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Abstract: Leaf nutrient content and its stoichiometric relationships (N/P ratio) are essential for pho-
tosynthesis and plant growth and development. Previous studies on leaf nutrient-related functional
traits have mainly focused on the species level and regional scale, but fewer studies have investigated
the distribution patterns of the leaf N and P contents (LN, LP) and N/P ratios (N/P) in communities
and their controlling factors at a large scale; therefore, we used LN, LP, and N/P data at 69 sites from
818 forests in China. The results showed significant differences (p < 0.05) in the LN, LP, and N/P
at different life forms (tree, shrub, and herb). Neither LN, LP, nor N/P ratios showed significant
patterns of latitudinal variation. With the increase in temperature and rainfall, the LN, LP, and leaf
nutrient contents increased significantly (p < 0.001). Across life forms, LN at different life forms
varied significantly and was positively correlated with soil P content (p < 0.001). The explanatory
degree of climatic factors in shaping the spatial variation patterns of LN and N/P was higher than
that of the soil nutrient factors, and the spatial variation patterns of the leaf nutrient traits of different
life forms were shaped by the synergistic effects of climatic factors and soil nutrient factors.

Keywords: leaf nutrients; functional traits; life forms; climate change; soil nutrients

1. Introduction

The functional traits of plants reflect their survival strategies in response to environ-
mental changes [1,2]. Nitrogen (N) and phosphorus (P) are important components of the
basic structure of plant cells and their levels. The stoichiometric relationships between
N and P drive photosynthesis, plant growth, reproduction, and other life processes [3].
Leaf nitrogen (LN), phosphorus (LP), and leaf N/P ratios (N/P) are key plant traits that
influence the productivity of forest communities and regulate carbon cycling [4]. Numerous
studies have found that climatic factors, soil nutrient factors, and community genealogical
structure influence the plant functional traits by affecting plant metabolism [5]. Exploring
the distribution patterns of functional traits related to leaf nutrients on a large scale has
important ecological significance for quantifying the impact of environmental changes on
plant functional traits [6]. However, the key drivers that determine the distribution patterns
of these key functional traits remain elusive.

Climate factors influence the functional traits of plant leaves by controlling plant
metabolism, growth, and development processes [7]. A global data-based study found
that climate change significantly affected the leaf nutrient content [8]. With increasing
temperature, the LN decreases significantly and LP increases significantly [9]. Higher LN
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enhances photosynthesis under low-temperature stress, and when temperatures are higher,
plants coordinate metabolic processes by reducing the LN and increasing LP [10]. Other
studies have found that the N/P of plant leaves increased significantly with increasing
temperature [11]. Numerous previous studies have shown that temperature is a key factor
in determining changes in leaf nutrient traits, especially the mean annual temperature
(MAT) [4,12,13].

Plant leaf nutrients are also influenced by precipitation factors [14]. Precipitation
factors can alter soil nutrient availability, and when rainfall is low and soils are subject to
drought stress, plants respond to water stress by changing functional traits [15]. Tempera-
ture and precipitation factors jointly determine the nutrient changes in plant leaves [16].
In specific forest communities, the key climatic factors that determine the leaf nutrients
in different species remain elusive due to differences in biological adaptations and plant
nutrient uptake strategies. Therefore, it is particularly important to quantify the effects of
climatic factors in the leaves of different plant forms at a macroscopic scale.

Not only do climatic factors have an important impact on the nutrient profiles of plant
leaves, but soil nutrient factors also play a key role in shaping the spatiotemporal pattern
of leaf nutrient traits [17]. Climate affects the plant nutrient profiles by influencing soil
nutrient redistribution [18]. Plant vessels absorb inorganic salts and water from the soil and
transport them to the leaves, so the soil is the main source of nitrogen and phosphorus for
plant leaves [19]. The nutrient profiles of leaves are limited by the nutrient availability of
the soil [20]. Some studies have found that the N/P of Chinese plant leaves is significantly
lower than the global average due to the low effective phosphorus content of Chinese
soils [21]. It has been shown that the N and P content of plant leaves increases with
increasing soil N content and soil pH [22], and that soil nutrient factors directly affect the
nutrient profiles of leaves.

Forest communities are divided into tree, shrub, and herb levels according to species
composition, structure, and production, with each plant having its life form, and vertical
differentiation provides a good indication of the community’s adaptation to environmental
conditions [23]. The nutrient profiles of leaves vary significantly among different life forms
due to differences in their survival strategies [24]. Comparisons of the leaf nutrient traits of
different plant forms are mostly based on the species scale or local scale, and few studies
have been conducted on a larger spatial scale based on the community scale. Community
trait variation is more effective than species trait variation in predicting the plant response
to environmental change [25]. However, due to interspecific competition and intraspecific
struggle in a given forest community, there is a great theoretical risk in predicting the
functional traits of individual plants [26]. Therefore, the effects of environmental factors
on community leaf nutrient traits at a macro scale can reduce the impact of certain local
deterministic processes (e.g., competition, mutualism).

Based on field survey data from 89 sites in China, an attempt was made to identify the
key drivers influencing the leaf nutrient traits at different life forms in forest communities
at the macro scale. To explain this, the following hypotheses were made: (1) there are
significant differences in leaf nutrient traits at different life forms at the macro scale; and
(2) climatic factors are the dominant environmental factors affecting leaf nutrient traits at
different life forms of the community, while soil nutrient factors also play a coordinating
role that cannot be ignored.

2. Results
2.1. Variability in LN, LP, and N/P of Different Life Forms and Distribution Patterns in China

Leaf nutrient traits showed significant geographical variation at different life forms,
with overall higher LN and LP in northeastern China and relatively higher LP content in
northwestern China (Figure 1). However, neither LN, LP, nor N/P (Figure 2) showed a
significant latitudinal pattern. The LN, LP, and N/P of the herb levels showed significant
differences (p < 0.05). The leaf nutrient traits of the arbor layer and the herb layer were
significantly different (p < 0.001), and the herb layer had relatively higher LN and lower LP.
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Leaf nutrient traits were generally significantly different between the shrub and herb levels
(p < 0.05), but LN was not significant in the herb and shrub levels (p > 0.05).
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Figure 1. The distribution patterns of LN, LP, and N/P at different life forms in China with a spatial
resolution of 1 × 1 km were studied by kernel density estimation. (a) LN of the tree levels; (b) LP of
the tree levels; (c) N/P of the tree levels; (d) LN of the shrub levels; (e) LP of the shrub levels; (f) leaf
N/P of the shrub levels; (g) LN of the herb levels; (h) herb levels LP; (i) herb levels N/P.

2.2. Correlations between Climatic Factors and LN, LP, and N/P at Different Life Forms

The LN and LP of the tree, shrub, or herb levels increased significantly with increasing
MAT and mean annual precipitation (MAP) (Figures 3a,d and 4a,d) and decreased signif-
icantly with increasing annual sunlight duration (ASD) (Figures 3e,f and 4e). Whereas
LP in both the tree and shrub levels increased significantly with increasing mean coldest
monthly temperature (MCMT) and mean warmest monthly temperature (MWMT), LN
in the herb level decreased significantly. The ASD and mean annual evaporation (MAE)
had better predictive power for LN in the tree level compared to other climatic factors
(R2 = 0.20, p < 0.001; R2 = 0.16, p < 0.001) and better predictive power for LP in the tree layer
(R2 = 0.46, p < 0.001; R2 = 0.50, p < 0.001; R2 = 0.37, p < 0.001) were MWMT, MAP, and ASD.
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and herbs; (c) variability of N/P among the trees, shrubs, and herbs. Tree represents the tree levels, 
Shrub represents the shrub levels, and Herb represents the herb levels. Levels are grouped where 
ns represents non−significant (P > 0.05) at the 0.05 level, * represents P < 0.05, ** represents P < 0.01, 
**** represents p < 0.0001. 
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MAT, MCMT, and MWMT (Figure 5a–c) were significantly correlated with the N/P of the 
shrub layer (P < 0.001). MAT had the best fitting effect on the N/P of the herbal layer (Fig-
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Figure 2. A comparison of the differences in the LN (a), LP (b), and N/P (c) at different life forms.
(a) Variability of LN among the trees, shrubs, and herbs; (b) variability of LP among the trees, shrubs,
and herbs; (c) variability of N/P among the trees, shrubs, and herbs. Tree represents the tree levels,
Shrub represents the shrub levels, and Herb represents the herb levels. Levels are grouped where
ns represents non−significant (p > 0.05) at the 0.05 level, * represents p < 0.05, ** represents p < 0.01,
**** represents p < 0.0001.
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is the herb level. R2 represents how well the model fits the variables studied and the P−value rep-
resents the significance level. 

Figure 3. The general linear correlation analysis of climate factors with LN at different life forms.
(a) General linear relationship between the MAT and LN of plants in the trees, shrubs, and herbs.
(b) General linear relationship between the MCMT and LN of plants in the trees, shrubs, and herbs.
(c) General linear relationship between the MWMT and LN of plants in the trees, shrubs, and herbs
(d) General linear relationship between the MAP and LN of plants in the trees, shrubs, and herbs
(e) General linear relationship between the ASD and LN of plants in the trees, shrubs, and herbs (f).
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General linear relationship between the MAE and LN of plants in the trees, shrubs, and herbs. MAT
represents the mean annual temperature, MCMT represents the mean coldest monthly temperature,
MWMT represents the mean warmest monthly temperature, MAP represents the mean annual
precipitation, ASD represents the annual sunlight duration, and MAE represents the mean annual
evaporation. The red line represents the tree level, the green line is the shrub level, and the blue
line is the herb level. R2 represents how well the model fits the variables studied and the p-value
represents the significance level.

Figure 4. The general linear correlation analysis of climate factors with LP at different life forms.
(a) General linear relationship between the MAT and LP of plants in the trees, shrubs, and herbs.
(b) General linear relationship between the MCMT and LP of plants in the trees, shrubs, and herbs.
(c) General linear relationship between the MWMT and LP of plants in the trees, shrubs, and herbs.
(d) General linear relationship between the MAP and LP of plants in the trees, shrubs, and herbs.
(e) General linear relationship between the ASD and LP of plants in the trees, shrubs, and herbs.
(f) General linear relationship between the MAE and LP of plants in the trees, shrubs, and herbs. MAT
represents the mean annual temperature, MCMT represents the mean coldest monthly temperature,
MWMT represents the mean warmest monthly temperature, MAP represents the mean annual
precipitation, ASD represents the annual sunlight duration, and MAE represents the mean annual
evaporation. The red line represents the tree level, the green line is the shrub level, and the blue
line is the herb level. R2 represents how well the model fits the variables studied and the p-value
represents the significance level.

The N/P of the herb level increased with the increase in MCMT and MWMT
(Figure 5b,c), and decreased with the increase in MAT, MAP, ASD, and MAE (Figure 5a,d–f).
MAT, MCMT, and MWMT (Figure 5a–c) were significantly correlated with the N/P of
the shrub layer (p < 0.001). MAT had the best fitting effect on the N/P of the herbal layer
(Figure 5b; R2 = 0.59, p < 0.001).



Plants 2022, 11, 2171 6 of 16Plants 2022, 11, 2171 7 of 18 
 

 

 
Figure 5. The general linear correlation analysis of climate factors with N/P at different life forms. 
(a) General linear relationship between the MAT and N/P of plants in the trees, shrubs, and herbs. 
(b) General linear relationship between the MCMT and N/P of plants in the trees, shrubs, and herbs. 
(c) General linear relationship between the MWMT and N/P of plants in the trees, shrubs, and herbs. 
(d) General linear relationship between the MAP and N/P of plants in the trees, shrubs, and herbs. 
(e) General linear relationship between the ASD and N/P of plants in the trees, shrubs, and herbs. 
(f): General linear relationship between the MAE and N/P of plants in the trees, shrubs, and herbs. 
MAT represents the mean annual temperature, MCMT represents the mean coldest monthly tem-
perature, MWMT represents the mean warmest monthly temperature, MAP represents the mean 
annual precipitation, ASD represents the annual sunlight duration, and MAE represents the mean 
annual evaporation. The red line represents the tree level, the green line is the shrub level, and the 
blue line is the herb level. R2 represents how well the model fits the variables studied and the 
P−value represents the significance level. 

2.3. Effect of Soil Factors on the Relationship between LN, LP, and Leaf N/P at Different Life 
Forms 

The LN of the different life forms was significantly and positively correlated with the 
soil P (Figure 6b), while the trends of LP and N/P varied with the soil nutrient factors. The 
LN of the three life forms increased significantly with increasing soil N and P (Figure 6). 
Soil pH (Figure 7c) all showed a significant positive correlation (P < 0.001) with LP for the 
different life forms, whereas LN decreased significantly with increasing soil pH (Figure 
6). The LP of the shrub levels increased significantly with the increasing soil N and P. The 
trend between the herb and shrub levels was reversed. The N/P in the herb level was sig-
nificantly positively correlated with soil N (R2 = 0.30, P < 0.001) (Figure 8a). Soil pH (Figure 
7c) was the best predictor of LP in the herb and tree levels (R2 = 0.25, P < 0.001; R2 = 0.29, P 
< 0.001) (Figure 7c), and the best predictor of N/P in the tree level (Figure 8c) (R2 = 0.29, P 
< 0.001) (Figure 8c). In contrast, the best prediction of N/P for the shrub level was for soil 
P (R2 = 0.22, P < 0.001; Figure 8b). 

Figure 5. The general linear correlation analysis of climate factors with N/P at different life forms.
(a) General linear relationship between the MAT and N/P of plants in the trees, shrubs, and herbs.
(b) General linear relationship between the MCMT and N/P of plants in the trees, shrubs, and herbs.
(c) General linear relationship between the MWMT and N/P of plants in the trees, shrubs, and
herbs. (d) General linear relationship between the MAP and N/P of plants in the trees, shrubs, and
herbs. (e) General linear relationship between the ASD and N/P of plants in the trees, shrubs, and
herbs. (f): General linear relationship between the MAE and N/P of plants in the trees, shrubs, and
herbs. MAT represents the mean annual temperature, MCMT represents the mean coldest monthly
temperature, MWMT represents the mean warmest monthly temperature, MAP represents the mean
annual precipitation, ASD represents the annual sunlight duration, and MAE represents the mean
annual evaporation. The red line represents the tree level, the green line is the shrub level, and the
blue line is the herb level. R2 represents how well the model fits the variables studied and the p-value
represents the significance level.

2.3. Effect of Soil Factors on the Relationship between LN, LP, and Leaf N/P at Different Life Forms

The LN of the different life forms was significantly and positively correlated with the
soil P (Figure 6b), while the trends of LP and N/P varied with the soil nutrient factors. The
LN of the three life forms increased significantly with increasing soil N and P (Figure 6).
Soil pH (Figure 7c) all showed a significant positive correlation (p < 0.001) with LP for the
different life forms, whereas LN decreased significantly with increasing soil pH (Figure 6).
The LP of the shrub levels increased significantly with the increasing soil N and P. The
trend between the herb and shrub levels was reversed. The N/P in the herb level was
significantly positively correlated with soil N (R2 = 0.30, p < 0.001) (Figure 8a). Soil pH
(Figure 7c) was the best predictor of LP in the herb and tree levels (R2 = 0.25, p < 0.001;
R2 = 0.29, p < 0.001) (Figure 7c), and the best predictor of N/P in the tree level (Figure 8c)
(R2 = 0.29, p < 0.001) (Figure 8c). In contrast, the best prediction of N/P for the shrub level
was for soil P (R2 = 0.22, p < 0.001; Figure 8b).
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resents the tree level, the green line is the shrub level, and the blue line is the herb level. R2 represents 
how well the model fits the variables studied and P−value represents the level of significance. 
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relationship between the soil N and LP of plants in the trees, shrubs, and herbs (b) General linear 
relationship between the soil P and LP of plants in the trees, shrubs, and herbs. (c) General linear 
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Figure 6. The general linear analysis of soil factors with different life forms of LN. (a) General
linear relationship between the soil N and LN of plants in the trees, shrubs, and herbs. (b) General
linear relationship between the soil P and LN of plants in the trees, shrubs, and herbs. (c) General
linear relationship between the soil pH and LN of plants in the trees, shrubs, and herbs. The
red line represents the tree level, the green line is the shrub level, and the blue line is the herb
level. R2 represents how well the model fits the variables studied and p-value represents the level
of significance.
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Figure 7. The general linear analysis of soil factors with different life forms of LP. (a) General
linear relationship between the soil N and LP of plants in the trees, shrubs, and herbs (b) General
linear relationship between the soil P and LP of plants in the trees, shrubs, and herbs. (c) General
linear relationship between the soil pH and LP of plants in the trees, shrubs, and herbs. The red
line represents the tree level, the green line is the shrub level, and the blue line is the herb level.
R2 represents how well the model fits the variables studied and the p-value represents the level
of significance.
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Figure 8. The general linear analysis of soil factors with different life forms of N/P. (a) General linear
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relationship between the soil N and N/P of plants in the trees, shrubs, and herbs (b) General linear
relationship between the soil P and N/P of plants in the trees, shrubs, and herbs. (c) General
linear relationship between the soil pH and N/P of plants in the trees, shrubs, and herbs. The red
line represents the tree level, the green line is the shrub level, and the blue line is the herb level.
R2 represents how well the model fits the variables studied and the p-value represents the level
of significance.

2.4. Climatic and Soil Factors Dominate Changes in the Functional Traits of
Different Communities

We analyzed the effects of environmental factors on the leaf LN, LP, and N/P at differ-
ent life forms based on a generalized additive model with non−metric multidimensional
scaling (NMDS) ranking. Overall, the leaf N/P showed strong environmental plasticity,
and environmental factors generally explained the spatial variation in leaf N/P more than
LN and LP at different life forms (Figures 9–11). Climate factors played a greater role
than the soil nutrient factors in shaping the spatial variation in the leaf LN (Figure 9d−f;
de = 42.2%, 41%, 22.8%) and LP (Figure 10d−f; de = 17.2%, 17.1%, 50.6%).
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represents the deviation explained by the corresponding model. (a) NMDS ranking of soil factors
with tree levels LN; (b) NMDS ranking of soil factors with shrub levels LN; (c) NMDS ranking of
soil factors with herb levels LN; (d) NMDS ranking of climatic factors with tree levels LN; (e) NMDS
ranking of climatic factors with shrub levels LN; (f) NMDS ranking of climate factors and herb levels
LN; (g) NMDS ranking of the sum of soil factors and climate factors and tree levels LN; (h) NMDS
ranking of the sum of soil factors and climate factors and shrub levels LN; (i) NMDS ranking of the
sum of soil factors and climate factors and herb levels LN. Trait stacking indicates that abiotic factors,
indicated by points on the NMD, are associated with higher or lower trait values, consistent with
a colored trait gradient. Note that if the relationship between the LN and abiotic factors is linear,
the gradient splines will be parallel. Nonlinear relationships between LN and abiotic factors are
represented by curve splines.
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Figure 10. The NMDS ranking of climatic and soil factors with different life forms of LP. Value of de
represents the deviation explained by the corresponding model. (a) NMDS ranking of soil factors
with tree levels LP; (b) NMDS ranking of soil factors with shrub levels LP; (c) NMDS ranking of
soil factors with herb levels LP; (d) NMDS ranking of climatic factors with tree levels LP; (e) NMDS
ranking of climatic factors with shrub levels LP; (f) NMDS ranking of climate factors and herb levels
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LP; (g) NMDS ranking of the sum of soil factors and climate factors and tree levels LP; (h): NMDS
ranking of the sum of soil factors and climate factors and shrub levels LP; (i): NMDS ranking of
the sum of soil factors and climate factors and herb levels LP. Trait stacking indicates that abiotic
factors, indicated by points on the NMD, are associated with higher or lower trait values, consistent
with a colored trait gradient. Note that if the relationship between LP and abiotic factors is linear,
the gradient splines will be parallel. Nonlinear relationships between LP and abiotic factors are
represented by curve splines.

Plants 2022, 11, 2171 12 of 18 
 

 

 
Figure 11. The NMDS ranking of climatic and soil factors with different life forms of N/P. Value of 
de represents the deviation explained by the corresponding model. (a) NMDS ranking of soil factors 
with tree levels N/P; (b) NMDS ranking of soil factors with shrub levels N/P; (c) NMDS ranking of 
soil factors with herb levels N/P; (d) NMDS ranking of climatic factors with tree levels N/P; (e) 
NMDS ranking of climatic factors with shrub levels N/P; (f) NMDS ranking of climate factors and 
herb levels N/P; (g) NMDS ranking of the sum of soil factors and climate factors and tree levels N/P; 
(h) NMDS ranking of the sum of soil factors and climate factors and shrub levels N/P; (i) NMDS 
ranking of the sum of soil factors and climate factors and herb levels N/P. Trait stacking indicates 
that abiotic factors, indicated by points on the NMD, are associated with higher or lower trait values, 
consistent with a colored trait gradient. Note that if the relationship between N/P and abiotic factors 
is linear, the gradient splines will be parallel. Nonlinear relationships between N/P and abiotic fac-
tors are represented by curve splines. 
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Figure 11. The NMDS ranking of climatic and soil factors with different life forms of N/P. Value of
de represents the deviation explained by the corresponding model. (a) NMDS ranking of soil factors
with tree levels N/P; (b) NMDS ranking of soil factors with shrub levels N/P; (c) NMDS ranking
of soil factors with herb levels N/P; (d) NMDS ranking of climatic factors with tree levels N/P;
(e) NMDS ranking of climatic factors with shrub levels N/P; (f) NMDS ranking of climate factors and
herb levels N/P; (g) NMDS ranking of the sum of soil factors and climate factors and tree levels N/P;
(h) NMDS ranking of the sum of soil factors and climate factors and shrub levels N/P; (i) NMDS
ranking of the sum of soil factors and climate factors and herb levels N/P. Trait stacking indicates
that abiotic factors, indicated by points on the NMD, are associated with higher or lower trait values,
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consistent with a colored trait gradient. Note that if the relationship between N/P and abiotic factors
is linear, the gradient splines will be parallel. Nonlinear relationships between N/P and abiotic
factors are represented by curve splines.

3. Discussion

The leaf nutrient traits (LN, LP, and N/P) of different plant forms showed significant
geographical differences [27], and some studies have found that the LN of shrub levels
is significantly higher than that of the tree and herb levels in northwestern China, while
the LP of shrub levels is significantly lower than that of herb levels [28], and that the LP
and N/P of shrubs are higher than those of herbs in the desertification zone of southwest
Hunan [29]. Within a given community, differences in the ecological niches of species
and differences in resource use patterns can lead to differences in the leaf nutrient traits
between species [17]. Leaf nutrient traits are widely used to quantify plant adaptations
to the environment, and even to predict ecosystem function [6,30]. Thus, the differences
in LN and LP of different life forms of plants result from differences in plant ecological
niches. Compared to herb plants, woody plants have lower LP, which is aligned with
their low growth rate strategy [31]. Quantifying the geographical distribution patterns
of leaf nutrient traits is important for our scientific assessment of forest development
dynamics [24].

Temperature can have a significant effect on the LN, LP, and N/P [32], and the
temperature−biogeochemical hypothesis also suggests that LN and LP increase monotoni-
cally with temperature on a global scale [33]. It has been found that LN and LP are strongly
correlated with effective soil N and P content [32], and that climatic factors can act directly
on soil nutrients [25]. Soil enzymes are beneficial to maintain soil fertility, and increasing
the soil temperature and moisture can promote the activity of soil enzymes and significantly
improve the decomposition efficiency of soil organic matter [34]. Low temperatures not
only have an inhibitory effect on organic matter decomposition and mineralization, but also
limit microbial activity and affect the decomposition of apoplastic matter, thus reducing
the availability of soil N and P [33]. Conversely, as the temperature increases, soil microbial
respiration is enhanced, the efficiency of organic matter mineralization and decomposition
increases, and the effective soil N, and P content rises [35]. Therefore, MAT is a key limiting
factor for changes in leaf nutrient traits [12,13]. It has also been found that ASD significantly
affects LN and LP [36]. Plant N and P elements are involved in the light reaction process
and have an impact on photosynthesis, which is enhanced with increasing light duration
and LN and LP are heavily utilized [37]. The nutrient content of plant leaves gradually
decreased with increasing light time. Our results demonstrate the important influence of
temperature on the nutrients of different life forms of leaves.

Precipitation is also one of the main factors of nutrient traits in plant leaves [14].
Previous studies have found that in water−limited ecosystems, plant N and P uptake of
elements is mainly limited by water [38]. On one hand, most soil water comes from rainfall,
and soil water content can directly affect the activity of soil enzymes, thereby affecting
the release of soil nutrients [34]. On the other hand, rainfall promotes plant N uptake
by promoting soil element availability, and plant N uptake is positively correlated with
soil N availability [39]. In addition, rainfall had a significant effect on the soil microbial
respiration and accelerated the leaching and transformation of P, which contributed to the
transformation of soil P and thus increased the effective soil P content. With increased
precipitation, the effectiveness of the soil nutrient factors increased, and plants were able to
take up more N and P, significantly increasing the LN and LP [40]. Thus, precipitation is an
important effect on the spatial and temporal distribution patterns of plant nutrient traits.

Soil N and P are basic nutrients for plant growth and are closely related to plant leaf
nutrient, and most of the LN and LP of plants originate from soil [9]. The availability of soil
N and P elements directly determines the growth and development process of plants, and
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available soil nutrients are positively correlated with leaf nutrients [18]. It was found that
fertilizing the soil with N and P was beneficial to maintaining and improving the activity of
soil enzymes and releasing more micronutrients and nutrients [41]. The higher the effective
soil N and P content, the higher the plant root N and P uptake efficiency, and the higher
the LN and N/P [22]. Soil microbial activity is positively correlated with soil pH, especially
the activity of soil microbial enzymes related to the breakdown of soil nutrients. As the pH
increases, soil microbial metabolic activity decreases, inhibiting the soil N mineralization
and plant uptake of soil N, and LN is subsequently reduced [42]. However, it was also
found that soil microbial biomass increased with the increasing soil pH, effectively driving
organic P mineralization and the dissolution of fixed P [43], and LP in the arboreal and
herbaceous layers increased. Thus, soil nutrient factors significantly influenced the changes
in the leaf nutrient traits.

At the macro scale, climate factors have a stronger ability to shape leaf traits than soil
factors [44]. Studies have shown that plant leaves are more sensitive to changes in climate
and that plants can respond to changing climate by changing their traits [1]. Soil nutrient
elements are closely related to leaf nutrient elements and provide many nutrients for plant
growth and development, but the availability of soil nutrients is limited by temperature
and precipitation [33]. Thus, climatic factors play a stronger role in shaping leaf nutrient
distribution patterns than soil factors [45], but the influence of soil nutrient factors on leaf
traits is not negligible.

The research area of this thesis included most of areas, which together with the
relatively large amount of data ensures the plausibility of our experimental results. In
addition, the results of this study are presented using a variety of data analysis methods.
Overall, our results quantify the relative contribution of different environmental factors in
shaping the functional traits of leaf nutrients and are important for a better understanding
of the impact of global climate change on plant physiology [10]. In future studies, more
biological factors such as community biodiversity and stand density need to be further
explored for their effects on the distribution patterns of community leaf nutrients.

4. Materials and Methods
4.1. Study Area and Sample Data

The relatively wide distribution of forests in China facilitates studies on large scales.
Data from 818 forest at 89 sites plots surveyed between 2005 and 2020 were used to
investigate the spatial distribution and driving factors of LN, LP, and N/P at different life
forms (tree levers, shrub levels, herb levels) of forest communities (Figure S1). The study
sites ranged from 19.1◦ to 53.5◦ N and 79.7◦ to 129.3◦ E.

4.2. Functional Data

Community nutrient profiles can better reflect the adaptability of local vegetation to
different environments than individual nutrient profiles [46]. Data for the selected nutrient
profiles in this study include LN, LP, and N/P.

In this experiment, LN was determined using the national standard method, the
Kjeldahl method [47], LP was determined using the vanadium−molybdenum yellow
absorbance method [48], and N/P was equal to LN/LP.

Theoretical risk in predicting functional traits in individual plants is due to intraspecific
and interspecific struggles [49]. Community−weighted mean traits (CWMi) represents the
forest mean trait values.

CWMi =
∑n

i Di × Trait
∑n

i Di

where CWMi represents the community−weighted functional trait identity value and Di
represents the abundance of dominant tree species. Traiti represents the selected functional
trait [50].
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4.3. Environmental Data

A study found that changes in the functional traits of building blocks were related
to climate change [51]. The mean annual temperature (MAT), mean coldest monthly
temperature (MCMT), mean warmest monthly temperature (MWMT), and mean annual
precipitation (MAP) were extracted from the WorldClim global climate layer at a spatial
resolution of 1 km. The mean annual evaporation (MAE) was taken from the Climate
Data Center of the China Meteorological Administration (http://data.cma.cn/site/index.
html) (accessed on 1 April 2021), sunlight. The annual sunlight duration (ASD), a key
factor in photosynthesis [52], is from the Climate Data Center of the China Meteorological
Administration (http://data.cma.cn/site/index.html) (accessed on 1 April 2021). Soil pH,
soil N (http://www.csdn.store) (accessed on 1 April 2021), and soil P (https://www.osgeo.
cn/data/wc137) (accessed on 1 April 2021) in the top 30 cm of soil were extracted from a
250 m resolution grid.

4.4. Data Analysis

Data analysis of the LN, LP, and N/P data from our study conformed to a normal
distribution (Figure S2). A significant difference test at the 0.05 significance level was
used to test for significant differences in LN, LP, and N/P between the tree, shrub, and
herb levels (Figure 2). Significant differences were analyzed using the R package agricolae
(version 4.1.0, R Core Team, 2020).

The extent to which environmental factors explain LN, LP, and N/P was investigated
using a linear regression model in the R package agricolae (version 4.1.0, R Core Team,
2020), where R2 represents how well the model fits the variables studied.

The generalized additive model (GAM) is used to test the effects of various envi-
ronmental factors on the functional traits of leaves, with data for the LN, LP, and N/P
consisting of parametric and non−parametric components to reduce the model risk associ-
ated with linear models [49]. First, the GAM method was used to select the key influencing
factors based on a significant difference test at the 0.05 level of significance. Then, a GAM
model was constructed to measure the relationship between the environmental factors
and LN, LP, and N/P and used non−metric multidimensional scaling analysis (NMDS) to
reflect the results for GAM [53].

g[E(Y|X)] =∑
i
βiXi + ∑

j
fi(Xi)+ε

where g(•) represents the connection function, the form depends on the specific form,
which can be interpreted as the Y−variable distribution. Є is the random error term,
which can be interpreted as the variable connection with the normal distribution func-
tion name identity, and the connection function has the form g(u) = u, u = E(Y|X),
E(є|X) = 0. Xi is the explanatory variable that strictly follows the parametric form, βi
is the corresponding parameter, and fj(Xj) is the corresponding explanatory variable that
follows the nonparametric form of the smoothing function. In our study, the spline smooth-
ing function S(•) was selected for fitting, thin−plate spline smoothing was selected for
function fitting between different nodes, and each smoothing function S(•) was estimated
using penalized least squares [50].

5. Conclusions

This study used data at 89 sites from 818 forest plots across China over 15 years
from 2005 to 2020 to verify the relative roles of climatic and soil factors in shaping LN,
LP, and N/P at different life forms. Our results confirm that LN, LP, and N/P differ
significantly between life forms and that climatic and soil factors in the community habitat
jointly influence the distribution patterns of the N/P nutrient profiles, with MAT being the
dominant factor influencing LN, LP, and N/P at different life forms. Climatic factors also
indirectly influence the leaf nutrient traits by affecting soil nutrients, but climatic factors are
more influential than soil factors in shaping the distribution patterns of LN, LP, and N/P.

http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
http://www.csdn.store
https://www.osgeo.cn/data/wc137
https://www.osgeo.cn/data/wc137
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This study has important implications for our understanding of the distribution patterns of
the plant N and P nutrient profiles at different life forms in the context of climate change
and ecosystem modeling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11162171/s1, Figure S1: Sample site map of the distribution
of the sample sites used for this experimental study in China. The sample sites ranged from 19.1◦ N
to 53.5◦ N and 79.7◦ E to 129.3◦ E.; Figure S2: The normal distribution charts for the LN, LP, and
N/P data.
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