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Abstract: Plant growth regulators can affect the primary and secondary metabolites of various
plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, es-
pecially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of
PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content,
and both antioxidant and antimicrobial properties of lavender oil were investigated. The results
indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth pa-
rameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly
decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ
significantly enhanced the chlorophyll content and displayed a marked change in the composition of
the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol,
γ–terpinene, α-pinocarvone, caryophyllene, β-vetivenene, β-santalol, ledol, geranyl isovalerate,
farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were
achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment
showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by
13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each
treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two
strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A.
niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated
that all examined species were more sensitive to the oil that was extracted from lavender plants,
treated with 400 ppm PBZ, compared to the other concentrations.
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1. Introduction

Lavender is the common name of the plant genus Lavandula (family, Lamiaceae), which
comprises several plant species with economic, aromatic, and medicinal importance [1].
The extracted phytochemicals of genus Lavandula are widely used for cosmetics [2], food
and flavor industries [3], and pharmaceutical products [1,4,5]. For centuries, lavender
essential oils were used to cure pain, parasite infections, burns, insect bites, cramps, and
muscular spasms [2,3,6,7]. Furthermore, it has been found that these essential oils possess
antibacterial [8–10], anti-inflammatory [11,12], anticancer [13], and antioxidant proper-
ties [9,14,15].

Generally, essential oils are a mixture of bioactive molecules that have antioxidant and an-
timicrobial activities, including monoterpenes, sesquiterpenes, and phenylpropanoids [16–18].
Monoterpenes have been found to have antibacterial, antifungal, and cytotoxic properties
in cancer cell lines [19,20]. In general, essential oil ingredients can be divided into two
parts: hydrocarbons (monoterpenes, sesquiterpenes, and diterpenes), and oxygenated
substances (oxygenated terpenoids) [21]. Oxygenated terpenoids, such as oxygenated
monoterpenes and oxygenated sesquiterpenes, have stronger antimicrobial activity than
other terpenoids [17,18]. The strongest antimicrobial activity of oxygenated monoterpenes,
such as α-terpineol, linalool, and eucalyptol (1,8-cineole) was attributed to the presence
of hydroxyl groups (-OH), which may also be responsible for the interaction with intra-
cellular components of microorganisms [17]. Additionally, as β-caryophyllene-containing
essential oils have antibacterial properties against both Gram-positive and Gram-negative
bacteria [17]. Conversely, monoterpene hydrocarbons (e.g., α-pinene, camphene, myrcene,
α-terpinene, and p-cymene) show limited antibacterial activity [22]. On the other hand,
monoterpenes are considered the most potent compounds, which are responsible for the an-
tioxidant effects of essential oils [23]. It has been found that α-pinene and α-phellandrene
react quickly with peroxyl radicals, leading to an early termination of oxidative chain
reactions and a reduction in the quantity of reactive radicals [24,25]. Furthermore, the
presence of significantly activated methylene groups or tertiary allylic alcohol, in volatile
substances such as eucalyptol, could result in considerable antioxidant capabilities [26].
These substances can contribute an electron to radicals such as H2O2 and, then, reduce
them to non-radical forms such as H2O and O2 [14].

Paclobutrazol (PBZ) is a plant growth regulator that serves as a retardant to cell elon-
gation without an effect on the rate of cell division [27]. It can temporarily restrict the
gibberellins (GAs) biosynthesis by preventing the oxidation of ent-kaurene to ent-kaurenoic
acid through inactivating cytochrome P-450-dependent oxygenases [28,29]. When GAs
biosynthesis is restricted, more precursors in the terpenoid pathway are accumulated and
shunted to induce abscisic acid (ABA) biosynthesis [27,30]. Due to their antioxidant and
antimicrobial activities, accumulation of terpenes can stimulate plant tolerance to various
biotic and abiotic stresses [17,18]. Moreover, PBZ belongs to the triazole family, which is
widely used as fungicide in agriculture [31]. Applied-PBZ has been found to have several
benefits in the previous studies. In this context, exogenous PBZ enhanced the leaf water
potential of young apple trees under drought stress [29], as well as pomegranate tolerance
to freezing stress [32]. Applied PBZ also improved sesame yield by increasing dry matter
accumulation and reducing seed shattering under rainfed conditions [33]. Meanwhile,
applied PBZ induced disease resistance against Alternaria leaf spot in Faba beans [34].
On the other hand, it is well documented that exogenous applied PBZ can induce ABA
synthesis [27]. This increase in ABA can serve as a signaling molecule under various abiotic
stresses, including heavy metals [35], salinity [36], drought [37], and chilling [38]. Further-
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more, ABA can induce stomatal closure, which is considered an important component of
plant defense against abiotic and biotic stress [39].

This study was conducted to (i) evaluate the effect of exogenous PBZ on changing
the composition of lavender (Lavandula officinalis L.) essential oil using GC- Mass chro-
matographic technique (ii) and to further understand how far these modifications in the
composition of essential oil can affect the antioxidant and antimicrobial activities in vitro.

2. Results
2.1. Effect of PBZ on the Vegetative Growth of Lavender Plants

Data presented in Figure 1 show that plants treated by PBZ demonstrated a significant
(p ≤ 0.05) decrease in the vegetative growth, including plant height, number of brunches,
number of leaves, leaf area, and stem diameter compared to the untreated plants. Con-
versely, chlorophyll readings by SPAD exhibited an obvious and significant increase in all
PBZ-treatments compared to the untreated plants. Generally, except in the leaf area, no
significant differences were detected between the various examined concentrations of PBZ.
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2.2. Effect of PBZ on the Yield of Lavender Essential Oil

Data presented in Figure 2 show that plants treated with PBZ at 200 ppm demonstrated
an obvious and significant (p ≤ 0.05) decrease in the yield of essential oil compared to
the untreated plants. Meanwhile, the treatments of PBZ at 400 and 600 ppm did not
significantly affect the yield of essential oil compared to the untreated plants.
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Figure 2. Effect of paclobutrazole (PBZ) on the yield of lavender essential oil (%) in the dried
vegetative parts (leaves and stem). Values are the averages of 3 replicates ± SD. Different letters
indicate significant differences, according to Tukey’s Studentized Range (HSD) Test (p < 0.05).

2.3. Effect of PBZ on Lavender Essential Oil Composition

According to the data obtained by GC-MS analysis (Supplementary Table S1), about
108 different compounds were detected in the essential oil extracted from PBZ-treated
and untreated plants. Generally, both oxygenated monoterpenes (Eucalyptol and L-
camphor) represent the highest percentages (40–45%) of the total found compounds
in the extracted oil from PBZ-treated and untreated plants. However, applied-PBZ, at
different concentrations, revealed several differences in the composition of essential
oil compared to the untreated plants (Figure 3A–C). The comparative study of volatile
compositions demonstrated that the oxygenated monoterpene (dihydrocarvone) and
sesquiterpene (caryophyllene oxide) were common in the PBZ-treated plants and absent
in the control.
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Figure 3. Comparative volatile compositions of essential oil extracted from untreated and treated
lavender plants with paclobutrazole; PBZ: (T1) Venn diagram of volatile compounds of lavender oils
extracted from lavender plants, untreated (control) and treated, with PBZ at 200 ppm (T1), (T2) Venn
diagram of volatile compounds of lavender oils extracted from lavender plants, untreated (control)
and treated, with PBZ at 400 ppm (T2), and (T3) Venn diagram of volatile compounds of lavender
oils extracted from lavender plants, untreated (control) and treated, with 600 ppm paclobutrazole
PBZ (T3).

2.4. Effect of PBZ on the Principal Component Analysis (PCA) of Lavender Essential Oil

To further understand the differences between the compositions of essential oil ex-
tracted from PBZ-treated and untreated plants, principal component analysis was con-
ducted on the common volatiles (Figure 4). The results indicated that the oil of the untreated
plant exhibited high scores on positive PC, where the loadings of characteristic volatile
compounds were high, including α-terpinyl acetate, valencene, δ-cadinol, α-epi-Muurolol,
elemol, corymbolone, clovane, dehydroxy-isocalamendiol, cedrenol, longiverbenone, and
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γ-elemene. On the other hand, the treatment of 400 ppm PBZ showed high scores in
positive PC, which contained high loadings of compounds, including 3-carene, β-pinene, γ
–terpinene, α-terpineol, eucalyptol, p-cymen-7-ol, β-santalol, β-spathulenol, δ –eiemene,
α-pinocarvone, α-santonin, and caryophyllene oxide. In contrast, the treatment of 600 ppm
PBZ exhibited high scores in negative PC, which contained high loadings of two com-
pounds, including dihydrocarvone and vitexin. Most of these compounds were absent in
the oil that was extracted from plants treated by 200 ppm PBZ.
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lavender plants with paclobutrazole.

2.5. Effect of PBZ on the Quantity of Monoterpene and Sesquiterpene Constituents

To better focus on the compounds of highly efficient antioxidative and antimicrobial
activities, the quantity of monoterpene and sesquiterpene constituents was identified
using GC-MS analysis (Table 1). These compounds can be categorized into four classes,
including monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydro-
carbons, and oxygenated sesquiterpenes. The results revealed that lavender oil extracted
from plants treated with 400 ppm PBZ was higher in the oxygenated monoterpene (54%),
sesquiterpene hydrocarbons (4.41%), and oxygenated sesquiterpene (5.68%) than the
untreated plants, which recorded 49.41, 0.69, and 1.93% in these biochemical classes,
respectively. In contrast, despite the treatment of 200 ppm PBZ, it showed a decrease
in the total quantity of oxygenated monoterpenes, but it displayed an obvious increase
in Eucalyptol compared to the untreated plants. On the other hand, the treatment of
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600 ppm PBZ exhibited a substantial increase in a single compound of the oxygenated
sesquiterpenes (caryophyllene oxide) compared to the untreated plants. These results
may imply that the antioxidant and antimicrobial activities could be attributed to the
presence of specific compounds, regardless the total quantity of the rest of the com-
pounds that belong to the same biochemical class.

Table 1. Quantity of monoterpene and sesquiterpene constituents of the lavender essential oil (%),
identified by GC-MS analysis of untreated with paclobutrazole lavender plants (control).

Compound Control
PBZ Treatments

No. 200 ppm 400 ppm 600 ppm

Monoterpene Hydrocarbons
1 α-Pinene 1.07 - - -
2 β-Pinene 0.95 - 0.69 -
3 3-Carene 0.38 - 0.84 0.22
4 γ -Terpinene 0.89 - 0.92 -
5 Terpinolene 0.91 - - -

Total (%) 4.2 - 2.45 0.22
Oxygenated monoterpenes

1 Carveol 0.98 - - 0.37
2 Eucalyptol 21.55 29.89 22.95 0.64
3 α-Terpineol 6.07 - 5.35 -
4 p-Cymen-7-ol 0.79 - 0.71 -
5 Linalool - - 2.25 -
6 L-Pinocarveol - - 1 -
7 α-Pinocarvone 1.52 - 1.65 -
8 cis-Verbenol - - 0.24 -
9 2-Pinen-10-ol - - 1.25 -

10 trans-Carveol 0.94 - - 0.43
11 L-camphor 17.56 13.76 16.67 9.98
12 D-Carvone - - 1.93 -

Total (%) 49.41 43.65 54 11.42
Sesquiterpene Hydrocarbons

1 β-Copaene 0.22 - - -
2 Caryophyllene 0.47 - 0.61 -
3 α-Farnesene - - 3.8 -

Total (%) 0.69 - 4.41 -
Oxygenated sesquiterpenes

1 β-Spathulenol 0.69 - 0.43 -
2 Caryophyllene oxide 0.23 - 0.25 9.94
3 β-Eudesmol - - 1.28 -
4 Humulene oxide II 0.64 - - -
5 δ-Cedrol - - 3.2 -
6 Nootkatone 0.37 - 0.52 -

Total (%) 1.93 - 5.68 9.94

2.6. Effect of PBZ on the Antioxidant Activity

To evaluate the total antioxidant capacity of the extracted essential oil from different
PBZ-treated and untreated plants, free radical scavenging activity against DPPH was used
in vitro (Figure 5). The results indicated that the treatment of 400 ppm PBZ, with the dose
of 250 µg/mL of the extracted oil, revealed the highest significant (p ≤ 0.05) antioxidant
capacity (72.54%) compared to the same dose of the untreated plants (59.19). Generally, the
antioxidant capacity was significantly increased in parallel with increasing the used dose
of extracted oil from 100–250 µg/mL in all studied treatments.
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2.7. Effect of PBZ on the Antimicrobial Activity

In addition to the antioxidant capacity, the antibacterial and antifungal activities of
the extracted oil, from PBZ-treated and untreated plants, were investigated (Figure 6).
Four different concentrations (100, 150, 200, and 250 µg /mL) of each extract (50 µL per
disc) were examined for their positive antimicrobial activity and increasing the inhibition
zone diameter (mm). Oils extracted from lavender treated plants with 400 ppm PBZ
showed strong and significant (p ≤ 0.05) antibacterial activity against two pathogenic
Gram-negative (E. coli and S. enteritidis) and Gram-positive (B. Subtilis and S. aureus)
bacterial strains compared to the oil extracted from the other treatments. A simillar trend
was also observed with respect to the antifungal activities against A. niger and C. albicans.
This promising antifungal activity was also evidenced by increasing the inhibition zone
diameter (mm) of fungal growth in vitro.
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Figure 6. The antibacterial and antifungal activities of the essential oil extracted from lavender
(Lavender officinalis) plants, treated by paclobutrazole (PBZ) at 0, 200, 400, and 600 ppm, against S.
aureus (A), B. cereus (B), S. enterica (C), E. coli (D), C. albicans (E), and A. niger (F). Values are the
averages of 3 replicates ± SD. Different letters indicate significant differences, according to Tukey’s
Studentized Range (HSD) Test (p < 0.05).

3. Discussion

In this study, lavender plants treated with PBZ revealed a significant inhibition in
growth parameters compared to the untreated plants. It is well documented that PBZ, as a
plant growth retardant, can affect the vegetative growth by mediating a number of changes
in the levels of other plant growth regulators, including auxins, gibberellins, abscisic acid,
and cytokinins [27,30,40]. It can temporarily restrict the gibberellins biosynthesis by pre-
venting the oxidation of ent-kaurene to ent-kaurenoic acid through inactivating cytochrome
P-450-dependent oxygenases [28,29]. This response can stimulate the isoprenoid pathway,
leading to ABA synthesis, which is considered to be the main plant growth inhibitor in
higher plants [27,30]. In contrast, applied PBZ led to an obvious and significant increase in
the readings of chlorophyll by SPAD. This effect could be attributed to the ability of PBZ to
increase the phytol, which is involved in the carbon skeleton of chlorophyll molecule [27].
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Moreover, the total yield of lavender essential oil was negatively, and significantly, affected
by different PBZ treatments. This response could be due to the inhibition of vegetative
growth parameters, where the leaves and stem are the major parts used for oil extraction in
this study.

Lavender oil is considered a complex mixture of many secondary metabolites,
including terpenes, alcohols, aldehydes, and phenols [41]. This composition can be
affected by several factors, i.e., plant age, geography, climatic conditions, plant organ
selection, harvest season, and the extraction method [42]. Furthermore, exogenous
PBZ has been found to stimulate the terpenoid pathway, leading to the accumulation
of several terpenes and restrict the biosynthesis of GA3 [27,43]. In this study, laven-
der plants treated with 200 ppm PBZ demonstrated an increase in eucalyptol, geranyl
isovalerate, and phytanic acid compared to the untreated plants. Meanwhile, the
treatment of 400 ppm PBZ showed considerable accumulation in 3-carene, eucalyptol,
γ-terpinene, α-pinocarvone, caryophyllene, β-vetivenene, β-santalol, ledol, geranyl
isovalerate, farnesol, caryophyllene oxide, and phytol compared to the untreated plants.
On the other hand, the treatment of 600 ppm PBZ displayed an obvious increase in
caryophyllene oxide, α-santonin, geranyl isovalerate, phytanic acid, and phytol com-
pared to the untreated plants. These findings imply that applied PBZ can affect the
profile of oil constituents, which related to the monoterpenes and sesquiterpenes in
both their forms (oxygenated compounds or hydrocarbons). These secondary metabo-
lites possess a large scale of defensive effects against insects, viruses, bacteria, and
fungi [14,18,44–46]. Furthermore, this protective effect can be extended to enhance
plant tolerance against various abiotic stresses, due to the antioxidant properties of
these compounds [9,17,26,47]. In this study, the treatment of 400 ppm PBZ, followed by
the control, revealed a greater antioxidant capacity compared to the other treatments.
These results could be attributed to increasing the percentage of terpenes (Table 1). Ter-
penes can break the chain and react with the lipid peroxyl radicals, leading to formation
stable molecules [47]. Besides, in this study, the treatment of 400 ppm showed the pres-
ence of linolool (oxygenated monoterpene), which has strong antioxidant power, due to
its hydrogen atom donation and electron removal, from the macromolecules leading
to prevent the oxidative damage [48]. Similarly, several previous studies reported that
the terpenes and terpenoids of essential oils can contribute to the antioxidant activity,
such as α-terpinene, β-terpinene and β-terpinolene [49], 1,8-cineole (Eucalyptol) [50],
menthone and isomenthone [51], thymol, eugenol, and linalool [52]. Generally, earlier
studies identified a strong link between the chemical content of essential oils and their
antioxidant activity, particularly when molecules possess hydroxyl functionalities [53].
In this context, it was reported that essential oils that are rich in oxygenated monoter-
penes possess high antioxidant potency [54]. This effect was in harmony with the
findings obtained in this study.

Many researchers found that most of the plants that contain high levels of essential
oils have inhibitory potentials against pathogenic microorganisms. Therefore, these oils
can be used as antimicrobial compound drugs. The inhibitory potentials of lavender
essential oil, against bacterial and fungal pathogens, were investigated in this study. The
results showed antibacterial inhibitory effects against S. aureus ATCC 29737, B. cereus
ATCC 11778, S. entertidis ATCC, E. coli o157:H7, C. albicans ATCC 60193, and A. niger
ATCC 16404. The antibacterial action of lavender essential oil is mostly correlated with
the presence of active components, such as monoterpenes, sesquiterpenes, and their
derivatives. Recent research has found that various essential oils, including lavender and
basil, have antibacterial properties against Gram-positive bacteria, such as Staphylococcus
aureus and Bacillus species, Gram-negative bacteria, such as Escherichia coli and Shigella
flexneri, as well as the pathogenic fungi, such as Candida albicans [55–57]. Furthermore,
it has been found that hydrodistilled coriander essential oil has a potent antifungal
activity against C. albicans [57]. This essential oil of coriander can cause a synergistic
antifungal activity against Candida species and potential synergism with amphotericin
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B [58]. Additionally, Rahman, et al. [59] found that the essential oil extracted from
the leaves of Piper chaba Hunter displayed potent antifungal activity against Fusarium
oxysporum, Phytophthora capsici, Colletotrichum capsici, Fusarium solani, and Rhizoctonia
solani. This influence was attributed to the activity to α-humulene, caryophyllene oxide,
viridiflorol, globulol, β-selinene, spathulenol, (E)-nerolidol, linalool, 3-pentanol, and p-
cymene that were present in the oil. Several investigations proposed that the mechanism
of action of monoterpenes and its derivatives affect the cell membrane permeability,
based on their ability to stop cell wall synthesis and damage the cytoplasmic membrane,
resulting in lysis and leakage of intracellular components [60]. Additionally, our results
were similar to those reported elsewhere [61], which showed that essential oil derived
from lavender displayed significant antibacterial activity against Bacillus subtilis and
Aspergillus niger. In the present work, the findings were in agreement with previous
studies that linked essential oil’s antibacterial potency to the presence of a considerable
amount of camphor [62], confirming that oxygenated monoterpenes had antibacterial
properties against a variety of bacteria.

The mechanism of action of camphor can enter cell walls and the cytoplasmic mem-
brane, causing polysaccharide structure, fatty acid, and phospholipid permeability [63].
The mechanism of action of oxygenated monoterpenes, such as 1,8-cineole (eucalyptol),
is most likely due to their ability to form hydrogen bonds, which defines their activ-
ity against Gram positive bacteria [64]. Since camphor and eucalyptol are the most
important components of the essential oils in this study (Table 1), it is possible that
they are responsible for the reported antimicrobial properties of essential oils under the
circumstances of this study. The molecular interaction of the functional groups of the
components with the bacteria wall [65], which results in deep lesions, may also explain
the strong antibacterial activity of lavender essential oil extracted from plants treated
with 400 ppm PBZ.

4. Material and Methods
4.1. Plant Material, Treatments and Growth Parameters

One month old, healthy and uniform in shape, lavender (Lavandula officinalis L.)
transplants (10 cm, length) were purchased from a private nursery, Giza, Egypt. Each
single transplant was cultivated in the first week of March (2021) in a plastic pot (35 cm
diameter) filled with peat moss and sand (1:1). The irrigation was regularly done
2–3 times a week after calculating the decrease in water-holding capacity using the
weight method. Fertilization was also done using a half-strength Hoagland’s nutrient
solution (one time every 10 days). After 2 months of cultivation, all pots (60 pots) were
divided into 4 groups, in the first week of May, to apply the foliar applications of α-
tert-Butyl-β-(4-chlorobenzyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol; PBZ; Zeneca
ICI Agrochemical Ltd., Mumbai, India) at 0 (distilled water as a control), 200, 400, and
600 ppm. Each group of plants (15 pots) was sprayed five times with 15 mL of a specific
concentration of PBZ solutions, as shown in Figure 7. In the first week of July, plants
were gathered to determine the growth parameters and record the chlorophyll content,
based on the chlorophyll SPAD readings, using a digital chlorophyll meter (Minolta
SPAD-502, Japan). The experimental layout was of complete randomized design (CRD)
with 3 replicates. All the experimental pots were distributed as follows:

4 PBZ treatments × 5 pots × 3 replicate = 60 plants
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0, 200, 400, and 600 ppm and the sampling date, to extract the essential oil of lavender (Lavandula
officinalis L.) plants.

4.2. Extraction and Determination of Lavender Essential Oil Content

Steam distillation was used to isolate the essential oil of dried vegetative parts of the
lavender plant, the leaves and stem (untreated and treated with PBZ), using a Clevenger
glass apparatus, in which 100 g of the dried whole lavender plant was extracted in the
steam distillation apparatus for 3 h. Lavender oil was isolated from the remaining water
and stored in dark glass vials at 4 ◦C until the active compounds were separated and
analyzed by Gas chromatography—mass (GC-MS). The oil yield was calculated as grams
of oil per 100 g of dry whole lavender plant.

4.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

After evaporation, the extracted oil residue was dissolved with 3 mL ethyl acetate,
and the extracted oil residue was dissolved with 3 mL ethyl acetate then 1 mL transferred
to GC vial for GC/MS analysis. Gas chromatography—mass was used for the analysis
of various components of lavender volatile oil that were present in modest quantities, in
addition to the analysis of the main components of lavender essential oil. The identification
of components was based on a comparison of their mass spectra and retention time with
those of the authentic compounds and by computer matching with NIST and WILEY
library, as well as by comparison of the fragmentation pattern of the mass spectral data
with those reported in the literature. The analysis was carried out using a GC (Agilent
Technologies 7890A) interfaced with a mass-selective detector (MSD, Agilent 7000) and
equipped with a polar Agilent HP-5ms (5%-phenyl methyl poly siloxane) capillary column
(30 m × 0.25 mm i.d. and 0.25 µm film thickness). The carrier gas was helium, with
the linear velocity of 1 mL/min. The injector and detector temperatures were 200 ◦C
and 250 ◦C, respectively, while volume injected 1 µL of the sample. The MS operating
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parameters were as follows: ionization potential 70 eV, interface temperature 250 ◦C, and
acquisition mass range 50–800 [66].

4.4. DPPH Free Radical Scavenging Activity

The capacity of essential lavender oil to scavenge the DPPH (1,1-diphenyl-2-picrylhydr
-azyl) radical was determined, according to the method described by Gargouri et al. [67]. In
the DPPH method, 500 µL of freshly prepared DPPH solution (50 mM in absolute ethanol)
was mixed with 1 mL of lavender oil (100, 150, 200, and 250 µL/L) and left in the dark for
30 min. Then, the absorbance of the mixture was recorded at 517 nm. The capability to
scavenge the DPPH radical (% inhibition) was calculated using the following equation:

% inhibition =

[
Ac − At

Ac

]
× 100 (1)

where, Ac is the absorbance of reaction without the sample (control) and At is the ab-
sorbance of the test samples.

4.5. Pathogenic Microbial Strains

Six pathogenic microbial strains, including S. aureus ATCC 29737, B. cereus ATCC
11778, S. enterica ATCC 9184, C. albicans ATCC 60193, and A. niger ATCC 16404, were
collected from Microbiological Resource Center (MERCIN) at Faculty of Agriculture, Ain
Shams University, Cairo, Egypt, and E. coli o157:H7 was purchased from Microbiological
Laboratory of Animal Health Institute, Cairo, Egypt. All tested microorganisms were
cultured on Mueller Hinton Agar (MHA), followed by culturing on Tryptic Soy Broth (TSB),
and incubated at 37 ◦C for 24 h. All cultures were then kept at 4 ◦C for further experiments.
A loopful of each studied pathogenic microbial strain (106 CFU/mL) was determined by
the plate count method and inoculated into a 200 mL Erlynemyer flask containing 100 mL
of Tryptic Soy Broth, and it was incubated at 37 ◦C, under shaking at 150 4pm, for 24 h [68].

4.6. Antimicrobial Activity of Lavendar Essential Oil Using Well Diffusion Method

The inhibitory activity of lavender essential oil was tested against six pathogenic
microorganisms, including four bacterial strains (S. aureus ATCC 29737, B. cereus ATCC
11778, S. enterica ATCC 9184, E. coli o157:H7) and two fungal strains (C. albicans ATCC 60193
and A. niger ATCC 16404). Different lavender essential oil concentrations (100, 150, 200, and
250 µg/mL) were prepared by dissolving them in 100% dimethyl sulfoxide (DMSO). Briefly,
one milliliter of all previous pathogens’ inocula were spread onto sterile MHA plates. For
wells preparation, Agar plates were holed using a sterile 7 mm diameter cork-borer. Each
well was filled with 100 µL of lavender essential oil concentrations, individually. All plates
were kept at room temperature for 1 h, followed by incubation at 37 ◦C for 24 h, according
to the CLSI [69] method. DMSO was served as the negative control. All experiments were
carried out in triplicates. Antimicrobial activity was determined by measuring the diameter
of clear zones in millimeters.

4.7. Statistical Analysis

One way ANOVA procedure was followed using SAS [70] software. Means ± SD
were calculated from three replicates and Tukey’s Studentized Range (HSD) Test (p < 0.05)
was used to determine the significant differences between means.

5. Conclusions

The chemical characterization of Lavandula officinalis L., as well as its antioxidant and
antibacterial properties, were investigated in this study. It could be concluded that the
essential oil of plants treated with 400 ppm PBZ was found to be very rich in oxygenated
monoterpenes and oxygenated sesquiterpenes, which remain the main contributors to the
biological activities of this oil. Our study showed that the essential oil extracted from plants,
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treated with 400 ppm PBZ, was more effective against the tested microbes than the other
treatments, aside from its greater activity of antioxidant properties (Figure 8).
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