA03g029890.3C, BraA01g004720.3C, BraA03g034780.3C,
and BraA04g004430.3C were upregulated in 80461CK, while BraA08g012700.3C, BraA04g003350.3C,
and BraA01g009620.3C were downregulated in 80461CK. Compared with 80124, there are
more different expression genes in 80461 (Figure 8). The expression of BraA02g011990.3C,
BraA05g033110.3C, BraA01g004720.3C, BraA08g009170.3C, BraA02g016220.3C, and BraA09g046880.3C
was upregulated in 80461, while BraA01g037700.3C, BraA04g03350.3C, BraA05g016480.3C,
BraA08g012700.3C, BraA10g019750.3C, and BraA01g009620.3C were downregulated in
80461 (Figure 8). After inoculating TuMYV, the expression of many genes changed greatly,
which may verify the notion that some elF genes were the target genes of the TuMV effector
for interaction with and resistance to TuMV in B. rapa.
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Figure 7. Expression characterization of the 63 elF family genes between the resistant (80124CK) and
susceptible (80461CK) B. rapa lines through transcriptome analysis.
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(80124) and inoculated-susceptible (80461) B. rapa lines through transcriptome analysis.

Figure 8. Expression characterization of the 63 elF family genes between the inoculated-resistant
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2.9. gqRT-PCR Analyses of elF Family Genes in Resistant/Susceptible B. rapa Lines

For a better understanding of the elF genes’ functions for resistance against TuMV, the
relative expressions of the elF(iso)4E/elF(is0)4G/elF4A /elFAE genes were detected in the
resistant (80124CK), inoculated-resistant (80124), susceptible (80461CK), and inoculated—
susceptible (80461) Brassica rapa lines (Figure 9). Compared with 80124CK, the expressions
of the elF genes saw little change or a slight decrease in 80124; in particular, the expression
of el[F4A2.e was undetectable in 80124, which may be a negative regulation gene for
TuMV (Figure 9A). Additionally, compared with 80461CK, the expressions of the elF genes
were slightly increased in 80461 (Figure 9B); in particular, the expression of elF4E.d was
undetectable in 80461, but it was very high in 80461CK, which may infer that TuMV
could be a repressor against elF4E.d expression in 80461 (Figure 9B). The expressions of
elF(iso)4E.a/elF(iso)4E.b/elF4E.b/elF4E.e were very low or even undetectable, and in a
previous study, elF(iso)4E.b and eIF4E.b were proven to be pseudogenes [12]. Furthermore,
the expression of el[F4A2.f was high in 80124CK, but it was undetectable in 80461CK, from
which it may be speculated that the eI[F4A2.f gene is an important gene for resistance
against TuMV. On the contrary, the expression of el[F4E.d was high in 80461CK, but it was
undetectable in 80124CK, which may suggest that the elF4E.d gene interacts with TuMV
and promotes the survival of TuMV in host plants. In addition, the relative expressions of
elF genes in 80461 and 80461CK were higher than those in 80124 and 80124CK, which may
prove that, when TuMV infects host plants, the elF genes can recognize the virus mRNA 5’
end cap structure and promote the initiation of virus mRNA translation in the susceptible
B. rapa lines.
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Figure 9. gRT-PCR analyses of elF family genes in the resistant (80124CK) and inoculated—resistant
(80124) (A), as well as the susceptible (80461CK) and inoculated—susceptible (80461) (B), Brassica rapa lines.
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2.10. Differential Metabolites Analysis between the Susceptible and Resistant B. rapa Lines

For a better understanding of the functions of elF family genes, metabolite sub-
stances were detected in the resistant (80124CK), inoculated-resistant (80124), suscep-
tible (80461CK), and inoculated—susceptible (80461) B. rapa lines. There was only one
metabolite (2,2’-Ethylidenebis(5-methylfuran), C1,H140;) downregulated between 80124
and 80124CK, and there were 24 differential metabolites between 80461 and 80461CK,
including four upregulated metabolites and 20 downregulated metabolites (Table 2). It
is worth noting that there are many volatile organic compounds (VOCs), such as butane
dioic acid, allyl isothiocyanate, thiocyanic acid, etc., which are involved in the interactions
among host plants (elF genes), TuMV, and aphids. However, it was not clear which elF
gene could mediate the specific metabolites in B. rapa. In addition, there were 22 and
13 differential metabolites between 80124 and 80461 as well as 80124CK and 80461CK,
respectively, including seven and four upregulated metabolites as well as fifteen and nine
downregulated metabolites, respectively (Table S4). The metabolite substances were dif-
ferent between inoculated and non-inoculated B. rapa lines, indicating that there were
significant differences in gene expression and metabolism. It is worthwhile to further
explore the different metabolite regulations of elF family genes and reveal the resistance
mechanisms of elF genes against TuMV in brassica crops.

Table 2. The differential metabolites between the susceptible (80461CK) and inoculated—susceptible
(80461) B. rapa lines.

Index Compound Formula Class Fold Change Log,FC Type
KMWO0583 Trans-beta-Ionone C13HO Terpene 0.4449 —1.1685 Down
KMWO0504 Benzene, 1-ethenyl-4-methoxy CoH19O Aromatic 2.5819 1.3685 Up
KMWO0499 4-Methylthiazole C4H;5NS Heterocyclic 0.0067 ~7.2183 Down

compound
KMWO0186 Octanal CsH;0 Aldehyde 29778 1.5743 Up
KMWO0361 Benzaldehyde, 4-ethyl CoHy00 Aldehyde 0.4638 —1.1086 Down
KMWO0110 Allyl Isothiocyanate C4Hs5NS Ester 0.0000 —16.8360 Down
KMWO0152 Butane, 1-isothiocyanato CsHygNS Ester 0.0329 —4.9257 Down
QWMO0007 Butane dioic acid, diethyl ester CgH1404 Ester 0.0373 —4.7433 Down
WMW0081 Cis-2-(2-Pentenyl) furan CyH,0 Heterocyclic 04219 ~1.2452 Down
compound
XMW0133 &-Methyb6 (>-methylfuran-2-y) C13HyO, Ketone 0.4896 ~1.0303 Down
eptan-2-one
XMWO0048 Phenol, 2-nitro- Ce¢Hs5NO;3 Phenol 7.2955 2.8670 Up
XMWO0376 10-Methyltricyclo [4.3.1.1(2,5)] CioHaO Alcohol 0.4898 ~1.0297 Down
undecan-10-ol
1,3-Cyclopentadiene, ) B
XMWO0460 5 5-dimethyl.1.2-Dipropyl Ci3Hy Olefin 0.2946 1.7634 Down
Bicyclo-2-ene-2-carboxaldehyde,
NMW0073 e Z;‘fdh;fth;’fa eyae CyoH10 Terpene 0.4031 ~1.3107 Down
NMWO0135 Thiocyanic acid, phenylmethyl ester CsH7NS Sulfide 0.3163 —1.6605 Down
D27 Benzene, (2-isothiocyanatoethyl) CoHyNS Sulfide 0.0043 —7.8497 Down

D218 Cyclohexanecarboxylic acid C;H 20, Acid 0.0614 —4.0261 Down
XMWO0811 Phenethyl isocyanate CoHgNO Ester 0.2005 —2.3183 Down
XMWO0812 Benzene, (1-methyl-1-propylpentyl) Ci5Hoy Aromatic 0.3611 —1.4697 Down
XMW1102 Vinyl trans-cinnamate C11H100; Ester 2.1582 1.1099 Up
XMW1245 (+)-2-Carene, 2-isopropenyl C13Hyg Olefin 0.4683 —1.0946 Down
XMW1459 Thiophene, 2-butyl-5-ethyl CioHieS Heterocyclic 0.4348 ~1.2017 Down

compound
5'-Hydroxy-2',3' 4'-
XMW1481 trimethylacetophenone C11H1402 Ketone 0.3290 —1.6037 Down

D378 1-Butene, 4-isothiocyanato CsH7NS Sulfide 0.0012 —9.6749 Down

Notes: Index, the metabolites’ IDs. Compounds, the metabolite substances’ names. Formula, the molecular
formulae of the metabolite substances. Class, the categories of the metabolite substances. Fold Change, the
changed folds of the metabolite substances between the susceptible (80461CK) and inoculated-susceptible (80461)
B. rapa lines. LogoFC, the logarithms of the changed folds. Type, up- or downregulation of the metabolite
substances between the susceptible (80461CK) and inoculated—susceptible (80461) B. rapa lines.

3. Discussion
3.1. Evolution of elF Family Genes

elF family genes included many genes in brassica crops, such as 63 genes in B. rapa, 122
genes in B. napus, 69 genes in B. oleracea, and 132 genes in B. juncea, identified in the BRAD
(http://39.100.233.196 /#/ accessed on 1 December 2021). Previous studies have shown that
the elF4E and elF4G genes could be available from sequenced Viridiplantae genomes, and
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proven that the elF(iso)4E gene first appeared in flowering plants; however, the elF(is0)4G
gene appeared to expire earlier [9,48]. Additionally, the e[F4E-like and elF(iso)4E-like genes
appear to be sisters to each other, forming a monophyletic group, which in turn is a sister
to the 4EHP-like lineage [48]. Many studies have found that there is at least one eIF4E
gene for the initiation of mRNA translation, and many eIF4E genes could not interact with
elF4G and other proteins, which would provide evidence for the functional redundancy
and functional loss of multi-copy elF genes [7,8].

3.2. elF Family Genes as Important Resistance Factors against Viruses in Plants

There are more and more elF family genes that have been identified as resistance genes
to viruses, and various variants have been found in elF family genes, which would prove
selectivity in the evolution process between plant resistance genes and viruses [48]. In
particular, many natural mutants of eIF4E or elF(iso)4E near the cap recognition pocket
occurred in resistance potyviruses, such as Pisum sativum, Lactuca sativa, and Capsicum
spp- [49-51]. In addition, many mutations could result in null or truncated elF4E or
elF(iso)4E, which may be related to a decline in resistance, such as in plum, Capsicum spp.,
and Arabidopsis [29,52,53]. In addition to Arabidopsis, Capsicum spp., Lactuca sativa, Pisum
sativum, and plum, there are many plants resistant against viruses due to elF genes, such as
Phaseolus vulgaris [54], Solanum habrochaites [33], Hordeum vulgare [55], Citrullus lanatus [22],
Prunus armeniaca [28], Solanum lycopersicum [56], Solanum tuberosum [57], Brassica rapa [39],
Brassica juncea [40], Oryza sativa [25], etc. There could be more and more elF genes excavated
from different plant species, including monocots and dicots, which could be responsible for
resistance against viruses. How do elF genes work to resist viruses in plants, and what are
the resistance regulatory mechanisms between elF genes and viruses? It was necessary to
combine biochemical approaches, genetics, and biotechnology to answer this evolutionary
conundrum, not only for the model plant, A. thaliana, but also for relevant brassica species.

3.3. Effects of the Key Amino Acids at 3D Structure on Resistance

Previous studies have summarized the natural mutations of elF4E family members
effects in some plants [8]. For example, in B. rapa, amino acid changes in BraA.eIF4E.a,
BraA.elF4E.c, BraA.elF(iso)4E.a, and BraA.elF(iso)4E.c influence its resistance [42]. In addition,
many mutations could result in null or truncated elF4E or elF(iso)4E, which may be related
to a decline in resistance, such as in plum, Capsicum spp., and Arabidopsis [29,52,53].

In this study, there are some special spatial structures, such as Pentagon, dumbbell and
other shapes related to functions (Figure 5). The structure of the e[F4A protein looks similar
to a dumbbell, which encodes an ATP-dependent RNA helicase. Amino acid changes at
different locations have different effects. Mutation sites occurred at the key positions of
the special structures, resulting in functional changes, associated with elF4E-mediated
resistance. The five amino acid variations of VPg of potato virus Y were independently
correlated with the virulence of por? resistance gene in pepper [19,20]. The G1gyR mutation
in the 3D band of elF(iso)4E protein affects VPg and cap binding and is associated with viral
resistance in peas, tomatoes and peppers, while Ly9R, which is located in an external loop,
could affect VPg, but not cap binding [33,51,58]. It is proved that the conserved structure
of protein is related to virus resistance. It is important to analyze the three-dimensional
(3D) structure, which would be helpful to understand how amino acid mutation affects
function, or how the many mutant positions affect function.

4. Materials and Methods
4.1. Plant Materials and TuMV Inoculation

The resistant B. rapa line ‘80124’, and the susceptible B. rapa line ‘80461’, which were
highly inbred lines, were planted in a greenhouse in Haidian, Beijing, China. Fifty plants
of each of the two lines were inoculated with the virus. The plants were inoculated with
TuMV in our previous study [59]. When the plants grew to four flat true leaves, the
TuMV-C4 isolate was inoculated. After 25 d, the total RNA was extracted by the trizol
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method from fresh leaves of 80124CK, 80124 (inoculated-TuMYV), 80461CK, and 80461
(inoculated-TuMYV). In addition, the samples were immediately frozen in liquid nitrogen
and stored at —80 °C.

4.2. Identification and Characterization of eIF Family Genes in A. thaliana and B. rapa

Twenty-three A. thaliana elF family genes’ sequences were obtained from the A. thaliana
database TAIR (Supplementary Table S1). The protein and genome sequences of B. rapa
(V3.0) were downloaded from the Brassica Database (BRAD) (http://39.100.233.196/#/
accessed on 1 December 2021). HMMER 3.0 software was used to identify the 63 elF genes
from B. rapa with an E value threshold (E) of <10—40 [60]. The online Simple Modular
Architecture Research Tool (SMART) was used to analyze the conserved domains of all of
the candidate elF protein sequences [61].

4.3. Phylogenetic Analyses of eIF Family Genes

To study the phylogenetic relationships among the elF family proteins, multiple
sequence alignments of 23 and 63 sequences from A. thaliana and B. rapa were carried
out using the ClustalW function of MEGA 7.0 software, and the NJ method was used to
compare the results. The bootstrap method setting value for the phylogenetic tree was 1000,
and the default values were used for other parameters [62].

4.4. Chromosome Distribution of elF Family Genes

According to an analysis of the B. rapa genome database, the physical locations of elF
family genes were determined. A collinearity analysis of protein sequences was performed
using BLASTP and MCScanX software. TBtools was used to visualize the chromosome
location and collinearity results [63].

4.5. Analysis of Conserved Motifs, Gene Structures, and Cis-Acting Elements

MEME 5.1.0 (http://meme-suite.org/tools/meme accessed on 3 December 2021) was
used to analyze the conserved domains of elF family genes, the maximum number of motifs
was set to 11, and other parameters were set to default values. TBtools was used to analyze
the members of the gene family by comparing the CDS sequences of elF family genes [63].
CDS sequences and genome sequence data packages were downloaded from the BRAD.
The 2000 bp upstream regions from the initiation codons (ATG) of the 63 elF family genes
were analyzed by PlantCARE software, and the cis-acting elements in the promoter were
evaluated [64].

Sequence Logos and Three-Dimensional (3D) Structures of eIlF Family Genes. Sequence
logos of elF family genes from B. rapa and A. thaliana were created by using WEBLOG [65].
Three-dimensional structures of elF family genes were analyzed using Phyre2, as described
previously [42].

4.6. Transcriptome Data Analysis, Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR),
and Statistical Analyses

The fresh leaves of the resistant (80124CK), inoculated-resistant (80124), susceptible
(80461CK), and inoculated—susceptible (80461) B. rapa lines were used to extract the total
RNA. Total RNA of the test material was extracted by the TRIzol method, and the Agilent
2100 detected the quality of the resulting RNA. Qualified RNA samples were constructed
as cDNA libraries, and the Agilent 2100 Bioanalyzer Bioanalyzer detected the fragment
size and concentration of the libraries. Sequencing was performed by combined probe
anchored polymerization (cPAS) technology to obtain a sequencing read length of 150 bp. A
transcriptome analysis was conducted by MetWare (http://www.metware.cn/ accessed on
20 November 2021), as described in a previous study. Raw RNA-seq data were uploaded
to the NCBI (SRA: PRJNA764554). A heat map was created by TBtools. In addition, an
RNAprep Pure Kit (TTANGEN, Beijing, China) was used to extract the total RNA through
qRT-PCR. The sequences of qRT-PCR primers are shown in Table S2. Actin was used as
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a control. An ABI 7500 real-time PCR system (Applied Biosystems, Waltham, MA, USA)
was used to perform qRT-PCR experiments with three biological replicates. The relative
expression levels of elF family genes were calculated by the 2~24CT method. Microsoft
Excel 2018 was used to analyze the experimental data. The Student’s t-test was used to
calculate the p-values (* p < 0.05; ** p < 0.01).

5. Conclusions

According to the 23 elF genes of A. thaliana in B. rapa by analogy to 63 elF family
genes, the elF family gene classification was mainly divided into six categories. elF genes
underwent genomic triplication during the evolution of B. rapa, and most of one elF gene
of A. thaliana in B. rapa could be compared to three homologous genes. However, only a
small number of genes diverged with new dual ecological functions. The promoters of the
elF gene family in B. rapa were also analyzed, and most of the cis elements were found to
be associated with defense and antioxidant, suggesting that the elF family may play an
important role in keratin regulation and stress response in B. rapa.

In many plants, eIF4E and elF4G were identified as the recessive resistance genes to the
virus, and when the virus infected the host plants, the virus RNA could use eIF4E and elF4G
to initiate the translation of its own genome duplication in the host cell. This being the case,
it was necessary to discuss the genome identification, evolution, and expression analysis
of elF family genes in plants, which would make clear the elF family genes’ evolutionary
relationships and be helpful in understanding the plant-virus interplay. Additionally, it was
possible to reveal the impact of natural selection as a defense strategy against viruses [48].

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/plants11172248 /s1, Figure S1. The collinearity analysis of elF
family genes in the three subgenomes of Brassica rapa. Al to A10 represent 10 chromosomes in B. rapa.
Figure S2. The sequence logos analysis of eIF3A, elF(is0)4G, elF4E, elF4A2, and elF(iso)4E-eIF4E
proteins of B. rapa. Figure S3. Expression characterization of 63 elF family genes between resistant
(80124CK) and inoculated-resistant (80124) B. rapa lines (A), between susceptible (80461CK) and
inoculated-susceptible (80461) B. rapa lines (B) by transcriptome analysis. Table S1. 23 and 63 eIF
family genes were identified from A. thaliana and B. rapa, respectively. Table S2. Promoter cis-acting
elements analysis of the 63 elF family genes. Table S3. The sequences of qRT-PCR primers for
elF(iso)4E, elF(is0)4G, elF4A, and elF4E genes. Table S4. The differential metabolites between 80124
and 80461, 80124CK and 80461CK B. rapa lines.
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Abbreviations

RTSV (rice tungro spherical virus), CMV (cucumber mosaic virus), TCV (turnip crinkle virus),
PepMoV (pepper mottle virus), PsBMV (pea seedborne mosaic virus), BYMV (bean yellow mosaic
virus), BCMV (bean common mosaic virus), BaYMYV (barley yellow mosaic virus), BaMMYV (barley
mild mosaic virus), ZYMYV (zucchini yellow mosaic virus), MWMYV (Moroccan watermelon mosaic
virus), CVYV (cucumber vein yellowing virus), PVMV (pepper vein mottling virus), and ChiVMV
(chilli veinal mottle virus).
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