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Abstract: Six mungbean parental lines and their fifteen F1s produced from half-diallel mating design
were investigated for combining ability and heterosis in terms of a yield and its components. Results
showed highly significant variations among the parents and F1s, suggesting a wide genetic variability
for the studied characters. Analysis of variance indicated that genotypes mean square values, general
combining ability (GCA) and specific combining ability (SCA) were highly significant (p ≤ 0.001)
for all measured traits except for days to flowering, days to maturity, and pod length indicating
genetic diversity of parents and both additive and non-additive gene effects in the inheritance of
the measured traits. A higher effect of SCA than GCA for plant height and seeds per pod suggests
the preponderance of non-additive gene effects in the expression of characters. Based on per se
performance and GCA, BARI Mung-1, PS-7, and BMXK1-14004 were the best general combiners for
yield per plant. In the context of SCA, hybrids BMXK1-14004 × Sonali mung, BMXK1-14004 × PS-7,
BMXK1-14004 × BINA Mung-8, Sukumar × PS-7, and BARI Mung-1 × BINA Mung-8 were good
specific combiners. BMXK1-14004 × Sonali mung and BMXK1-14004 × PS-7 were the best heterotic
hybrids for yield and yield-contributing traits. These parents and crosses could be utilized for further
use in breeding programs to improve yields in mungbean crops.

Keywords: GCA; heterosis; half-diallel; mungbean; SCA; yield and yield-related traits

1. Introduction

Grain legumes, also known as mungbeans (Vigna radiata L. Wilczek), are a short-
duration crop cultivated in major cropping systems that provides edible, nutritive, and non-
bombastic food values compared with other pulses and comprises a significant wellspring
of grain-based diets in Asia [1]. It is a rich source of protein with an essential amino acid
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profile and is wealthy in lysine [2]. Access to mungbean protein may improve the plasma
lipid profile by normalizing insulin affectability [3]. It also contains unsaturated fats, which
advance the development and health of humans [4].

The mungbean growing area in the world is about 7.3 million ha, and the mean yield
is 721 kg/ha. India and Myanmar account for 30% of the worldwide output of 5.3 million
tons [5]. Mungbean is the second-most important pulse crop in Bangladesh, with a total
area and production of 0.24 million ha and 0.28 million tons, respectively, with a national
average production of 1160 kg per ha [6]. Planting in marginal land, low yield potential,
indeterminate growth habits, canopy design, low partitioning efficiency, and other biotic
and abiotic stresses reduce the mungbean yield in Bangladesh. The main constraints
for achieving higher yields are the lack of exploitable genetic variability, appropriate
ideotype for various crop systems, unavailability of improved seed quality, and a narrow
genetic base as a result of repeated use by a small group of parents with a strong link in
crossing programs [7]. Plant breeders create variability to select superior genotypes in crop
improvement programs [8–10]. The achievement of any breeding program depends on the
degree of diversity and variability. A wide range of variability and diversity across the
mungbean germplasm was reported in the literature [11–13]. The extent of variation in
the heritable components is crucial for growers in crop improvement programs [14,15]. In
the literature, several papers detailing the qualitative and quantitative traits in terms of
diversity and variability were reported, such as agronomic traits [16], minerals [17], grain
yield [18], pigments [19], proximate compositions [20], vitamins [21], flavonoid content [22]
phenolics [23], and antioxidant activity [24–28]. Hence, there is an urgent need to boost
production and productivity for food and nutritional security, which improves the genetic
yield potential of current varieties by restructuring their plant type. As a result, plant
breeders must employ heterosis to create superior hybrids for their plants [29].

A varietal improvement program depends on the selection of genotypes and their high
combining ability. Combining ability is an influential tool for identifying the best combiner,
application of suitable crosses to assemble required genes, or accomplishing heterotic
segregates [30–32]. The research of combining ability in diallel patterns is beneficial since it
elucidates the nature and magnitude of different types of gene activities [33]. The majority
of diallel investigations on gene activity and combining ability in mungbeans have shown a
high prevalence of variability due to their general combining ability (GCA) [34]. The impact
of the GCA is limited by additive genetic interactions, while the SCA effect is constrained
by non-additive genetic interactions [35].

Heterosis provides the breeder instructions for selecting the optimum cross-combination
in the first generation. In addition, the extent of heterosis offers the foundation for ge-
netic information and guidance for selecting desirable hybridization parents. Several
professionals have used the combining ability to analyze the genetic impact and genetic
value of parents in various crops. The findings were well matched with earlier publica-
tions [11–13,34]. Combining ability and heterosis has been successfully used to reproduce
mungbeans [11–13]. However, study data on mungbean are few in number. Considering
these issues, this trial was undertaken to determine the degree of combining ability and
heterosis of mungbean lines for yield, as well as the nature of gene activity associated with
mungbean genotypes using a diallel mating design.

2. Results and Discussions
2.1. Analysis of Variance (ANOVA) for Combining Ability

Highly significant ANOVA for all the parameters was observed, which indicated the
preponderance of genetic variations across the genotypes and justified the inclusion of the
genotypes for a combining ability study. A wide range of variability was also reported in
different mungbean genotypes [11–13,29], rice germplasm [36–38], maize [39], and other
crops [40,41]. The analysis of variance (Table 1) shows highly significant variations among
the parents and offspring for all the studied characters indicating the presence of genetic
variability in the material under study. The analysis of variance for combining ability
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and asses of genetic difference components of each character is presented in Table 1. The
statistical analyses discovered exceptionally high differences between the parents and their
hybrids (F1) for all the characters (Table 1). These findings provide proof of the closeness
of a highly significant amount of genetic variability among the mungbean parents and
their respective hybrids (F1), which may encourage genetic improvement utilizing such
genetic pools of mungbeans. These outcomes were in agreement with those reported by
Latha et al. [11], Kumar et al. [42], Sopan et al. [13], and Viraj et al. [34].

Table 1. Analysis of variance for combining ability of different plant characters in mungbeans.

Source of
Variance d.f.

Mean Square

DF DM Plant Height Pods per Plant Pod Length Seeds per Pod Yield per Plant

Replications 2 3.45 5.54 0.25 2.49 0.03 2.78 0.03
Genotypes 20 51.78 ** 44.23 ** 248.19 ** 265.22 ** 2.74 ** 256.73 ** 2.66 **
Parents 5 29.12 ** 66.45 ** 301.60 ** 73.81 ** 5.65 ** 80.89 ** 5.29 **
Crosses 14 65.67 ** 38.43 ** 102.88 ** 346.93 ** 1.89 ** 248.05 ** 1.82 **
Error 40 24.54 ** 24.23 ** 1.58 3.39 0.51 5.58 0.22
GCA 5 14.00 ** 14.43 ** 72.28 ** 109.02 ** 1.41 * 40.06 ** 1.45 *
SCA 15 5.67 10.22 85.22 ** 81.26 ** 0.57 100.42 ** 0.52 **
Error 40 0.87 0.76 0.50 1.11 0.15 1.65 0.07
GCA/SCA 2.47 1.41 0.85 1.34 2.47 0.40 2.79

d.f.—Degrees of freedom, DF—days to flowering, DM—days to maturity, GCA—General combining ability,
SCA—specific combining ability, *,** Significant at 5% and 1% level of probability, respectively.

The mean square of general combining ability (GCA) and specific combining ability
(SCA) were significant for all the characters. SCA, DF, DM, and pod length had no sig-
nificant difference (Table 1) and showed non-additive gene effects for the expression of
these characters. The GCA fluctuation contains an additive epistasis effect, while the SCA
difference contains a non-additive effect as outlined by Griffing [43]. Thus, the significant
assessments of both GCA and SCA variances indicated that both the additives and non-
additive nature of gene actions were engaged in controlling these characters in studied
mungbean genotypes. These outcomes affirmed those discoveries by Reddy et al. [33] Nath
et al. [44], Viraj et al. [34], and Sopan et al. [13]. The assessments of differences may be
because of higher general combining ability than the specific combining ability for all the
characteristics except plant height and seeds per pod brought up to be the dominance of
non-additive gene effects in the outflow of these characters.

The GCA/SCA proportion was utilized to explain the idea of the genetic differences
involved. The GCA/SCA proportions were greater than the unity for the number of pods
per plant, pod length, and seed yield per plant, demonstrating that the additive types of
the gene actions were increasingly significant in the inheritance of these attributes than
non-additive types. However, the GCA/SCA proportions were lower than unity for plant
height and number of seeds per pod, demonstrating the prevalence of non-additive gene
effects in the expression of these characteristics, which were corroborative with findings
concerning rice [45–47]. Consequently, the selection can be fruitful in the improvement
of our mungbean materials. In any case, it could be emphasized that the GCA/SCA
proportion may not generally change the appearance of gene action for specific characters.
The current outcomes are corroborative of the previous findings in mungbeans [11,12,48].

2.2. Mean Evaluation of Parents and Their Crosses

The mean of yield and yield-contributing characters for parents and their F1s are
presented in Table 2. In the case of days to flowering, the P2 × P6 cross indicated early
flowering and P3 × P6 as late flowering. The cross P4 × P5 was selected as early maturing
with 66.5 days, and the P5 × P6 cross was late maturing with 79.5 days for maturity. The
parent P4 (Sukumar) had the tallest plants (61.2 cm), while the crosses P3 × P6 and P3 × P5
recorded the lowest values 33.6 and 34.5 cm, respectively. The number of pods per plant
ranged from 12 to 42, whereas F1 of P1 × P4 was the most superior and F1 of P5 × P6
produced the lowest number of pods per plant. P1 × P3 produced the minimum number of
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seeds per pod (45), followed by P2 (BARI Mung-1), and a maximum (64) was recorded in
crosses P3 × P4. The P4 × P5 had the maximum pod length (8.35 cm), while Sonali mung
(P6) scored the lowest (5.60 cm). The higher seed yield per plant (9.9 g) was found from
(P1 × P5), which was a predominant cross-combination and lower yield from the P6 parent
(6 g). These results could affirm the chance of determination for these characters through
the hybridization of particular parents. In addition, it suggests plant breeders assemble
future breeding work for high yield in mungbean crops.

Table 2. Mean ± standard deviation (sd) of days to flowering, days to maturity, plant height, pods
per plant, pod length, seeds per pod, and yield per plant of parents and their F1 progenies.

Parents/Crosses Days to
Flowering

Days to
Maturity Plant Height Pods per Plant Pod Length Seeds per Pod Yield per

Plant

Parents

P1 43.5 ± 1.20 70.5 ± 1.17 40.5 ± 2.20 34.2 ± 2.17 8.1 ± 0.56 11 ± 1.16 7.8 ± 0.46
P2 43.0 ± 1.72 71.5 ± 1.46 46.4 ± 0.72 21.4 ± 0.46 8.5 ± 0.51 10 ± 1.53 8.9 ± 0.36
P3 42.5 ± 2.19 69.5 ± 2.08 50.6 ± 0.19 29.0 ± 1.08 8.1 ± 0.85 12 ± 2.00 7.8 ± 0.48
P4 43.5 ± 1.71 68.5 ± 1.88 61.2 ± 0.71 33.4 ± 0.88 6.2 ± 0.24 12 ± 3.00 7.1 ± 0.83
P5 42.0 ± 2.51 71.5 ± 1.53 38.8 ± 1.51 15.0 ± 0.53 9.9 ± 0.70 11 ± 2.00 9.9 ± 0.55
P6 48.5 ± 2.00 78.5 ± 1.70 35.2 ± 1.00 24.2 ± 0.70 6.1 ± 0.85 11 ± 1.53 6.0 ± 0.44

Crosses

P1 ×P2 44.5 ± 2.40 79.5 ± 2.10 41.66 ± 1.40 34.20 ± 1.10 8.00 ± 1.12 10 ± 2.08 8.60 ± 0.25
P1 ×P3 44.0 ± 2.38 79.0 ± 1.45 37.00 ± 1.38 26.75 ± 0.45 8.06 ± 0.45 9 ± 2.00 8.25 ± 0.40
P1 × P4 44.5 ± 2.92 76.5 ± 1.85 46.75 ± 0.92 42.75 ± 0.85 7.38 ± 0.54 10 ± 2.03 7.80 ± 0.30
P1 × P5 48.5 ± 2.47 68.5 ± 1.78 43.25 ± 1.47 36.25 ± 0.78 8.88 ± 0.72 12 ± 2.00 9.90 ± 0.16
P1 × P6 49.0 ± 2.31 70.5 ± 2.00 39.50 ± 0.31 36.25 ± 1.00 8.60 ± 0.49 12 ± 2.52 8.70 ± 0.55
P2 × P3 44.5 ± 3.05 67.5 ± 3.08 37.00 ± 2.05 39.00 ± 2.08 9.30 ± 0.71 12 ± 3.00 8.90 ± 0.43
P2 × P4 43.5 ± 1.76 76.5 ± 2.55 46.75 ± 0.76 31.60 ± 1.55 8.30 ± 0.68 12 ± 1.53 6.90 ± 0.10
P2 × P5 43.5 ± 1.62 76.5 ± 2.20 43.25 ± 0.62 18.75 ± 1.20 9.25 ± 0.78 10 ± 2.08 8.60 ± 0.47
P2 × P6 41.5 ± 1.79 76.0 ± 1.80 39.50 ± 0.79 26.25 ± 0.80 8.60 ± 0.65 10 ± 1.00 6.75 ± 0.23
P3 × P4 43.5 ± 2.27 76.5 ± 3.67 49.75 ± 2.27 31.75 ± 2.67 8.30 ± 1.01 13 ± 2.52 6.75 ± 0.45
P3 × P5 42.5 ± 2.11 76.5 ± 2.34 34.50 ± 1.11 25.00 ± 1.34 8.30 ± 0.72 11 ± 2.52 7.25 ± 0.81
P3 × P6 49.0 ± 2.22 78.5 ± 1.62 33.60 ± 1.22 35.20 ± 0.62 6.80 ± 0.56 11 ± 1.00 6.30 ± 0.46
P4 × P5 47.5 ± 2.15 66.5 ± 2.51 57.50 ± 1.15 25.50 ± 1.51 10.40 ± 0.81 12 ± 1.53 9.20 ± 0.47
P4 × P6 43.0 ± 1.77 74.5 ± 1.79 44.50 ± 0.77 25.75 ± 0.79 6.70 ± 0.42 11 ± 2.08 6.50 ± 0.34
P5 × P6 44.0 ± 1.27 79.5 ± 1.75 43.33 ± 0.27 12.00 ± 0.75 8.30 ± 0.51 12 ± 3.21 6.83 ± 0.27

Mean 44.57 73.93 43.36 28.77 8.19 12.90 7.84
LSD at 5% 3.05 2.67 2.07 3.04 1.16 1.90 0.77

2.3. General Combining Ability Effects

The GCA reveals the additive nature of gene action. In the present investigation of
mungbeans, the highly significant and positive extent of GCA for the number of pods
per plant, pod length, number of seeds pods−1, and seed yield per plant desired, while
profoundly significant and negative values for days to maturity and plant height are
suitable (Table 3). According to Mondal et al. [49], the synchrony of pod maturity in
mungbeans is achievable when the plant is short in height and the same type or has one
branch; thus, emphasis should be placed on the development of this attribute in mungbean-
breeding programs. Parent P1, P5, P4, and P2 showed a highly significant and positive effect
of GCA on the number of pods per plant, plant height, and pod length seed yield per plant,
respectively, indicating that those genotypes could be used as a good general combiner
in the breeding program. In addition, P2 and P5 also were shown to be a good parental
combiner for dwarfness in mungbeans, having profoundly significant and negative GCA
values. As a result, it was seen that none of the parents were demonstrated to be a great
general combiner for all the characteristics, while parents P4, P5, and P2 may be revealed
as practically good general combiners. However, parent P6 was the very lowest general
combiner for all the characters. These results are similar to previous findings of Gupta
et al. [50], Patil et al. [12], Kumar and Prakash [51], and Sujatha and Kajjidoni [52]. These
parents would be intensely utilized for higher yield.
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Table 3. Estimates of general combining ability effects of the parents for yield and different characters.

Parents
Characters

DF DM Plant Height Pods per Plant Pod Length Seeds per Pod Yield per Plant

P1 −0.37 −0.03 2.86 ** 6.11 ** −0.23 −0.24 0.34 *
P2 −1.28 ** 1.54 ** −2.92 ** −1.49 ** 0.35 * 0.51 0.36 *
P3 −0.55 −0.86 −2.25 ** 1.68 ** 0.09 0.67 −0.05
P4 2.54 ** 2.24 ** 3.97 ** 0.75 −0.50 * 3.68 ** −0.50 **
P5 −0.27 1.22 * −2.61 ** −3.21 ** 0.59 ** −2.21 ** 0.46 **
P6 −0.26 −0.81 0.93 ** −3.86 ** −0.29 −2.43 ** −0.51 **

SE Gi 0.27 0.51 0.23 0.34 0.13 0.41 0.08
SE Gi-Gj 0.42 0.69 0.35 0.53 0.20 0.64 0.13

DF—days to flowering, DM—days to maturity, *, ** Significant at 0.05 and 0.01 levels of probability, respectively.

2.4. Specific Combining Ability Effect

The SCA indicates the role of non-additive gene action in the expression of characters.
A study of SCA exposed that none of the hybrids displayed a favorable SCA effect for
all the studied characters (Table 4). Among fifteen crosses, P1 × P6, P3 × P6, and P1 × P3
gave a highly significant and negative assessment of SCA effects for days to maturity
and plant height (Table 4). For the number of pods per plant, P1 × P5, P2 × P3, P3 × P6,
P1 × P4, and P2 × P4 gave highly significant and positive SCA effects. The cross P2 × P4
gave the highly significant and positive measures of SCA effects for pod length; whereas
P2 × P3, P3 × P6, P1 × P5, P2 × P4, and P2 × P5 for the number of seeds per pod. Five
crosses (P1 × P6, P1 × P5, P4 × P5, P1 × P3, and P2 × P3) out of fifteen crosses had the
significantly best SCA effect for seed yield per plant. These crosses could be utilized in
breeding programs to improve studied traits. It was noteworthy that practically all the best
crosses in the event of respective attributes also displayed desirable per se performance for
individual traits. It was notable that none of the best hybrids had included the two parents
with good × good GCA effects showing non-additive × additive interaction. Among all
the crosses, just five crosses P1 × P6, P1 × P5, P2 × P3, P3 × P6, and P2 × P4 displayed
the desirable extent of SCA effects for the highest five attributes out of considered seven
characteristics, including average × poor, good × average combiners. These results are
getting support from the findings of mungbean [11–13,37,49]. This may be because of
epistasis like additive × dominance type of interaction. These crosses could be exploited to
get desirable recombinants from the distinct population.

2.5. Heterosis

All traits showed variations between parents and cross-combinations because of
heterosis, which were corroborative to the findings of mungbean [29,33]. Considerable
positive heterosis compared with better-parent estimates would be enthusiasm for pods per
plant, pod length, seeds per pod, and yield per plant, whereas it is helpful to have significant
negative heterosis compared with better-parent esteems for days to flowering, days to
maturity, and plant height. Among the fifteen combinations, eleven hybrids demonstrated
negative heterosis compared with the better-parent for plant height and six for considerable
days to flowering, whereas six combinations for pods per plant, eight combinations for pod
length, five combinations for seeds per pod and four combinations for yield per plant had
positive heterosis compared with better-parent esteems, as expected with a predominance
of additive effects. The heterosis esteems assessed for explored traits in F1 combinations
are given in Table 5.



Plants 2022, 11, 1774 6 of 13

Table 4. Specific combining ability effects of the different 15 crosses for yield and its related traits
in mungbean.

Crosses
Characters

DF DM Plant Height Pods per Plant Pod Length Seeds Per Pod Yield per Plant

P1 × P2 −0.75 0.85 2.74 ** 0.45 0.04 −16.45 ** −0.01
P1 × P3 2.83 ** 2.01 −2.57 ** −10.64 ** 0.54 −2.95 ** 0.77 *
P1 × P4 −0.09 −0.83 0.95 6.37 ** 0.72 0.05 0.42
P1 × P5 0.26 −0.39 4.03 ** 24.31 ** −1.42 5.93 ** 0.82 *
P1 × P6 2.22 ** −3.08 * −3.27 ** −6.10 ** −1.11 ** 2.83 0.84 *
P2 × P3 1.38 3.35 * 7.58 ** 9.35 ** −1.14 * 6.30 ** 0.68 *
P2 × P4 2.25 ** 6.68 *** 0.38 2.65 * 0.53 * 4.63 ** −0.93 **
P2 × P5 0.08 5.23 ** 9.74 * −6.53 ** 0.28 3.18 * −0.05
P2 × P6 2.68 ** 2.04 1.59 2.28 0.41 2.74 −0.74 *
P3 × P4 3.02 ** −0.08 8.08 ** −0.20 0.83 −11.20 ** −0.37
P3 × P5 −0.64 −0.56 0.23 −5.64 ** −0.26 −20.66 ** −0.85 *
P3 × P6 0.44 −0.86 −3.23 ** 8.02 ** 0.01 6.24 ** −0.71 *
P4 × P5 4.36 *** 2.48 17.16 ** −3.24 * −0.26 −2.33 0.78 **
P4 × P6 4.36 *** 5.29 *** 0.66 −0.76 −0.37 −4.76 ** 0.19
P5 × P6 −0.34 −0.71 5.85 ** −10.06 ** 0.56 −11.22 ** −0.45

SE Sij 0.74 1.29 0.63 0.93 0.35 1.14 0.23
SE Sij-Sik 1.11 1.93 0.94 1.39 0.52 1.70 0.35
SE Sij-Skl 1.03 1.79 0.87 1.29 0.48 1.57 0.32

DF—days to flowering, DM—days to maturity, *, **, *** Significant at 0.05, 0.01, and 0.001 levels of
probability, respectively.

The scale of relative heterosis was observed as −9.29% (P2 × P6) to 13.60% (P1 × P5)
for days to flowering. The heterobeltiosis among the hybrids varied between −14.43%
(P2 × P6) and 11.49% (P1 × P5). The information revealed that out of 15 hybrids, 9 and
5 hybrids indicated significant desirable heterosis over mid-parent and better-parent indi-
vidually. The relative heterosis extended from −1.37% (P1 × P6) to 12.86% (P1 × P3) for
days to maturity. Heterobeltiosis differed between −10.19% (P1 × P6) and 12.06% (P1 × P3).
The ata indicated that four and six hybrids displayed significant negative heterosis over
mid-parent and better-parent, respectively. All the studied characters demonstrated pos-
itive and negative mid-parent and better-parent heterosis in all the hybrids. Heterosis
esteems among all the crosses for plant height differed from −31.00% to 20.27% and −43.63
to 14.69% for MP and BP heterosis, individually. Desirable highly negative MP heterosis
and BP heterosis for plant height were found from the crosses P3 × P5. This heterotic effect
for plant height demonstrates that short plants can be developed by utilizing this hybrid.
MP and BP heterosis esteem fluctuated from −38.78% to 54.76% and −50.41 to 34.48%,
respectively for pods per plant. Eleven hybrids showed positive relative heterosis and six
hybrids demonstrated positive heterobeltosis for pods per plant, showing that the genes
with negative effects were dominant for this attribute in the crosses. The cross P2 × P3
showed desirable positive MP (54.76%) and BP (34.48%) heterosis followed by P1 × P4 for
pods per plant.

MP and BP heterosis esteem ranged from −4.23% to 36.07% and −16.05% to 38.07%
for pod length, respectively. Thirteen hybrids expressed positive heterotic effects over mid-
parent and eight over better-parent for pod length. The degree of heterosis for this character
was similarly low, and the parental value for this characteristic was also low, which created
restrictions on improving this attribute in the material utilized in this experiment. The
F1 hybrid P5 × P6 showed the highest MP and BP heterotic effects of 36.07% and 38.07%,
respectively, followed by the cross P4 × P5. Kumar et al. [7] and Srivastava and Singh [29]
found similar results. In the case of the number of seeds per pod, the MP and BP fluctuated
from −19.64% to 14.81% and −25.00% to 11.54%, respectively. For the number of seeds
per pod, seven hybrids exceeded the mid-parent and five over the better-parent. The
highest relative heterotic effect and heterobeltosis were exposed by the hybrid P1 × P5,



Plants 2022, 11, 1774 7 of 13

demonstrating that this cross may be misused for improving this attribute. Similar results
for seeds per pod have been found by Dhuppe et al. [53], Zubair et al. [54], Kumar et al. [7],
and Yadav et al. [55].

Table 5. Heterosis values (%) over mid-parent and better-parent for important characters of fifteen
mungbean crosses.

Crosses
DF DM Plant Height Pods per Plant

MP (%) BP (%) MP (%) BP (%) MP (%) BP (%) MP (%) BP (%)

P1 × P2 2.89 ** 2.30 * 11.97 ** 11.19 ** −4.12 ** −10.91 ** 23.02 ** −2.92 **
P1 × P3 2.33 * 1.15 NS 12.86 ** 12.06 ** −18.77 ** −29.86 ** −15.35 ** −21.78 **
P1 × P4 2.30 * 2.30 * 10.07 ** 8.51 ** −8.06 ** −28.42 ** 26.48 ** 25.00 **
P1 × P5 13.45 ** 11.49 ** −3.52 ** −4.20 ** 9.08 ** 6.94 ** 47.36 ** 5.99 **
P1 × P6 6.52 ** 1.03 NS −5.37 ** −10.19 ** 4.36 ** −2.64 * 24.14 ** 5.99 **
P2 × P3 4.09 ** 3.49 ** −4.26 ** −5.59 ** −23.71 ** −28.04 ** 54.76 ** 34.48 **
P2 × P4 0.58NS 2.30 * 9.29 ** 6.99 ** −16.37 ** −25.85 ** 15.33 ** −5.39 **
P2 × P5 2.35 * 1.16 NS 6.99 ** 6.99 ** −13.50 ** −35.90 ** 3.02 ** −12.38 **
P2 × P6 −9.29 ** −14.43 ** 1.33 NS −3.18 ** 6.76 ** 1.89 NS 15.13 ** 8.47 **
P3 × P4 1.16 NS −2.30 * 10.87 ** 10.07 ** −11.00 ** −20.48 ** 1.76 NS −4.94 **
P3 × P5 0.59 NS −2.35 * 8.51 ** 6.99 ** −31.00 ** −8.60 ** 13.64 ** −13.79 **
P3 × P6 7.69 ** 1.03 NS 6.08 ** −1.27 NS −9.19 ** −74.59 ** 32.33 ** 21.38 **
P4 × P5 11.11 ** 9.20 ** −5.00 ** −6.99 ** 15.00 ** 37.40 ** 5.37 ** −23.65 **
P4 × P6 −6.52 ** −11.34 ** 1.36 NS −5.10 ** 20.27 ** 15.41 ** −10.59 ** −22.90 **
P5 × P6 −2.76 ** −9.28 ** 6.00 ** 1.27 NS 17.11 ** 117.11 ** −38.78 ** −50.41 **

Crosses
Pod Length Seeds per Pod Yield per Plant

MP (%) BP (%) MP (%) BP (%) MP (%) BP (%)

P1 × P2 2.56 * −5.88 * 2.00 NS −1.92 NS 2.99 ** −3.37 **

P1 × P3 6.05 ** −0.49 NS −19.64 ** −25.00 ** 5.77 ** 5.77 **

P1 × P4 10.98 ** 3.94 ** −14.04 ** −20.97 ** 4.70 ** 12.82 **

P1 × P5 11.00 ** −0.22 NS 14.81 ** 10.71 ** 11.86 ** 20.20 **

P1 × P6 13.16 ** 6.17 ** 11.54 ** 11.54 ** 26.09 ** 11.54 **

P2 × P3 12.05 ** 9.41 ** 9.26 ** −1.67 NS 6.59 ** −3.37 **

P2 × P4 12.93 ** −2.35 * 7.27 ** −4.84 ** −13.75 ** −22.47 **

P2 × P5 6.32 ** 3.93 ** −7.69 ** −14.29 ** −8.51 ** −13.13 **

P2 × P6 17.81 ** 1.18 NS −4.00 ** −7.69 ** −9.40 ** −24.16 **

P3 × P4 16.08 ** 2.47 * 4.92 ** 3.23 ** −9.40 ** −13.46 **

P3 × P5 −2.35 * −6.74 ** −6.90 ** −10.00 ** −18.08 ** −26.77 **

P3 × P6 −4.23 ** −16.05 ** −7.14 ** −13.33 ** −8.70 ** −19.23 **

P4 × P5 16.85 ** 16.85 ** 3.39 ** 4.84 ** 8.24 ** −7.07 **

P4 × P6 8.94 ** 8.06 ** −8.77 ** −16.13 ** −0.76 NS −8.45 **

P5 × P6 36.07 ** 38.07 ** 12.96 ** 8.93 ** −14.09 ** −31.01 **

DF—days to flowering, DM—days to maturity, MP—mid-parents, BP—better-parents and NS—Non-significant; *,
** Significant at 0.05 and 0.01 levels of probability, respectively.

The values of relative heterosis for the yield of hybrids ranged from −18.08% to 26.09%,
and heterobeltosis extended from −31.01% to 20.20% for seed yield per plant. Among
all the crosses, four hybrids exceeded both mid-parent and a better-parent. The hybrids
P1 × P6 showed the highest MP, and P1 × P5 hybrids indicated the greatest BP heterotic
effect, followed by the cross P1 × P4. These discoveries were similar to earlier reports by
Dhuppe et al. [53], Zubair et al. [54], and Kumar et al. [7].

The current experiment demonstrates that the undesirable negative mean heterosis is
observed in all the attributes for both mid-parent and better-parent heterosis except for pod
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length and the number of seeds per pod for mid-parent; however, the expected positive
mean heterosis was reached in terms of plant height. Among these lines, a more diversified
germplasm is required to be imported for use in the breeding system to improve these
yield contributing characteristics in mungbean. Subsequently, the cross P4 × P5 shows
high positive heterotic effects for pod length and grain yield per plant, and high negative
heterotic effects for plant height may be exploited for the above characteristics to grow
high-yielding mungbean cultivars.

3. Materials and Methods
3.1. Experimental Site and Climate

The experiment was conducted at the pulses breeding section at Pulses Research Center
(PRC) of Bangladesh Agricultural Research Institute (BARI), Ishurdi, Pabna, situated at
24.07◦ north latitude and 89.03◦ east longitude having an altitude of 11.58 m above the
mean sea level. The experimental site is a part of the High Ganges River Floodplain agro-
ecological zone (AEZ-11) of Bangladesh, consisting of calcareous soil. The field is clay loam
with low-to-medium fertility (Table 6), and the weather data of the developing seasons are
presented in Figures 1 and 2.

Table 6. Soil properties at 0–15 cm soil depth.

Particle Size Distribution Textural
Class

Bulk Density
(g/cm3) pH SOM

(g/kg)
Total N
(g/kg)

Exchangeable
(Meq 100 g/soil) Other Nutrients (mg/kg)

Sand (%) Silt (%) Clay (%) P S Zn B

26 18 56 Clay
loam 1.42 7.3 1.25 0.065 0.17 12 14 0.57 0.17
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Figure 1. Monthly average maximum and minimum temperature (◦C), relative humidity [RH (%)],
and total rainfall prevailed during 2015. Temp.—temperature, Max—maximum, Min—minimum.

3.2. Experimental Materials and Crossing Technique

The plant materials comprised six genotypes of grain legume (Vigna radiata L.): four
locally collected lines (viz. BMXK1 14004, BARI Mung-1, BINA Mung-8 and Sonali Mung),
and two exotic lines (viz. Sukumar and PS-7). The mungbean parents were selected for
the crossing program based on diverge morphology, seed size, color, and tolerant ability.
(Table 7). The cross-achievement rate was lower in the open field under regular natural
conditions; consequently, the crosses endeavored at good field conditions for acceptable
emasculation, crossing, and normal pod development in a greenhouse during spring 2015
in a half-diallel fashion (excluding reciprocals) to obtain all of the possible combinations
(complete of 15 F1s crosses). Hand emasculation and hand pollination were used to produce
the seeds of 15 hybrids (Table 8). The 15 F1 crosses alongside their 6 parents established
21 lines were developed in a randomized block design with three replications during the
developing periods of 2016 at the PRC research field, Bangladesh Agricultural Research
Institute (BARI), Ishurdi, Pabna.
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Figure 2. Monthly average maximum and minimum temperature (◦C), relative humidity [RH (%)],
and total rainfall prevailed during 2016. Temp.—temperature, Max—maximum, Min—minimum.
(Source: Bangladesh Sugar Crop Research Institute).

Table 7. Parents, pedigree, sources utilized in the investigation materials, and their exceptional highlights.

Sl. No. Symbol Parents/Cultivars Pedigree Sources Special Features

1 P1 BMXK1-14004 Local cross BARI, BD

High-yielding, medium seed,
drought, and mungbean
yellow mosaic virus
(MYMV)-tolerant

2 P2 BARI Mung-1 Selection from
NM92 BARI, BD High-yielding, bold seed and

MYMV-tolerant

3 P3 BINA Mung-8 MB149 with
400 Gy dose BINA, BD High-yielding, small seed,

and MYMV-tolerant

4 P4 Sukumar T-1 × K-441-11 IIPR, India High-yielding, bold seed and
MYMV-tolerant

5 P5 Pusa-7 (PS-7) Selection from
P-4092 IIPR, India High-yielding, small seed,

MYMV susceptible

6 P6 Sonali mung Local Local
Low-yielding, small seed and
golden-colored,
MYMV-tolerant

BARI, BD—Bangladesh Agricultural Research Institute, Bangladesh; BINA, BD—Bangladesh Institute of Nuclear
Agriculture, Bangladesh; IIPR, India—Indian Institute of Pulses Research, India.

Table 8. Diallel crosses and their cross combinations.

Sl. No. Crosses Cross Combinations

1 P1 × P2 BMXK1-14004 × BARI Mung-1
2 P1 × P3 BMXK1-14004 × BINA Mung-8
3 P1 × P4 BMXK1-14004 × Sukumar
4 P1 × P5 BMXK1-14004 × Pusa-7 (PS-7)
5 P1 × P6 BMXK1-14004 × Sonali mung
6 P2 × P3 BARI Mung-1 × BINA Mung-8
7 P2 × P4 BARI Mung-1 × Sukumar
8 P2 × P5 BARI Mung-1 × Pusa-7 (PS-7)
9 P2 × P6 BARI Mung-1 × Sonali mung

10 P3 × P4 BINA Mung-8 × Sukumar
11 P3 × P5 BINA Mung-8 × Pusa-7 (PS-7)
12 P3 × P6 BINA Mung-8 × Sonali mung
13 P4 × P5 Sukumar × Pusa-7 (PS-7)
14 P4 × P6 Sukumar × Sonali mung
15 P5 × P6 Pusa-7 (PS-7) × Sonali mung
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3.3. Crop Management

Each genotype was planted by dibbling the seeds in two rows of 3 m in length, with a
spacing of 30 cm between the lines and 7 cm between the plants. The land was fertilized
with 20-40-20-10 N-P-K-S kg per ha as urea, triple superphosphate, muriate of potash, and
gypsum, respectively, at final land preparation. After seed-sowing, flood irrigation was
given to ensure seed germination. Mulching was done, and the soil outside the layers was
broken. Thinning was done to maintain a single seedling per hill 20 days after sowing.
Irrigation, weeding, and plant protection measures were taken as requirements during the
development period, according to BARI [56] recommendation.

3.4. Data Collection

The data for days to flowering (DF), days to maturity (DM), plant height, number
of pods per plant, pod length, number of seeds per pod, and seed yield per plant were
recorded from ten randomly selected plants and then averaged to a per-plant basis. Pod
length (cm) and seeds per pod were recorded on five pods selected randomly from ten
plants within each genotype. The seed weight per plant was recorded in grams by weighing
all seeds from the five plants and dividing them by five.

3.5. Statistical Analysis

The evaluations of difference for both the general and specific combining abilities and
their belongings were processed by Model I (fixed-effect model) and Method II (parents
and crosses, excluding reciprocals) as provided by Griffing [35]. For the combining ability,
analysis of variance was performed for characteristics that demonstrated significant differ-
ences among crosses [57] (Plant Breeding Tools, 2014, International Rice Research Institute,
Los Baños, Laguna) software version 1.2 utilizing R packages. The significance of the GCA
effects was recorded utilizing the following equation [58,59]:

tcal =
GCA
SEgca

, Where, SEgca =

√
Me

rts

tcal =
SCA
SEsca

, Where, SEsca =

√
Me

rs

where, Me is the error mean sum of squares; r, t, and s are numbers of replications, parental
lines, and sites, respectively; SE is the standard error.

Heterosis is expressed as a percentage increase or reduction in the F1 hybrid over
mid-parent (average or relative heterosis) and better-parent (heterobeltiosis). Mid-parent
heterosis, heterobeltiosis, and their significant tests were accomplished for each character
by following the equation depicted by Abrham et al. [60].

MP Mid-parent heterosis (%) = [(F1 − MP)/MP] × 100

BP Better-parent heterosis (%) = [(F1 − BP)/BP] × 100

where F1 = mean of F1hybrid for a trait

MP = mean of mid-parents [(P1 + P2)/2] for a trait

BP = Value of better-parents for a trait

SOM = Soil organic matter

4. Conclusions

The experiment has been aimed at distinguishing superior parents as the best combiner
and best predominant crosses as particular combiners for various characters based on
different parameters, viz. per se performance, GCA effects, SCA effects, and prevalence of
F1 over the mid- and better-parent. Based on combining ability analysis, the most promising
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parents P2 (BARI Mung-1) and P5 (PS-7) for yield per plant, pod length, and plant height;
P4 (Sukumar) for seeds per pod and other desirable traits such as pods per plant and yield
per plant for P1 (BMXK1-14004). The crosses viz., P1 × P6, P1 × P5, P1 × P3, P4 × P5, and
P2 × P3 had distinguished as best specific cross-combinations for the majority of the yield
attributes together with a few interesting traits. The crosses P1 × P5 (BMXK1-14004 × PS-7),
P1 × P6 (BMXK1-14004 × Sonali mung), P1 × P4 (BMXK1-14004 × Sukumar), P1 × P3
(BMXK1-14004 × BINA Mung-8) displayed significant better-parent heterosis for seed yield
per plant including its components. Consequently, these crosses could be used in further
breeding programs to isolate desirable segments in terms of the mating approach followed
by the selection in their segregating generations.
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