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Abstract: Current development in precision agriculture has underscored the role of machine learning
in crop yield prediction. Machine learning algorithms are capable of learning linear and nonlinear
patterns in complex agro-meteorological data. However, the application of machine learning methods
for predictive analysis is lacking in the oil palm industry. This work evaluated a supervised machine
learning approach to develop an explainable and reusable oil palm yield prediction workflow. The
input data included 12 weather and three soil moisture parameters along with 420 months of actual
yield records of the study site. Multisource data and conventional machine learning techniques
were coupled with an automated model selection process. The performance of two top regression
models, namely Extra Tree and AdaBoost was evaluated using six statistical evaluation metrics. The
prediction was followed by data preprocessing and feature selection. Selected regression models
were compared with Random Forest, Gradient Boosting, Decision Tree, and other non-tree algorithms
to prove the R2 driven performance superiority of tree-based ensemble models. In addition, the
learning process of the models was examined using model-based feature importance, learning curve,
validation curve, residual analysis, and prediction error. Results indicated that rainfall frequency,
root-zone soil moisture, and temperature could make a significant impact on oil palm yield. Most
influential features that contributed to the prediction process are rainfall, cloud amount, number of
rain days, wind speed, and root zone soil wetness. It is concluded that the means of machine learning
have great potential for the application to predict oil palm yield using weather and soil moisture data.

Keywords: oil palm; crop yield; prediction; machine learning; precision agriculture; sustainability

1. Introduction

Crop yield prediction [1,2] is a critical yet fascinating issue due to its requirement for
long-term intensification and optimal use of natural resources [3]. Many stakeholders in
the agri-food chain, including agronomists, farmers, product exporters, and policymakers,
benefit from crop yield forecasts [4,5]. Various crop-specific characteristics, environmental
conditions, and management practices influencing crop production [6,7] are some of the
confounding factors for developing a prediction model [8]. Recent research highlighted the
need for weather-based crop yield forecasting as one of the ways to minimize the negative
effects of climate variability and extremes under current climate conditions [7,9,10]. At the

Plants 2022, 11, 1697. https://doi.org/10.3390/plants11131697 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11131697
https://doi.org/10.3390/plants11131697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-1874-895X
https://orcid.org/0000-0001-6703-2208
https://orcid.org/0000-0002-6364-7851
https://doi.org/10.3390/plants11131697
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11131697?type=check_update&version=1


Plants 2022, 11, 1697 2 of 19

same time, yield forecasting [9,10] is emphasized as an adaptation technology to climate
change for global food security [11,12]. The approaches to anticipate crop yield include:
(1) field surveys [13], (2) crop growth models [14], (3) remote sensing [15], (4) statistical
models, as well as (5) the combinations of these approaches [16–21]. For instance, field
surveys are used to observe the ground truth with human expertise [5]. Meanwhile, the
crop growth simulation models are governed by the environment, management strategies,
and agronomic principles [22]. On the other hand, remote sensing techniques capture the
current status of crops to estimate the final yield [23,24]. One of the main limitations of
the aforementioned methods is regarding their incompetence to capture fluctuating abiotic
environmental factors [25]. Recent advancements in big data and machine learning have
introduced precision agriculture [9], wherein machine learning models are applied for crop
yield prediction [26]. Machine learning combines the strengths of the previous methods,
such as remote sensing and growth simulation models, with data-driven modeling to pro-
duce reliable forecasts [27–29]. Machine learning algorithms use outputs of conventional
methods as features and try to approximate a function that connects predictors (features) to
the target (crop yield) [30,31]. Numerous machine learning and deep learning models have
been proposed for environment-based yield prediction of various crops [32–34]. However
machine learning is underutilized for predictive analysis of oil palm [35]. Despite all
technology gaps, the oil palm industry is growing rapidly to fulfill the increasing global
demand. Conversely, this crop is threatening tropical forests, biodiversity, and associated
ecosystems [36]. One of the major challenges related to oil palm crop is its unimpeded
expansion [35] which has violated a perceived moral obligation of sustainability [37,38].
Therefore, the oil palm sector is under increasing environmental, economic, and political
pressures for endangering the ecological future [39]. The long-term viability and resiliency
of the oil palm industry is determined by the capability of estate managers to make strate-
gic decision and procedural changes [40,41]. In this regard, the most suitable solution
rather than opening new lands, is acclimating the latest technology to elevate the yield
by reducing the gap between actual yield and potential [42–44]. However, some factors,
including fluctuating weather, may influence the outcomes significantly [45]. Therefore,
data-intensive frameworks which are created in the context of the agro-environmental
domain for weather-based oil palm yield forecasting are required. Then, evidence-based
decision-making can be achieved by associating machine learning with real data [46]. So
far, limited research had been conducted for oil palm yield prediction using a Bayesian
network and artificial neural network (ANN) [47,48]. Similarly, OettliBehera, and Yamagata
explored yield trends statistically by involving climate change to predict country-level
oil palm yield [49]. Existing statistical models uncovered linear patterns, but failed to
interpret nonlinear dependencies in the data [50,51]. Data greedy ANN, on the other hand,
is unexplainable and unaccountable owing to the “black box” effect [52]. To deal with the
shortcomings of existing models, a spatially transitional machine learning model integrated
with automated machine learning (auto-ML) method [53] is presented in this paper. The
methodology is proposed to develop a robust yield forecasting model according to the
meteorological variability of the site. In this research, we comply with the need for a
modular prediction workflow that can be used to: (1) better understand the convenience
of multisource data, (2) improve data quality through a set of preprocessing techniques,
(3) select significant feature subset, (4) select appropriate machine learning model by com-
paring several suitable models automatically, and (5) predict oil palm yield using historical
observations. A conventional machine learning regression approach was combined with
auto-ML to establish a precise yet flexible prediction model designed for oil palm fresh fruit
bunch (FFB) yield. To the best knowledge of authors, the proposed framework has not been
reported for crop yield prediction before. In this work we have addressed the following
existing problems as indicated by previous research: (1) data scarcity, (2) machine learning
application for predictive modeling of oil palm, and (3) designing a generic workflow in
pursuance of reusability. In addition, the applicability of machine learning algorithms in
predicting the oil palm yield from real data was evaluated with primary data.
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In addition to the predictive modeling of oil palm data, we developed several ma-
chine learning and ensemble models and compared their performance for oil palm yield
prediction. The major objectives were to: (1) develop a hybrid approach to forecast oil palm
yield from actual data using machine learning techniques at the state level, (2) identify the
suitable prediction models with reasonable explainability, (3) quantify the relation between
meteorological predictors and the yield variability, and (4) apply the feature selection to
detect significant predictors. It is verified that weather parameters can be used as a predic-
tive measure for oil palm yield. The results from this study will contribute towards a better
understanding on the relationships between oil palm yield and environmental factors.

Crop agronomic management, such as planting density, fertilizer application, and
irrigation can be used to offset the loss in yield due to the weather effects. The implication
of a generic machine learning workflow for oil palm yield prediction will provide the
foundation for flexible crop yield forecasting. The proposed novel approach can assist
policymakers for: (1) field management, (2) minimizing the negative effects of weather,
(3) timely crop handling including fruit harvesting, storage, processing, and transportation
management, and (4) import/export.

The manuscript is organized as follows: following the “Introduction” in the Section 1,
while the “Materials and methods” are explained in Section 2. The Section 3 is devoted to
“Results”, and the “Discussion” is presented in Section 4, followed by the “Conclusion” in
Section 5.

2. Materials and Methods

First, we investigated the agronomic principles of crop modelling to identify features
that are particularly useful for machine learning. Second, a flexible configurable design
allowed selection of optimum feature subset. We developed two machine learning models
for predicting the oil palm yield in Pahang, Malaysia by running different experiments.
Next, the models were evaluated based on the multiple evaluation metrics and then
compared with other similar models for true validation of the learning process. In addition,
the performance of the models was compared with different state-of-the-art regressors. The
effects of the numerous elements on prediction accuracy were revealed after a rigorous
statistical and technical evaluation of input features and model training process.

2.1. Study Site

Pahang is a state with a total area of 35,965 km2 and located at 4◦11′10′ ′ N and
104◦03′45′ ′ E on the east coast of peninsular Malaysia [54,55]. The two most important land
uses in Pahang are forest and palm oil, both of which contributed to the food and the state’s
revenue. At the same time, the synergy between oil palm and forest, together with climate
change, is complicating the implementation of policy reforms in Pahang. The state includes
74 forest reserves with 10 virgin forests, the largest of which is Taman Negara Pahang, a
part of the Central Forest Spine blueprint [56]. Despite all efforts, forest conservation in
Pahang remains ineffective, with oil palm development serving as one of the principal
causes of deforestation, emitting 110.6 million Mg CO2 across the Malaysian Peninsula
between 2005 and 2015 [57,58]. Out of Malaysia’s 5.87 million hectares of oil palm, 15%
are planted in Pahang, which accounts for 23.4% of the state’s GDP [59–61]. Despite this,
Pahang’s palm oil sector is jeopardized by stagnating crop production on the account of
climate change. This is the motivation to select Pahang as the study area (Figure 1).
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Figure 1. Study area.

2.2. Multi-Source Datasets

Multisource historical data for this research was obtained from the Malaysian Palm
oil Board (MPOB), Meteorological department Malaysia (MET) sourcing three weather
stations, and NASA Data Access Viewer (agroclimatology). The data were comprised
historical observations (for a period of 35 years) including monthly FFB yield (tons/hectare)
records and monthly average values, consisting of 13 weather-related parameters i.e.,
specific humidity, relative humidity, precipitation, surface pressure, temperature range,
minimum temperature, maximum temperature, earth skin temperature, radiative flux
(solar radiation), rainfall, wind speed, number of rainy days, and cloud amount. From the
soil data, the three soil moisture related features include surface soil wetness, profile soil
moisture, and root zone soil wetness, while one time-related feature is the date in the range
of 01/1986 to 12/2020. All numerical features contained discrete values, except for the
index column which is in date-time format. A detailed summary of input data is presented
in Table 1.

Table 1. A detailed summary of input data for yield modeling.

Category Variable Spatial Resolution Temporal Resolution Time Coverage Source

Crop data Yield (t/h) NA 1 Month 1986–2020 MPOB

Soil moisture data Surface soil wetness
(%) 10 m 1 Month 1986–2020 NASA

Soil moisture data Profile soil wetness
(%) 10 m 1 Month 1986–2020 NASA

Soil moisture data Root zone soil wetness (%) 10 m 1 Month 1986–2020 NASA

Meteorological data Cloud amount
(%) NA 1 Month 1986–2020 NASA

Meteorological data Rain days/month NA 1 Month 1986–2020 MET
Meteorological data Wind speed (m/s) 10 m 1 Month 1986–2020 NASA
Meteorological data Rainfall (mm) 10 m 1 Month 1986–2020 MET
Meteorological data Radiative flux (kW/h) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Min temp (◦C) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Max temp (◦C) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Earth skin temp (◦C) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Temperature range (◦C) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Surface pressure (kpa) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Relative humidity (%) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Specific humidity (%) 2 m 1 Month 1986–2020 NASA/MET
Meteorological data Precipitation (mm) 2 m 1 Month 1986–2020 NASA/MET
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2.3. Prediction Framework

The overall framework is broadly categorized into two major steps: (1) data prepro-
cessing and (2) model development. A detailed description of the main steps and their
sub-steps is presented in Figure 2 and explained in the subsequent section.
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2.4. Data Pre-Processing

The fundamental aim of data preprocessing was to transform the raw data into well-
structured meaningful information. Initially, the raw data was contained within 420 training
points and 18 columns, including the target variable. The raw data was mainly preprocessed
in four major steps that are described in the subsequent sections.

2.4.1. Integration

Data from multiple sources were combined into a single database after schema integra-
tion and unit conversion. Several problems to be considered during data integration were
inconsistent temporal resolution, measuring units, entity identification, detecting, as well
as resolving data value and type. For example, the date format in different databases needs
to be unified. Similarly, sources contained surface pressure measured in two different units.
Therefore, the hectopascal (hPa) required unit conversion into the kilopascal (kPa).
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2.4.2. Data Cleaning

Data cleaning is a key step before implementing machine learning. In this process,
data was prepared for prediction by removing the data points far beyond the normal range,
commonly known as outliers. This approach is often used to eliminate data points that are
inconsistent with other members in the same data set. The existence of outliers in the data
degrades machine learning predictions, potentially leading to incorrect conclusions [62].
For real-world data, extreme weather conditions were identified as outliers [63] For this
reason, significant outliers in data features were removed using the Z score method [64].
Although outliers removal reduces data size, it could, also, improve the data quality.

2.4.3. Data Reduction

Weather and soil moisture data are represented by numerous variables that are not
equally important in yield prediction. Furthermore, for small sample sets, machine learning
algorithms commonly underperform upon the existence of redundant or less explanatory
features. Thus, it is of supreme importance to find important features and discard redun-
dant ones that might decrease the prediction accuracy [65]. The effective technique to
reduce feature dimension is by discarding features that are not strongly related to the target,
or carry similar information as other stronger features [66]. The Boruta algorithm [67]
was applied to select an optimum feature subset. Boruta algorithm is a wrapper around
random forest algorithm that works well for classification and regression problems. In data
reduction, undesirable features were removed iteratively. This process returned compact
data to make prediction easier.

2.4.4. Data Transformation

In the process of data transformation, the structure/format of the data was changed.
This step was needed to ensure equal distribution of data values. The diversity in feature
values could cause bias during the model training process. For instance, in data rainfall was
measured in millimeters and its value ranged from 3.36 (in drought) to 997 (abundant rain),
depending on weather conditions. On the other hand, values of soil moisture remained
in the range of 0.56 and 0.99 which are very low compared to rainfall feature values. In
this case, high feature values were given more weightage than low feature values by the
models. To overcome this issue, feature normalization was performed using the Min–Max
scaling method that transformed each feature value within a common scale to the range of
0 and 1 using the following mathematical formula:

X =
x− xmin

xmax − xmin
(1)

where X is the new normalized data, x is the range of original data, while xmin and xmax are
the lowest and highest values of the features, respectively [68]. Moreover, scaled data was
randomly divided into two sets, of which 70% data was utilized to train the models using
repeated k-fold cross-validation technique [69] with 10 folds. The 10-fold cross-validation
is a technique for evaluating machine learning models of a small sample of data. In this
process, training data was divided into 10 groups to train the machine learning models. In
addition, the remaining 30% of the test data was considered to verify prediction accuracy.

2.5. Model Development Process

Accurate yield prediction necessitates a correct understanding of the functional rela-
tionship between oil palm yield and the influencing factors. To reveal such a relationship,
a powerful machine learning model is required. However, there is no “one-size-fits-all”
model that can perform best in every situation. Therefore, an appropriate model selection
is of paramount importance [70].



Plants 2022, 11, 1697 7 of 19

2.5.1. Model Selection

Developing various prediction models to identify the best model is a tedious task while
perfect model selection is still not guaranteed. Therefore an automated model selection
was performed using Pycaret 2.0 Python library [71] where all existing regression models
were trained and compared automatically based on the defined preprocessing pipeline
for the given data set. Furthermore, the performance of models was optimized using
the hyperparameters tuning. The main purpose of the experiment was to identify the
appropriate regression model for oil palm yield prediction.

2.5.2. Model Building

From the list of recommended models, two top models were created and refined:
(1) Extra Tree (Extremely Randomized Tree) Regressor and (2) AdaBoost (Adaptive Boost-
ing) Regressor. A brief description of each model is given in the succeeding sections.

• Extra Tree Regressor: Theoretical background and its application in the prediction problem

An Extra Tree learns from parent sample by splitting main data into numerous sub-
groups (child samples) to obtain a prediction from each subgroup individually. It produces
final prediction from the combined predictions of all subgroups. Averaging is used to
improve the prediction while simultaneously dealing with overfitting [10]. The model
separates subgroups by selecting random split points, which makes it different from other
tree-based ensembles [11]. Its two primary distinctions from the classical tree-based en-
semble methods are: (1) dividing subgroups at random and (2) growing trees using the
full learning sample [72]. The schematic diagram of Extra Tree Regressor is provided in
the Figure 3.

• AdaBoost Regressor: Theoretical background and its application in prediction problem
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AdaBoost is a statistical classification and regression algorithm that works by sequen-
tially generating multiple regressors to finalize a weighted model [73]. The model can
automatically adjust the weights based on estimation errors; therefore, it has great potential
for addressing nonlinear, complicated regression problems [74]. AdaBoost develops numer-
ical models by altering the distribution of the parent sample. Once the samples are chosen
based on accuracy, all the weak predictions are boosted by the same amount. Therefore,
AdaBoost maintains a better performance than other models even in the existence of noise
in the data. As a result, it may be less prone to the overfitting problem than other learning
algorithms in particular situations. Even though individual learners may be poor, as long as
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their performance is marginally better than random guessing, the total model will converge
to a powerful learner [75]. The schematic diagram of AdaBoost is provided in Figure 4.
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2.5.3. Performance Evaluation and Comparison via Evaluation Matrices

The performance evaluation metrics were used to monitor and measure the perfor-
mance of the models. The two highest performing models were selected from the stack of
best to worst performing models based on six evaluation matrices namely mean absolute
error (MAE), mean squared error (MSE,) root mean squared error (RMSE), coefficient of
determination or R squared error (R2), root mean square logarithmic error (RMSLE), and
mean absolute percentage error (MAPE), while considering R2 as the key performance
indicator (KPI). Further description of the aforementioned evaluation matrices can be seen
in [2]. In addition, the models’ performance was compared with several other models to
confirm the significance and to prove the superiority of the selected models.

3. Results
3.1. Model-Based Feature Importance

The feature importance plots simplify the differences between the working mechanism
of the models. One of the main distinctions between the algorithms is that the Extra Tree
model picks the feature based on its accuracy and assigns high associated value to the
strong learners. The AdaBoost Regressor learns from errors and prioritizes features with
lower accuracy and assigns higher associated values to weak learners [76]. Meanwhile,
the Extra Tree Regressor assigned high weights to the features causing the lowest error
and vice versa. Model-based feature importance specifies that the Extra Tree regression
algorithm takes root zone soil moisture as the strongest feature and rainfall reflects the least
feature value. Cloud amount, temperature range, wind speed, and the number of rain days
gave the most to least feature values, respectively. Unlike the Extra Tree model, AdaBoost
Regressor assigned the highest features values to the error-prone features. Rainfall gave the
highest importance with a feature value of 0.30 and root zone soil moisture was ranked last
with the lowest feature value. It indicates that root zone soil wetness feature aided in high
error compared to the rest of the features. Caused by the unique feature importance strategy
of each algorithm, cloud amount and temperature range were given lower associated values
in AdaBoost compared to Extra Tree. Feature importance plots of Extra Tree and AdaBoost
are shown in Figures 5 and 6, respectively.
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3.2. Evaluation of the Extra Tree and AdaBoost Regressors via Residuals, Prediction Error

From the above evaluation, the tree-based ensemble models, i.e., Extra Tree and
AdaBoost Regressor exhibit the ability to predict oil palm yield with mean R2 values 0.6057
and 0.63, respectively. The R2 scores in Figures 7 and 8 specify the goodness of fit of the
underlying regression models to the test data. The residual plots of the models display
inconsistent over-predicted and under-predicted values above and below the fitting line,
respectively. The residuals of AdaBoost are more scattered compared to the residuals in the
Extra Tree residual plot. This indicates the sensitivity of Extra Tree to the data disparity.
The Extra Tree Regressor could learn the training and testing data better than the AdaBoost
Regressor which slightly overfits.
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The actual targets from the dataset were compared to the projected values generated
by the study’s models in a prediction error plot. This provides the picture of how much
variation the models had. As indicated in the error plots of the models in Figure 9a,b the
prediction by Extra Tree and AdaBoost inclined to a specific point where y and ŷ denote
the actual values and predicted values, respectively. Nevertheless, the prediction error
of Extra Tree tends to increase proportionately to the data points comprising of extreme
values. It can be seen in both plots that values are concentrated down to small range of the
target feature as the oil palm yield remained 1–2.5 tons/hectare in Pahang throughout the
study period.
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3.3. Evaluation of Extra Tree and AdaBoost via Learning Curve and Validation Curve

The training and testing curves shown in Figure 10a,b were used to evaluate the
performance of machine learning models on the training and testing data. As observed,
the gap between training and testing scores tends to decrease with the increase of training
instances. This indicates: (1) the inadequacy of data size for the models to show optimum
performance and (2) current features explaining 60% yield variability that can be seen
from R2 since crop protection records were not included in the data. Thus, more training
instances and new information (features) can be added in order to increase the prediction
accuracy. Fortunately, the workflow is also capable of capturing the omitted variable bias,
this also reflects the impact of missing features in the data.
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Accordingly, the validation curves of the Extra Tree and AdaBoost Regressors are
presented in Figure 11a,b, respectively. The learning curve generated from a holdout test
dataset indicates how the models can effectively generalize the dataset [77]. The Extra
Tree Regressor appeared to be more stable and iteratively improved while the AdaBoost
Regressor was more underperformed. Besides cross-validation and statistical evaluation
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metrics, another method to verify model’s performance is by obtaining the predictions on
unseen data.
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The results from cross-validation were verified by predicting unseen data. Extra
Tree slightly overperformed and reflected better generalization than the AdaBoost Re-
gressor. The predictions on unseen data of Extra Tree and AdaBoost are presented
in Figures 12 and 13, respectively. Although the real-world multisource data is too complex
to be predicted accurately, the precisions of the data are better than expected for a small
sample size.

Plants 2022, 11, x FOR PEER REVIEW 12 of 19 
 

 

Accordingly, the validation curves of the Extra Tree and AdaBoost Regressors are 
presented in Figure 11 a and b , respectively. The learning curve generated from a holdout 
test dataset indicates how the models can effectively generalize the dataset [77]. The Extra 
Tree Regressor appeared to be more stable and iteratively improved while the AdaBoost 
Regressor was more underperformed. Besides cross-validation and statistical evaluation 
metrics, another method to verify model’s performance is by obtaining the predictions on 
unseen data. 

 
(a) 

 
(b) 

Figure 11. Cross validation of (a) Extra Tree; (b) AdaBoost. 

The results from cross-validation were verified by predicting unseen data. Extra Tree 
slightly overperformed and reflected better generalization than the AdaBoost Regressor. 
The predictions on unseen data of Extra Tree and AdaBoost are presented in Figures 12 
and 13, respectively. Although the real-world multisource data is too complex to be pre-
dicted accurately, the precisions of the data are better than expected for a small sample 
size. 

 
Figure 12. Prediction of oil palm yield by Extra Tree.



Plants 2022, 11, 1697 13 of 19

Plants 2022, 11, x FOR PEER REVIEW 13 of 19 
 

 

Figure 12. Prediction of oil palm yield by Extra Tree. 

 
Figure 13. Prediction of oil palm yield by AdaBoost. 

3.4. Comparative Analysis of Selected Models with Tree-Based Regressors 
In this section, the performance of the proposed oil palm yield prediction framework 

was compared against some latest and most popular conventional tree-based machine 
learning models under an identical preprocessing pipeline and same feature set. The 10-
fold cross-validation technique was employed in conjunction with the performance eval-
uation metrics to evaluate the performance of the regressors. Tree-based regressors are 
selected in the proposed framework. Therefore, the comparison analysis was performed 
with other similar models such as Random Forest, Gradient Boosting Tree, and Decision 
Tree. The selected models outperformed the conventional tree-based machine learning 
models in terms of evaluation matrices. The corresponding results are provided in Table 
2 where performance superiority of the selected models can be observed from outcomes. 
Extra Tree achieved low MAE, MSE, RMSE, RMSLE, and MAPE (0.1562, 0.0405, 0.2013, 
0.0788, and 0.106, respectively) with coefficient of determination (R2) of 0.6057. Likewise, 
AdaBoot obtained nearly equal value of R2 as Extra Tree, which was significantly better 
than other tree-based models. 

Table 2. Performance comparison of tree-based models. 

Model MAE MSE RMSE R2 RMSLE MAPE 
Extra Tree  0.1562 0.0405 0.2013 0.6057 0.0788 0.106 
AdaBoost  0.1602 0.038 0.1951 0.63 0.0779 0.1073 

Random Forest  0.1815 0.0534 0.2279 0.3894 0.0922 0.1289 
Decision Tree  0.2505 0.1018 0.3161 −0.2015 0.1273 0.1750 

Gradient Boosting  0.1836 0.0545 0.2309 0.3748 0.0931 0.1301 

3.5. Comparative Analysis of Selected Models with Conventional Regression Methods 
In addition, the performance of selected models was compared to other non-tree-

based models under an identical process. From the results, it can be observed that the tree-

Figure 13. Prediction of oil palm yield by AdaBoost.

3.4. Comparative Analysis of Selected Models with Tree-Based Regressors

In this section, the performance of the proposed oil palm yield prediction framework
was compared against some latest and most popular conventional tree-based machine
learning models under an identical preprocessing pipeline and same feature set. The 10-fold
cross-validation technique was employed in conjunction with the performance evaluation
metrics to evaluate the performance of the regressors. Tree-based regressors are selected in
the proposed framework. Therefore, the comparison analysis was performed with other
similar models such as Random Forest, Gradient Boosting Tree, and Decision Tree. The
selected models outperformed the conventional tree-based machine learning models in
terms of evaluation matrices. The corresponding results are provided in Table 2 where
performance superiority of the selected models can be observed from outcomes. Extra Tree
achieved low MAE, MSE, RMSE, RMSLE, and MAPE (0.1562, 0.0405, 0.2013, 0.0788, and
0.106, respectively) with coefficient of determination (R2) of 0.6057. Likewise, AdaBoot
obtained nearly equal value of R2 as Extra Tree, which was significantly better than other
tree-based models.

Table 2. Performance comparison of tree-based models.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Tree 0.1562 0.0405 0.2013 0.6057 0.0788 0.106
AdaBoost 0.1602 0.038 0.1951 0.63 0.0779 0.1073

Random Forest 0.1815 0.0534 0.2279 0.3894 0.0922 0.1289
Decision Tree 0.2505 0.1018 0.3161 −0.2015 0.1273 0.1750

Gradient Boosting 0.1836 0.0545 0.2309 0.3748 0.0931 0.1301

3.5. Comparative Analysis of Selected Models with Conventional Regression Methods

In addition, the performance of selected models was compared to other non-tree-based
models under an identical process. From the results, it can be observed that the tree-based
models outperformed other regression models such as Multiple Linear Regression, Least
Angle Regression, Bayesian Ridge Regression, Huber Regressor, K Nearest Neighbors,
Orthogonal Matching Pursuit, Elastic Net Regressor, Passive Aggressive Regressor and
Least Absolute Shrinkage, and Selection Operator (Lasso) Regressor. Furthermore, the
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overall performance of all tree-based regression models is considerably better in the oil palm
yield prediction. The KPI based performance comparison between the aforementioned
models with the selected models in this study is presented in Figure 14.
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4. Discussion

Weather extremes and variability have a significant impact on agricultural systems.
Understanding the impacts of climate on oil palm production is a critical step in assessing
its resilience to weather variations and developing appropriate strategic changes [78]. In
this study, machine learning regression algorithms in supervised machine learning reflected
the strength to learn complex patterns from agro-metrological data. As the results suggest,
weather impacts on yield variations were exhibited in nonlinear dependencies among
data variables. Besides predicting future yield from historical observations, the machine
learning methods could also indicate data redundancy and insufficient input.

4.1. Interpretability of the Models
4.1.1. Feature Selection

Since the complicated relationships between weather and crop variations require as
much information as possible, the number of available features limits the complexity of
the model. An input selection is crucial to reduce the overfitting issue, which is a situation
when a machine learning model works well on training data. However, models that overfit
are more likely to show poor predictive performance on new data. For instance, overfitting
occurs when a model is excessively complex, such as obtaining a high number of features
in a small sample size (insufficient data) to regulate it. The feature selection methods not
only identify the inputs that are more correlated to oil palm yield, they also ensure that
only the most complementary features are selected. However, it is not clear as to what
extent the selected features could reduce or increase the yield values.

Regarding data utilization, much consideration is required when using multisource
data with different temporal resolutions and multiple feature measuring units in order to
avoid false conclusions and non-reliable results. To solve this issue, unit conversion, feature
scaling, and data split into independent years were used in the analysis for the learning
and validation sets. To define a learning set, 70% of data were randomly chosen for training
and the remaining 30% were used as the test set. Some other pre-processing steps like
commonly adopted data cleaning techniques, such as outlier removal, were applied to
improve data quality for prediction.

4.1.2. Interpretation of the Models

Recently, there has been a huge yearning toward the interpretation of tree-based re-
gressors for developing yield prediction models [79,80]. Overall, this study showed that the
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tree-based ensemble models lead to more better results compared to other baseline machine
learning models, such as random forest. In a situation where a linear relationship between
the dependent and independent variables exists, a multiple linear models may outperform
the tree-based models. When there are great nonlinearity and complex relationship between
the dependent and independent variables, a tree-based ensemble model outperforms a
typical regression strategy and linear regression.

Generally, the tree-based models are considered easier to comprehend than the linear
regression models. Meanwhile, the ensemble models over-perform conventional tree-
based models, besides providing a reasonable explanation of features that are important in
determining the crop yield values. However, it is not clear to what extent these features are
reducing or increasing the yield values. Moreover, it is necessary to maintain a trade-off
between the prediction accuracy and interpretability of the selected models. It is also
confirmed that the coupling of multiple exploratory methods increases the explainability
of the models.

4.1.3. Reusability of the Workflow

The proposed workflow is initially designed for the prediction of oil palm yield in
the state of Pahang, Malaysia. However, the results suggest that the flexible workflow
could ensure its reusability beyond other traditional crop-specific and site-specific models.
The same workflow can be utilized to predict the yield of other crops with different data
set from diverse area. In order to do so, it is essential to modify the data preprocessing
pipeline accordingly. For instance, processes such as handling missing values, dealing with
categorical features (if any), and over sampling/under-sampling of the data (if needed)
should be decided carefully in the context of input data. Similarly, the selected models
and features may vary as per input and crop responses. Several regression models can
be selected, trained, compared, and evaluated following the proposed framework. So
far, this workflow offered a set of suitable ensembles, tree-based and other regression
models with high precision for oil palm yield prediction. The proposed models may be
further refined in future if the work could benefit from more explicit data from soil analysis,
disease assessments, fertilizers applications, and irrigation records. In addition, multiple
machine learning ensembles can be combined using the stacking methods to improve
prediction accuracy.

4.1.4. Limitations of the Workflow

The workflow was initially proposed to check feasibility of machine learning applica-
tion for oil palm yield prediction. However, there were some constraints and limitations
of this work. First, although oil palm yield is determined by several biotic and abiotic
factors including management practices and crop protection, so far it is not possible to
quantify the impacts of biotic factors such as weeds, disease, pests, and insects on crop
performance [81]. Therefore, yield records have to be considered in an ideally protected
environment with perfect field management. Secondly, the current workflow followed
standard data preparing techniques used in machine learning. As a result, the workflow
considered normal weather conditions, while rare extreme events such as heavy raining,
flooding, and drought were not recognized. Drought is an important abiotic stressor that
can reduce 15% yield on good soil and up to 20% yield on poor soil against 100-mm water
deficit [82]. Along with irrigation records, drought should be included in the data to
explain water-limited yield variability. Next, this quantitative study also did not examine
the impacts of seeds quality, physiochemical properties of the soil, and environmental
pollution on oil palm productivity.

Furthermore, data within range of 1986 to 2020 were used to for training, testing,
prediction and validation. Making predictions beyond the study period would still require
parallel weather data. Weather data can be forecasted using vector auto regressor for
multivariate prediction [83,84]. In addition, the method as explained in [85] can also be
followed for weather predictions prior to yield predictions.
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5. Conclusions

This paper presents a novel flexible workflow for oil palm yield prediction using
supervised machine learning integrated with (auto-ML) methods. The proposed workflow
demonstrated promising performance to accurately predict oil palm yield with the help of
several weather-related and soil moisture-based parameters. Furthermore, the auto-ML
technique provided solutions for best model selection by automatically selecting best-
suited models determined by the pre-processing pipeline. Likewise, the optimum feature
subset was selected using the Boruta algorithm that played a key role in data reduction
to improve prediction accuracy. In addition, the automated model selection specified two
tree-based algorithms, namely Extra Tree Regressor and AdaBoost Regressor which had
higher R2 value than other existing models. Following this, the selected models were
trained and tuned to achieve a realistic precision along with reasonable explanation ability.
The performance of the models was evaluated statistically through six different evaluation
metrics. The identical evaluation metrics were used to perform a comparison with other
state-of the-art similar (tree-based) and dissimilar (non-tree) models. Researchers would
be able to execute repeatable experiments for multiple sites of oil palm plantations with
standard input data and to achieve repeatable outcomes through replicable techniques.

The use of new data sources and more advanced algorithms as well as extraction of
new features from trends and interactions of given features are some of the improvements
that could be used to refine the model for certain species of oil palm planted in different
locations. Additionally, the reusability of the proposed flexible workflow enables yield
prediction of other crops with different data sets containing crop-specific parameters and
site-specific historical meteorological observations. On top of that, the capability of the
machine learning models in learning complex patterns from multisource meteorological
and agricultural data has provided a great potential for their applications towards ensuring
sustainability oil palm as an integral part of precision agriculture.
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