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Abstract: The aim of this study was to determine the effect of the hydrolates obtained as the
by-products of the Thymus vulgaris essential oil steam distillation process. The bioassays, which
were undertaken in order to determine the effect on germination and initial growth of seedlings
of some cultivated and weed species, were performed under controlled conditions with dif-
ferent concentrations of the hydrolates. Seeds of Glycine max, Helianthus annuus, Zea mays,
Triticum aestivum, Daucus carota subsp. sativus, Allium cepa, Medicago sativa, and Trifolium repens, and
six weed species—Amaranthus retroflexus, Chenopodium album, Portulaca oleracea, Echinochloa crus-galli,
Sorghum halepense, and Solanum nigrum—were treated with 10, 20, 50, and 100% T. vulgaris hydrolate
solution. The obtained results showed that the T. vulgaris hydrolate had the least negative effect on the
germination of cultivated species, such as soybean, sunflower and maize, whereas clover and alfalfa
were the most sensitive. By comparison, all the tested weed species expressed high susceptibility. It
can be concluded that the T. vulgaris hydrolate has an herbicidal effect, in addition to its potential as a
biopesticide in terms of integrated weed management.

Keywords: oxidative stress; germination; inhibition; biopesticide

1. Introduction

The hydrolates or hydrosols are the by-products of the essential oil steam distillation
process. They consist of condensate water and small amounts of essential oil compounds,
which are mostly soluble in water [1]. Hydrosols have been recently noticed for their
biological properties, including antifungal, antibacterial and antioxidant activity [2,3].
Today, hydrolates are widely used in the pharmaceutical, food, and cosmetic industries,
and in aromatherapy [4]. Their production is easy and cheap, and they appear to be less
toxic to human health than essential oils [2].

Thymus vulgaris L. is a perennial flowering aromatic plant that has been used globally
for many centuries for medicinal and culinary purposes [5]. Essential oils and lipophilic
substances are abundant in this plant [6]. According to [7], T. vulgaris extracts are rich
in the aromatic compounds thymol, carvacrol, p-cymene, and γ-terpinene. The chemical
composition of an essential oil depends on the harvesting time of the plant material, the
phenological phase of the plant, the growing area of the plants, and other parameters [8].
Thus, the results of chemical composition studies of T. vulgaris essential oil and hydrolates
vary. For example, it was determined that the major component of T. vulgaris essential oil
is thymol (36.1%), whereas, in the case of hydrosol, thymol (98.1%) and carvacrol (1.9%)
were dominant [9]. According to [8], the major component of the essential oil obtained
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before flowering is thymol (46.74%), whereas [10] discovered that T. vulgaris essential oil
contained 68.1% thymol and 3.5% carvacrol.

Thymol and carvacrol have antioxidant properties [11,12]. In the fields of human and
veterinary medicine, and in plant protection, the antibacterial and antifungal activity of
thymol and carvacrol [13–15], the nematocidal effect of T. vulgaris essential oil [16], and the
antiviral properties of the extracts [17–19], essential oil [20–22], and hydrolates [23] have
been reported. With regard to its antibacterial properties, T. vulgaris hydrolate has practical
applications in the food industry for the microbiological safety of fresh-cut tomatoes and
cucumbers [24], carrots and apples [25], and lettuce [26].

In recent years, in order to reduce the use of pesticides in the control of diseases,
pests, and weeds in agriculture, great efforts have been made to identify new biopesti-
cides that are as effective as synthetic chemicals. Thymol and carvacrol are examples
of bioactive compounds that may have the potential to become an integral part of agri-
cultural practice as biopesticides. These compounds are potentially useful in controlling
the emission of odors and pathogens in swine waste [27]. Due to its fast degradation
rates in tropical soil and water, thymol is considered to have a low environmental risk in
terms of tropical crop production [28]. According to [29], thymol and carvacrol showed
high inhibition at low concentrations against weed seeds, such as those of red-root ama-
ranth (Amaranthus retroflexus L.), wild radish (Raphanus raphanistrum L.), and wild mustard
(Sinapis arvensis L.). In the case of Sorghum bicolor L. seeds, carvacrol applied in a con-
centration of 3 mmol L−1 showed higher efficacy than the tested commercial herbicide
(2,4-D), leading to the inhibition of the germination rate (~40%) and the germination
speed (~56%) [30]. Furthermore, it was concluded that, among the studied essential
oils, thymol can be used as an environmentally friendly root-repellent agent instead of
synthetic herbicides [31].

The aim of this study was to test the different T. vulgaris hydrolate solution (THS)
concentrations against the seed germination and seedling lengths of some of the most
important weed species that occur in Serbia: red-root amaranth (Amaranthus retroflexus L.),
common lambsquarters (Chenopodium album L.), common purslane (Portulaca oleracea L.),
cockspur grass (Echinochloa crus-galli (L.) P. Beauv.), Johnson grass (Sorghum halepense (L.)
Pers.), and black nightshade (Solanum nigrum L.). The other aim was to study the phytotoxic
potential of the hydrolate towards the most common field and vegetable crop seeds: soy-
bean (Glycine max (L.) Merr.), sunflower (Helianthus annuus L.), maize (Zea mays L.), wheat
(Triticum aestivum L.), carrot (Daucus carota subsp. sativus (Hoffm.) Schübl. & Martens),
onion (Allium cepa L.), alfalfa (Medicago sativa L.), and white clover (Trifolium repens L.).

2. Results
2.1. Seed Germination
2.1.1. Germination Percentage (GP)

Cultivated species: The highest germination percentage was registered in sunflower
seeds (ranging from 73 to 96%), whereas the carrot seeds expressed the lowest germination
percentage, ranging from 14 to 0% (Table 1).

Weed species: The tested hydrolate, depending on the hydrolate solution percentage,
led to a reduction in germination ranging from 53 to 100%, with the exception of the black
nightshade, in which 10 and 20% hydrolate solutions led to a reduction of ≤5%; by compar-
ison, in the case of 50 and 100% THS, the reduction was 86 and 100%, respectively (Table 2).
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Table 1. The obtained results for the calculated germination indices in the case of the tested cultivated
species treated with T. vulgaris hydrolate solutions.

Tested Plant Concentration GP (%) CVG (% Day−1) GI (−) t50 (Time) GRI (%/Day)

soybean

control 93 23.48 627 2.78 33.94
10% 74 30.58 572 2.48 31.41
20% 71 28.18 529 2.48 27.82
50% 66 30.56 510 2.39 27.21

100% 60 24.00 410 2.77 19.21

maize

control 97 22.35 633 4.15 27.45
10% 80 19.66 473 4.80 19.36
20% 82 18.34 455 4.56 18.13
50% 65 18.36 361 4.69 15.81

100% 21 23.33 141 3.25 8.71

onion

control 85 23.94 580 3.69 26.29
10% 75 19.74 445 4.07 16.42
20% 33 17.94 179 4.56 6.30
50% 21 17.95 114 4.59 4.07

100% 10 13.51 36 7.00 1.42

sunflower

control 89 33.21 711 1.81 44.89
10% 96 34.78 780 1.77 49.72
20% 88 19.43 515 4.18 18.13
50% 83 21.01 518 3.81 18.42

100% 73 25.70 519 2.68 23.79

alfalfa
control 83 35.78 681 2.17 36.08

10% 85 32.69 675 2.18 35.73
20% 76 23.03 506 2.76 24.99

clover
control 93 37.65 776 2.29 41.29

10% 95 38.00 791 2.28 42.34
20% 90 23.87 613 2.90 30.06

carrot
control 39 16.46 192 4.85 7.09

10% 14 11.76 35 8.20 1.70
20% 1 12.50 3 7.50 0.12

wheat

control 100 43.10 868 1.73 52.47
10% 89 18.39 495 4.36 18.22
20% 66 22.53 433 3.65 17.26
50% 9 20.93 56 4.17 2.14

GP—germination percentage (ISTA, 2015); CVG—coefficient of velocity of germination (Jones and Sanders, 1987);
GI—germination index (Bench et al., 1991); t50—median germination time (Farooq et al., 2005); GRI—germination
rate index (Esechie, 1994 after modification).

Table 2. The obtained results for the calculated germination indices in the case of the tested weed
species treated with T. vulgaris hydrolate solutions.

Tested Plant Concentration GP (%) CVG (% Day−1) GI (−) t50 (Time) GRI (%/Day)

red-root
amaranth

control 83 24.78 578 2.56 30.41
10% 26 14.86 111 6.29 4.03

cockspur

control 22 19.47 129 3.92 4.60
10% 20 15.15 88 6.33 3.30
20% 9 15.25 40 5.75 1.47
50% 4 17.39 21 5.33 0.71

common
purslane

control 100 38.46 840 1.88 51.41
10% 46 22.77 304 3.88 13.86
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Table 2. Cont.

Tested Plant Concentration GP (%) CVG (% Day−1) GI (−) t50 (Time) GRI (%/Day)

Johnson grass

control 23 13.30 80 7.50 3.35
10% 17 12.06 46 7.90 2.10
20% 6 11.76 15 8.00 0.71
50% 1 11.11 2 8.50 0.11

common
lambsquarters

control 51 20.00 306 4.19 12.95
10% 47 18.58 264 4.43 9.91
20% 1 14.29 4 6.50 0.14

black
nightshade

control 84 13.25 290 7.68 12.16
10% 100 14.14 393 6.47 15.13
20% 95 14.80 403 6.34 15.27
50% 14 11.57 33 8.25 1.64

GP—germination percentage (ISTA, 2015); CVG—coefficient of velocity of germination (Jones and Sanders, 1987);
GI—germination index (Bench et al., 1991); t50—median germination time (Farooq et al., 2005); GRI—germination
rate index (Esechie, 1994 after modification).

2.1.2. Coefficient of Velocity of Germination (CVG)

Cultivated species: The highest CVG values for the applied hydrolate solutions (from
10 to 100%) were noted in the following order: clover; soybean; soybean; sunflower (in the
range from 25.70 to 38.00% day−1). The lowest CVG values for 10 and 20% THS were ob-
served in carrot (11.76 and 12.50% day−1, respectively), whereas, for 50 and 100% hydrolate
solutions, they were recorded for onion (17.95 and 13.51% day−1, respectively) (Table 1).

Weed species: The highest CVG value when 10% THS was applied was noted for
common purslane seeds (22.77% day−1), whereas, in the case of 20 and 50% hydrolate
solution, it was observed in cockspur (15.25 and 17.39% day−1, respectively). Conversely,
Johnson grass expressed the lowest CVG values (in the range from 11.11 to 12.06% day−1)
when 10, 20, and 50% hydrolate solutions were applied (Table 2).

2.1.3. Germination Index (GI) and Germination Rate Index (GRI)

Cultivated species: Not taking into account the complete germination reduction, clover
had the highest GI and GRI values for 10 and 20% hydrolate solutions (791/42.34 and
613/30.06% day−1, respectively), whereas sunflower expressed the highest values when
50 and 100% THS was applied (518/18.42 and 519/23.79% day−1, respectively). The lowest
GI and GRI values for 10 and 20% hydrolate solutions were noted for carrot (35/1.70 and
3/0.12% day−1, respectively), whereas, in the case of 50 and 100% THS, the lowest values
were observed for wheat (56/2.14% day−1) and onion (36/1.42% day−1) (Table 1).

Weed species: Not taking into account the complete germination reduction, the highest
GI and GRI values were observed for common purslane (840/51.41 and 304/13.86% day−1,
respectively), whereas the lowest values were noted for Johnson grass (in the range from
2/0.11 to 46/2.10% day−1) (Table 2).

2.1.4. Median Germination Time (t50)

Cultivated species: Not taking into account the complete germination reduction, the
highest t50 values for the applied hydrolate solutions (from 10 to 100%) were noted in the
following order: carrot; carrot; maize; onion (in the range from 4.69 to 8.20 days); whereas
the lowest values were observed as follows: sunflower; soybean; soybean; sunflower
(ranging from 1.77 to 2.68 days) (Table 1).

Weed species: The highest t50 values were noted for Johnson grass (in the range from
7.90 to 8.50), whereas the lowest values were observed in the case of common purslane
(10% hydrolate solution: –3.88) and cockspur (20 and 50%: 5.75 and 5.33) (Table 2).

The obtained results for the calculated germination indices (GP, CVG, GI, t50, and GRI)
are shown in Tables 1 and 2.
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2.1.5. Shoot and Root Length

The examination of the hydrolate effect on the initial growth of the studied field and
vegetable seedlings showed that the sunflower seeds expressed a stimulative effect in terms
of shoot and root seedling length when treated with the lower hydrolate concentrations
(10%), whereas, in the case of the other tested plants, a statistically significant reduction,
proportional to the increase in hydrolate concentration, was observed.

The TH reduced the seedling growth in all of the tested plant species, with the ex-
ception of black nightshade, which, like in the case of sunflower, exhibited shoot and root
growth stimulation when treated with 10 and 20% hydrolate solution. However, 50% THS
inhibited the growth of black nightshade seedlings (Tables 3 and 4).

Table 3. The shoot and root seedling length of the field and vegetable crop species treated with 10, 20,
50, and 100% T. vulgaris hydrolate solutions.

Tested Plant Variable Shoot Length (mm) Root Length (mm)

onion

control 13.70 ± 10.15 a 7.65 ± 6.40 a

10% 6.59 ± 5.69 b 2.86 ± 2.80 b

20% 0.85 ± 1.98 c 0.59 ± 1.44 c

50% 1.08 ± 1.64 c 0.60 ± 0.98 c

100% 0.17 ± 0.53 c 0.17 ± 0.53 c

maize

control 25.26 ± 12.87 a 69.29 ± 25.76 a

10% 19.49 ± 17.00 b 54.31 ± 49.06 b

20% 13.80 ± 14.75 c 29.66 ± 28.76 c

50% 10.78 ± 14.81 c 20.09 ± 27.81 d

100% 4.87 ± 10.05 d 5.53 ± 13.48 e

sunflower

control 34.41 ± 21.64 a 50.01 ± 38.16 b

10% 38.00 ± 19.68 a 64.51 ± 46.27 a

20% 29.31 ± 23.66 b 40.90 ± 41.06 b

50% 9.47 ± 7.91 c 13.18 ± 10.70 c

100% 7.32 ± 6.54 c 12.26 ± 11.13 c

soybean

control 27.87 ± 13.03 a 13.92 ± 8.65 b

10% 14.76 ± 11.18 b 19.91 ± 19.83 a

20% 12.13 ± 9.80 b 18.56 ± 18.65 a

50% 8.94 ± 7.37 c 11.70 ± 12.40 b

100% 7.70 ± 7.41 c 6.28 ± 6.61 c

wheat

control 114.12 ± 19.17 a 114.11 ± 19.14 a

10% 30.28 ± 26.61 b 40.36 ± 34.36 b

20% 22.47 ± 26.56 c 22.92 ± 26.09 c

50% 3.72 ± 13.82 d 2.63 ± 9.69 d

carrot
control 3.65 ± 7.38 a 4.32 ± 6.95 a

10% 0.37 ± 1.07 b 1.65 ± 4.54 b

20% 0.04 ± 0.40 b 0.04 ± 0.40 c

white clover
control 12.74 ± 4.99 a 31.85 ± 16.72 a

10% 9.66 ± 3.47 b 25.64 ± 10.86 b

20% 6.99 ± 3.26 c 17.17 ± 10.18 c

alfalfa
control 12.08 ± 7.71 a 28.51 ± 19.45 a

10% 10.35 ± 5.35 b 27.29 ± 17.64 a

20% 7.50 ± 5.44 c 12.46 ± 11.92 b

The data are mean values ± standard error. a–d Values without the same superscripts within each column differ
significantly (p < 0.05).
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Table 4. The shoot and root seedling length of the weed species treated with 10, 20, 50, and 100%
T. vulgaris hydrolate solutions.

Tested Plant Variable Shoot Length (mm) Root Length (mm)

common purslane control 10.49 ± 2.55 a 19.76 ± 4.53 a

10% 1.54 ± 1.78 b 1.71 ± 2.01 b

red-root amaranth
control 15.61 ± 8.32 a 14.43 ± 7.72 a

10% 1.81 ± 3.29 b 1.96 ± 3.41 b

common
lambsquarters

control 4.12 ± 5.63 a 7.65 ± 12.77 a

10% 2.07 ± 3.21 b 1.89 ± 2.46 b

20% - 0.05 ± 0.50 c

cockspur grass
control 8.90 ± 17.75 a 10.70 ± 23.20 a

10% 6.13 ± 13.74 ab 4.70 ± 11.07 bc

20% 3.08 ± 10.33 bc 1.47 ± 5.88 b

Johnson grass

control 10.48 ± 21.54 a 10.38 ± 22.58 a

10% 2.38 ± 9.94 bc 1.78 ± 7.33 bc

20% 5.52 ± 15.09 b 4.81 ± 13.25 b

50% 0.42 ± 2.96 c -

black nightshade

control 2.57 ± 5.48 c 9.69 ± 19.86 c

10% 10.96 ± 3.80 a 43.88 ± 13.68 a

20% 8.77 ± 4.60 b 19.64 ± 15.25 b

50% 1.22 ± 4.17 d 2.97 ± 9.20 d

The data are mean values ± standard error. a–d Values without the same superscripts within each column differ
significantly (p < 0.05).

The effect of the T. vulgaris hydrolate solutions on the germination rate and seedling
length can be observed in Figure 1, where maize, white clover, and red-root amaranth are
shown as the examples.
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2.2. Biochemical Parameters
2.2.1. MDA Content

The accumulation of the malondialdehyde (MDA) was notably higher in alfalfa
seedlings after the treatment with 20% TH solution (115.74 nmol MDA/g FW). In the
common lambsquarters seedlings, the amount of MDA after the treatment with 10% TH
solution was 165.73 nmol MDA/g FW, whereas, in the case of the cockspur grass seedlings
after treatment with the 20% hydrolate solution, it was 83.96 nmol MDA/g FW. The accu-
mulation of the MDA indicates that 10 and 20% hydrolate extracts have a negative effect
on these three species by inducing oxidative stress, along with the induction of the lipid
peroxidation process. By comparison, the red-root amaranth seedlings showed higher ox-
idative stress in the control, whereas, in the case of Johnson grass, the highest MDA content
was noted in the seedlings treated with 20% TH solution (74.51 nmol MDA/g FW). The
results of the tested seedlings of the remaining species showed no statistically significant
differences in terms of the lipid peroxidation intensity.

2.2.2. SOD Activity

A significant decrease in SOD activity was detected in the case of maize (116.40 U/g FW)
and soybean (5.69 U/g FW) seedlings when treated with the highest THS concentration,
and in sunflower (33.85 U/g FW) and white clover (2.47 U/g FW) seedlings when treated
with 20% THS. An increase in SOD activity was noted in the seedlings of wheat (all the
tested concentrations, ranging between 122.96 and 125.39 U/g FW), carrot (10% hydrolate,
150.95 U/g FW), cockspur grass (20% hydrolate, 313.76 U/g FW), black nightshade (all the
tested concentrations, with the highest in the case of 10% hydrolate, 236.92 U/g FW), and
Johnson grass (all the tested concentrations, with the highest in the case of 20% hydrolate,
337.81 U/g FW). The alfalfa seedlings showed the highest SOD activity when treated with
20% hydrolate (282.83 U/g FW) and the lowest in the case of 10% hydrolate (175.61U/g FW).
The results of the tested seedlings of the remaining species did not show any statistically
significant differences in terms of the SOD activity (Tables 5 and 6).

Table 5. Biochemical analysis of the treated field and vegetable crop species 14 days after the treatment.

Tested Plant Variable LP nmol/g FW SOD U/g FW nmol O2.-//g FW

wheat

control 69.40 ± 16.60 a 119.09 ± 0.81 a 58.01 ± 4.06 a

10% 67.91 ± 8.23 a 124.46 ± 0.38 b 89.84 ± 25.86 a

20% 48.09 ± 4.86 a 122.96 ± 0.50 b 252.08 ± 63.13 ab

50% 55.27 ± 8.72 a 125.39 ± 1.31 b 319.63 ± 103.44 b

maize

control 62.00 ± 1.90 a 120.44 ± 0.14 d 15.83 ± 3.88 a

10% 38.66 ± 4.75 a 118.91 ± 0.21 bc 34.25 ± 9.08 bc

20% 69.25 ± 27.45 a 119.53 ± 0.42 c 19.66 ± 3.71 ab

50% 63.19 ± 23.16 a 118.35 ± 0.07 b 46.38 ± 1.21 c

100% 49.51 ± 8.59 a 116.40 ± 0.00 a 5.11 ± 0.63 a

sunflower

control 52.20 ± 5.65 a 82.66 ± 0.57 c 57.63 ± 6.15 a

10% 42.03 ± 10.17 a 50.60 ± 16.59 ab 115.60 ± 7.12 b

20% 43.00 ± 6.69 a 33.85 ± 11.59 a 56.08 ± 16.80 a

50% 41.13 ± 4.83 a 67.20 ± 5.48 bc 76.26 ± 18.75 ab

100% 37.24 ± 6.66 a 71.64 ± 0.26 bc 99.39 ± 5.96 b

soybean

control 95.20 ± 4.59 a 107.96 ± 0.86 c 22.38 ± 1.15 ab

10% 96.92 ± 8.93 a 24.91 ± 0.99 b 30.09 ± 1.71 bc

20% 97.15 ± 16.08 a 23.01 ± 4.43 b 18.21 ± 2.40 a

50% 86.53 ± 8.75 a 10.68 ± 1.05 a 33.75 ± 5.81 c

100% 89.89 ± 24.37 a 5.69 ± 2.94 a 19.71 ± 2.77 ab
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Table 5. Cont.

Tested Plant Variable LP nmol/g FW SOD U/g FW nmol O2.-//g FW

onion
control 36.87 ± 5.63 a 111.58 ± 2.46 a 90.44 ± 42.56 a

10% 37.92 ± 8.46 a 97.41 ± 2.74 a 290.53 ± 25.37 a

20% 35.17 ± 5.62 a 116.34 ± 14.87 a 817.26 ± 117.71 b

carrot
control 18.03 ± 2.20 a 99.19 ± 6.91 a 60.83 ± 14.08 a

10% 18.54 ± 0.81 a 150.95 ± 14.96 b 165.92 ± 33.20 b

white clover
control 43.73 ± 8.47 a 23.46 ± 2.68 c 46.48 ± 6.47 b

10% 38.65 ± 3.78 a 8.72 ± 0.95 b 25.45 ± 2.64 a

20% 60.90 ± 10.18 a 2.47 ± 0.63 a 30.07 ± 4.56 ab

alfalfa
control 97.48 ± 20.25 ab 188.94 ± 1.74 b 17.77 ± 7.08 a

10% 51.35 ± 11.12 a 175.61 ± 0.78 a 24.64 ± 7.01 a

20% 115.74 ± 19.05 b 282.83 ± 1.20 c 49.91 ± 6.47 b

The data are mean values ± standard error. a–d Values without the same superscripts within each column differ
significantly (p < 0.05).

Table 6. Biochemical analysis of the treated weed species 14 days after the treatment.

Tested Plant Variable LP nmol/g FW SOD U/g FW nmol O2.-//g FW

common
lambsquarters

control 18.48 ± 2.38 a 79.52 ± 2.91 a 154.49 ± 8.15 a

10% 165.73 ± 0.67 b 334.59 ± 95.64 a 3366.46 ± 412.48 b

red-root amaranth
control 43.88 ± 2.81 b 80.56 ± 3.06 a 77.48 ± 1.87 a

10% 31.41 ± 2.42 a 101.83 ± 10.51 a 82.48 ± 19.03 a

cockspur grass
control 37.81 ± 1.41 a 142.56 ± 7.65 a 151.52 ± 45.71 a

10% 32.90 ± 0.20 a 126.47 ± 8.79 a 256.70 ± 89.31 a

20% 83.96 ± 3.75 b 313.76 ± 9.55 b 536.88 ± 20.80 b

black nightshade

control 48.92 ± 4.32 a 84.67 ± 2.40 a 305.66 ± 126.34 a

10% 48.46 ± 9.95 a 236.92 ± 58.78 b 1105.43 ± 9.45 a

20% 30.48 ± 2.91 a 179.82 ± 3.76 ab 644.68 ± 460.14 a

50% 35.23 ± 6.61 a 100.55 ± 2.79 a 420.61 ± 85.40 a

Johnson grass

control 37.40 ± 1.77 ab 77.59 ± 2.43 a 224.38 ± 14.53 a

10% 33.36 ± 0.12 a 166.76 ± 57.79 ab 241.64 ± 46.46 a

20% 74.51 ± 2.82 c 337.81 ± 31.68 c 731.04 ± 290.72 a

50% 43.63 ± 2.98 b 228.08 ± 3.93 b 338.85 ± 8.69 a

The data are mean values ± standard error. a–c Values without the same superscripts within each column differ
significantly (p < 0.05).

2.2.3. O2.-/Radicals

Without taking into account common purslane, for which there was not enough
plant material to carry out the analysis, the total quantity of removed superoxide an-
ion radicals was proportionally higher with the increase in the TH concentrations in
the seedlings of: wheat (319.63 nmol O2.-//g FW), onion (817.26 nmol O2.-//g FW),
carrot (165.92 nmol O2.-//g FW), alfalfa (49.91 nmol O2.-//g FW), common lambsquarters
(3366.46 nmol O2.-//g FW), and cockspur grass (536.88 nmol O2.-//g FW). The lowest
quantities of removed superoxide anion radicals were noted in the seedlings of sunflower
(56.08 nmol O2.-//g FW) and soybean (18.21 nmol O2.-//g FW) treated with 20% hydrolate,
in the seedlings of white clover (25.45 nmol O2.-//g FW) treated with 10% hydrolate, and
in those of maize (5.11 nmol O2.-//g FW) treated with 100% hydrolate. The results of the
tested seedlings of the remaining species showed no statistically significant differences in
terms of the quantity of removed superoxide anion radicals.
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3. Discussion

The most important components of TH are the phenols carvacrol and thymol. Car-
vacrol and thymol have the potential to be used as bioherbicides and may help to reduce
the use of synthetic herbicides and minimize damage to biodiversity and human health [32].
To date, these compounds have been associated with a phytotoxic effect on many weed and
cultivated species. It was found that oregano (Origanum acutidens (Hand.-Mazz.) Ietsw.)
essential oil and the phenols carvacrol and thymol had a phytotoxic effect on the seed ger-
mination and plant growth of red-root amaranth, common lambsquarters, and curly dock
(Rumex crispus L.) [33]. The pepper-rosmarin (Lippia sidoides Cham.) essential oil, which
contains thymol as its main component (84.90%), presented negative allelopathic effects on
garden lettuce (Lactuca sativa L.) culture [34]. The phytotoxic activity of the T. vulgaris plant
has been proven for various types of extracts and oils [35,36] and in soil experiments [37].

In this experiment, it was found that high concentrations of TH limited the seed
germination of some weed species, such as common lambsquarters, red-root amaranth, and
common purslane, whereas no negative effect was found on the germination of some field
and vegetable crops. Seed germination efficiency depends on the seed’s size and weight;
thus, large seeds contain more nutrients and are usually capable of faster germination and
growth than small seeds [38]. Moreover, seedlings of large-seeded species have higher
survival rates than small-seeded species [39]. This may partly explain the good germination
of sunflower, soybean, and maize seeds, even after treatment with higher concentrations of
the hydrolates, whereas, in small seeds of common lambsquarters, red-root amaranth, and
common purslane, germination was completely absent after these treatments. In addition,
germination of the mentioned weeds was significantly influenced by the concentrations
of thymol and carvacrol. By investigating the sensitivity of common lambsquarters and
red-root amaranth seeds to thymol and carvacrol, it was found that the germination was
completely absent when 10 mg thymol and 9.8 mg carvacrol were applied [33]. Other
studies concluded that ormadere (Tanacetum chiliophyllum var. chiliophyllum (Fisch. & Mey.)
Sch. Bip.) essential oil, which is also rich in borneol, also inhibits the germination of these
two weed species [40]. In a previous study [41], it was confirmed that carvacrol and thymol
are the main compounds that induce the total inhibitory effect against seed germination
of common purslane and cockspur grass. It was also found that carvacrol completely
inhibits the germination of common purslane seeds [42]. According to [43], thymol has
the greatest impact on cockspur grass, reducing its seed germination and shoot growth;
this was confirmed in our research, in which 50 and 100% of TH rich in thymol completely
inhibited the germination of this weed species, and 20% hydrolate reduced the seedlings’
length. In studies of the effect of oregano (Origanum vulgare L.) essential oil on Johnson
grass, it was noted that carvacrol-rich (73.7%) essential oil inhibited Johnson grass seeds’
germination (52.7%) [44]. Our research confirms the hypothesis that carvacrol, in addition
to thymol, plays a significant role in inhibiting the germination of this weed. Regarding
black nightshade, a previous study proved that conehead thyme (Thymbra capitata (L.) Cav.)
essential oil (which has carvacrol as its main compound) blocked black nightshade germi-
nation and seedling growth at 0.5 µL/mL [42]. Although our research showed that lower
concentrations of TH stimulate germination and seedlings’ growth, higher concentrations
(50 and 100%) led to their reduction.

Maize and sunflower showed the greatest resistance to the T. vulgaris hydrolates. The
highest concentration of the applied hydrolate did not completely inhibit the germination
of the maize seeds, although it was confirmed that thymol and carvacrol had an inhibitory
effect on maize seeds’ germination [41] and growth [45].

According to [46], borneol, carvacrol, and thymol significantly inhibited the garden
pepperwort (Lepidium sativum L.) radicle length by 10−4 M, and borneol reduced the
garden radish (Raphanus sativus L.) radicle length by the same amount. When the effect
of T. vulgaris essential oil on some crops and weeds was examined, it was found that
cockspur grass inhibited the radicle and seedling length, whereas, in the case of garden
radish, bell pepper (Capsicum annuum L.), and garden lettuce, seed germination was



Plants 2022, 11, 1782 10 of 15

completely absent [47]. Treatment with the individual components (thymol, carvacrol,
and borneol) showed that thymol stimulated the germination of garden radish seeds, but
thymol and carvacrol completely inhibited the seed germination of bell pepper, garden
lettuce, common lambsquarters, and common purslane. Moreover, thymol inhibited the
cockspur grass radicle and seedling length. In our research, TH inhibited the germination
and seedling growth of cockspur grass, common purslane, and common lambsquarters,
and those of the other tested weed species, which is in accordance with the results of the
above-mentioned studies.

Usually, the major components of hydrosol are the same as those present in the
essential oils [3]. For the three main components of the studied THS (thymol, borneol, and
carvacrol), the phytotoxic effects on some weed and cultivated species were determined.

Biochemical analysis showed that the tested crops expressed different sensitivity to
THS, with alfalfa being the most sensitive. By comparison, a statistically significant increase
in MDA accumulation was recorded in the tested weeds: common lambsquarters, cockspur
grass, and Johnson grass. This means that the THS provoked stress in these plants and
strongly affected the lipid peroxidation [48].

4. Materials and Methods
4.1. Tested Plants

In this experiment, the seeds of the field and vegetable crops, i.e., soybean, sunflower,
maize, wheat, carrot, onion, alfalfa, and white clover, and of the weeds, i.e., red-root
amaranth, common lambsquarters, common purslane, cockspur grass, Johnson grass, and
black nightshade, were used. The field and vegetable crop seeds were obtained from The
Institute of Field and Vegetable crops in Novi Sad, and the weed seeds were collected from
several localities during 2019 and 2020, and confirmed and deposited at the Herbarium of
The Department of Plant and Environmental Protection, Faculty of Agriculture, University
of Novi Sad.

4.2. Hydrolate

Thymus vulgaris cv. “N19” plants were grown at The Institute of Field and Vegetable
crops, Novi Sad (experimental field in Bački Petrovac). Steam distillation was performed
in a small-scale distillation unit according to [49]. After two hours (according to the
requirements of the European Pharmacopoeia), the essential oil was separated from the
aqueous layer and the hydrolate was purified using filter paper and stored in the refrigerator
at 8 ◦C during the whole experiment. Simultaneous distillation–extraction using the
Likens–Nickerson apparatus was performed to isolate the volatile compounds, which were
further analyzed by GC-FID and GC-MS, according to [50]. The main volatile compound in
T. vulgaris hydrolate was thymol with 73.6%, followed by borneol (7.1%), carvacrol (4.4%),
linalool (2.8%), terpinen-4-ol (2.8%), and 1-octen-3-ol (2.5%). The other 25 compounds were
present in percentage shares of less than 1.0% (Figure 2).
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The TH was diluted with distilled water in order to make 10, 20, 50, and 100% hydrolate
solution, which was undertaken shortly before setting the experiment.

4.3. Seed Germination and Seedlings Length

After sterilization, which was performed according to [51], 25 seeds of each plant
species were placed in a Petri dish (Ø 12 mm) on filter paper soaked with 10 mL of the
particular hydrolate solution, i.e., distilled water in the case of the controls, in four replicates.
The seeds of the tested weeds, and of the field and vegetable crops, were kept in a climate
chamber at 22/20 ◦C during a 12 h photoperiod and at 60 ± 2% humidity for 10 days.
The exceptions were Johnson grass and black nightshade, for which the seeds were kept
at a higher temperature (30/26 ◦C). The seed germination rate and seedling length were
recorded at the same time once a day during the whole experiment. The influence of TH on
the tested seeds was determined by measuring the seedlings’ shoot and root length [52],
and by recording the number of germinated seeds on the last day of the experiment.

In order to better understand the obtained results considering the germination of
the tested seeds of the cultivated and weed species, several germination indices were
calculated:

• Germination percentage (GP) [%] [53] represents the final germination percentage of
the seed population and is calculated according to Equation (1):

GP =
Ng
Nt

× 10 (1)

where Ng is the number of the germinated seeds and Nt is the total number of
the seeds.

• Coefficient of velocity of germination (CVG) [% day−1] [54] represents the time
required in order to reach the final germination percentage, and is calculated by
Equation (2):

CVG =
Σk

i=1 Ni
Σk

i=1 Ni × Ti
× 100 (2)

where Ti is the time from the start of the experiment to the ith interval; Ni is the
number of the seeds germinated in the ith interval (the number corresponding to the
ith interval, not the accumulated number); and k is the total number of the intervals.

• Germination index (GI) [%] [55] reflects the germination speed; thus, a higher GI value
indicates a faster germination rate. It is calculated according to Equation (3):

GI = (10 × n1) + (9 × n2) + · · ·+ (1 × n10) (3)

where n1, n2 . . . n10 represent the number of germinated seeds on the 1st, 2nd, and
subsequent days until the 10th day; 10, 9 . . . 1 are the weights that are given to the
number of germinated seeds on the 1st, 2nd, and subsequent days until the 10th day.

• Median germination time (t50) [time] [56] represents the time required in order to
reach the 50% of the final germination and is calculated by Equation (4):

t50 =
Ti +

(
N
2 − Ni

)
× (Tj − Ti)

Nj − Ni
(4)

where N is the final number of germinated seeds; Ni and Nj are the total number of
seeds germinated in adjacent counts at time Ti and Tj, when Ni < N

2 < Nj.

• Germination rate index (GRI) (% day−1) [57] (after a modification) reflects the germina-
tion speed without distinguishing between the days with higher or lower germination
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since the percentage is evenly spread across the time frame. It is calculated according
to Equation (5):

GRI =
G1

1
+

G2

2
+ · · ·+ Gx

x
(5)

where G1 is the germination percentage × 100 on the 1st day after sowing; G2 is
the germination percentage × 100 on the 2nd day after sowing, etc., and Gx is the
germination percentage × 100 on the xth day after sowing.

The seedlings of the tested plants were collected at the end of the experiment for the
biochemical analysis.

4.4. Biochemical Analysis of the Tested Plants

For the determination of the biochemical parameters, 2 g of the fresh plant mate-
rial (leaf) treated with TH, and the controls (untreated plants), were homogenized in
phosphate buffer (10 mL; 0.1 M, pH 7.0). After centrifugation, the supernatants were
used for the biochemical analyses. The biochemical parameters were determined spec-
trophotometrically using an UV/VIS spectrophotometer (Thermo Scientific Evolution 220
(Waltham, MA, USA)).

Superoxide dismutase (SOD) (EC 1.15.1.1) activity was determined according to the
method of [58] with minor modifications. One unit of SOD activity was defined as the
quantity of enzymes required to inhibit photochemical reduction of nitro blue tetrazolium
(NBT) chloride by 50%. The SOD activity was expressed in U/g of the fresh weight (FW).
The quantity of removed superoxide anion radicals was determined by the method of [59].
The total quantity of removed superoxide anion radicals (O2.-) is reported in nmol O2.- per g
of the fresh weight (nmol O2.-/g FW). The content of malondialdehyde (MDA), which
is the end product of the lipid peroxidation process, was measured at 532 nm using the
thiobarbituric acid (TBA) test [58]. The total quantity of TBA-reactive substances is reported
in nmol of the MDA equivalents per g of the fresh weight (nmol MDA/g FW).

4.5. Statistical Analysis

The values of the biochemical parameters are expressed as the mean ± standard error
of the mean, and were tested by ANOVA followed by the comparison of the means by
Duncan’s multiple range test (p < 0.05). The data were analyzed using TIBC STATISTICA
version 14.

5. Conclusions

The studied THS showed an inhibitory effect on the weed species, i.e., red-root ama-
ranth, common lambsquarters, common purslane, cockspur grass, Johnson grass, and
black nightshade.

Regardless of the applied THS concentration, sunflower seeds showed the highest
germination rates, whereas red-root amaranth seeds showed the highest sensitivity. The
lower hydrolate concentrations (10%) had a stimulative effect in terms of sunflower shoot
and root seedlings’ length, whereas, in the case of the other tested plants, a statistically
significant reduction was noted.

The main compounds present in TH (thymol, borneol, and carvacrol) were able to
inhibit the seed germination and seedling growth of several weeds, and exhibited a less phy-
totoxic effect on some of the tested field and vegetable crops. The tested hydrosol represents
a potential source of an alternative and environmentally acceptable weed management
compound for selective weed control.
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