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Abstract: Late blight of potato caused by Phytophthora infestans is one of the most damaging diseases
affecting potato production worldwide. We screened 357 root fungal endophytes isolated from four
solanaceous plant species obtained from Kenya regarding their in vitro antagonistic activity against
the potato late blight pathogen and evaluated their performance in planta. Preliminary in vitro tests
revealed that 46 of these isolates showed potential activity against the pathogen. Based on their
ITS-sequences, 37 out of 46 endophytes were identified to species level, three isolates were connected
to higher taxa (phylum or genus), while two remained unidentified. Confrontation assays, as well
as assays for volatile or diffusible organic compounds, resulted in the selection of three endophytes
(KB1S1-4, KA2S1-42, and KB2S2-15) with a pronounced inhibitory activity against P. infestans. All
three isolates produce volatile organic compounds that inhibit mycelial growth of P. infestans by up
to 48.9%. The addition of 5% extracts obtained from KB2S2-15 or KA2S1-42 to P. infestans sporangia
entirely suppressed their germination. A slightly lower inhibition (69%) was achieved using extract
from KB1S1-4. Moreover, late blight symptoms and the mycelial growth of P. infestans were completely
suppressed when leaflets were pre-treated with a 5% extract from these endophytes. This might
suggest the implementation of such biocontrol candidates or their fungicidal compounds in late
blight control strategies.

Keywords: antifungal endophytes; secondary metabolites; biological control; volatile compounds;
anti-oomycete; Phytophthora infestans; sporangia germination

1. Introduction

Since its earliest epidemic outbreak in the 1840s, late blight of potato incited by
Phytophthora infestans (Mont.) de Bary has been the most severe biotic constraint threaten-
ing potato production worldwide. Under favorable environmental conditions and host
susceptibility, the heterothallic fungal-like oomycete can massively produce aerially dis-
persible sporangia that can either directly germinate or release large numbers of water
motile zoospores able to completely destroy not only potato, but also tomato crops within
a few days [1–3]. The global economic impact associated with late blight on potato in terms
of losses incurred due to damage and costs of disease control is conservatively estimated
at more than 6 billion USD annually, with losses being heavier in developing rather than
developed countries [1,4]. In Sub-Saharan Africa, losses attributed to late blight range from
30–75% [5]. However, when the disease is initiated early in the cropping season losses
might increase up to 100% [6].

Over several decades, fighting late blight disease has largely been based on the use
of chemicals [7–10]. Recently, ecologists have succeeded in raising public concern and
awareness about the impacts of agrochemicals on the environment [11]. From this per-
spective, increased public and scientific desire has been elevated to develop alternative
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environmental-friendly control strategies that might be less harmful to both the consumer
and the ecosystem [12–15]. Introducing beneficial microorganisms as biological control
agents (BCAs) might represent a sustainable and reliable solution to replace chemical
fungicides in late blight management. Nonpathogenic endophytic microorganisms have
been shown to have potential as BCAs in many agricultural systems [16,17]. Endophytic mi-
croorganisms may exert their biocontrol activities by producing antimicrobial compounds
that suppress plant pathogens or by inducing defense reactions within the plants [18,19].
Moreover, endophytes can also bestow other beneficial properties to their hosts (e.g., ni-
trogen fixation and/or phytohormone production), which may lead to a reduced use of
agrochemicals and maintenance of biodiversity in plant-associated communities [20]. Sev-
eral attempts regarding the activities of BCAs against the potato late blight pathogen have
been reported [21,22]. In 1997, Ng and Webster [23] demonstrated that treating potato
foliage with crude extracts of Xenorhabdus bovienii, led to a development of late blight
symptoms in only 4% of the pathogen-treated plants compared to the untreated control [23].
Daayf et al. [24] established that Bacillus subtilis and Rahnella aquatilis restricted the growth
of P. infestans in vitro, reporting inhibitions up to 81%. They also showed that Serratia
plymuthica could inhibit the growth of the pathogen by >75% on detached potato leaves. In
a potted plant experiment, a commercial preparation of B. subtilis applied as a foliar spray
immediately after P. infestans inoculation was effective against late blight, suppressing the
disease to below 40% [25]. Loliam et al. [26] demonstrated that Streptomyces rubrolavendulae
could increase the survival of tomato and chili seedlings from 51.42% to 88.57% and 34.10%
to 76.71%, respectively, in P. infestans-infested soils. Fungal endophytes isolated from
Espeletia spp., including Trichoderma asperellum, Aureobasidium pullulans, Nigrospora oryzae,
Chaetomium globosum, and Penicillium commune completely inhibited growth of P. infestans
in vitro, while Paecilomyces sinensis and Pestalotiopsis disseminate recorded inhibitions of
>60% [27]. Moreover, Gupta [28] also showed that lesion areas caused by P. infestans on
detached potato leaves were significantly reduced after treatment with spore suspensions
of Trichoderma viride, Penicillium viridcatum, Myrothecium verrucaria, or Trichoderma harzianum
compared to the untreated control. Under controlled conditions, Trichoderma atroviride was
observed to reduce late blight disease severity by 27% relative to the untreated control in
potato plants [29].

Solanaceous plants providing diverse niches for endophytic associations have been
shown to harbor a diversity of endophytic fungal species in their leaves, stems, and roots
that enhance growth and suppress plant pathogens [14,30,31]. Kim et al. [12] showed that
fermentation broths of F. oxysporum EF119, isolated from roots of red pepper, controlled
late blight by >90% compared to the control in intact tomato seedlings grown under
controlled conditions. Andrade-Linares et al. [14] observed that tomato plants colonized
by dark septate endophytes isolated from tomato roots recorded enhanced shoot biomass
during early stages of vegetative growth. Recently, de Vries et al. [32] have shown that
a root endophyte, Phoma eupatorii, could suppress mycelial growth of a broad spectrum
of P. infestans isolates in vitro and also protect tomato plants through the production of
anti-oomycete compounds in planta.

Despite several attempts to characterize endophytes successfully controlling late blight
disease on potatoes, their effects often did not deliver consistent disease suppression com-
parable to their chemical counterparts [2–4,6]. Due to this lack of consistency of biocontrol
activity, research efforts in terms of discovering new bioactive endophytes preferably with
multiple modes of action should be accelerated. Hence, the objectives of the present study
were (i) to isolate root endophytic fungi associated with four solanaceous plants obtained
from diverse regions in Kenya, (ii) to characterize these endophytes according to their
phylogeny, (iii) to evaluate their inhibitory effects against P. infestans in co-culture, (iv) to
explore the modes of action of the most successful fungal endophytes by studying the sup-
pressive effects of their diffusible and volatile metabolites and, (v) to validate the efficacy
of these endophytes in combating P. infestans in planta.
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2. Results
2.1. Isolation of Endophytic Fungi from Roots of Solanaceous Plants

A total of 357 isolates of fungal endophytes were obtained from roots of potato,
tomato, bell pepper, and nightshade from Nyandarua, Kiambu and Kilifi regions in Kenya.
The highest number of endophytes were isolated from nightshade (30.5%), followed by
potato (25.5%), tomato (23%), and bell pepper (21%) (Figure 1). Among all endophytes,
112 (31.4%) were identified as Fusarium spp., 104 (29.1%) readily sporulated on PDA, while
141, accounting for 39.5%, formed no spores on this medium.
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Figure 1. Distribution of the total fungal root endophytes found in four solanaceous host plants and
classified into three categories: fusarial, sporulating, and non-sporulating endophytes.

2.2. Screening of Endophytes for Anti-Oomycete Activity

The results obtained from the primary high throughput screening assay showed that
64 of the total isolates (n = 357) had potential activity against P. infestans. However, four
of these proved fastidious and ceased to grow in culture while 14 were morphologically
identified as Fusarium spp. and excluded from subsequent analyses. Among the remaining
46 potentially active isolates, 63% were obtained from Kilifi (Figure 2), with those isolated
from bell pepper in this region accounting for 32.6% of the total number of potential
antagonists. Other isolates from Kilifi showing potential activity against P. infestans were
obtained from tomato (17.4%) and nightshade (13%). All antagonistic isolates from Kiambu
were from nightshade, representing 15.2% of the selected potential antagonists while those
from Nyandarua were isolated from potato and nightshade accounting for 17.4% and
4.3%, respectively. Generally, the number of antagonists isolated per plant species was
15 isolates each for bell pepper and nightshade and eight isolates each for tomato and
potato. Interestingly, only nightshade plants were accompanied by potential antagonists
from all three regions.
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Figure 2. Distribution of root fungal endophytes with potential activity against P. infestans in relation
to host plant and sampling region.

2.3. Characterization of the Fungal Endophytes

Based on their ITS sequences, 46 endophytic fungal isolates screened in the dual
culture were characterized. The isolates were considered conspecific to species on the NCBI
database when their ITS sequences (ITS1-5.8S-ITS4) matched those of the reference with
an identity of ≥99% [33]. Based on this criterion, 37 of the 46 sequences were identified to
the species level, three isolates were affiliated to higher taxa (phylum or order), while two
matched unidentified fungi (Table 1).

The similarities of the remaining four endophytes (NP3S4-63, KA2S1-42, KB2S2-16,
and KB2S2-15) did not meet the threshold and showed associations to higher taxa (genus,
family, and order). The 37 isolates belonged to 18 species within the 13 genera including:
Albifimbria, Aspergillus, Myrothecium, Cylindobasidium, Epicoccum, Macrophomina, Penicillium,
Plectosphaerella, Purpureocillium, Pyrenochaeta, Rhizoctonia, Mucor, and Colletotrichum.

The 46 endophytic isolates and their closest BLAST entries form eight distinctive
clades, which agrees nicely with their taxonomic identity (Figure 3). Three of the clades
represent the two fungal phyla Zygomycota and Basidiomycota, which contain one and
three fungal species, respectively. The Zygomycete Mucor moelleri was found to belong to
the order Mucorales, while the Basidiomycetes could be placed in two orders, Cantharel-
lales (Rhizoctonia solani) and Agaricales (Cylindrobasidium evolvens), according to Crous
et al. [34]. More than 90% of the endophytic isolates were Ascomycetes distributed into
three classes, namely Dothideomycetes, Sordariomycetes, and Eurotiomycetes, which fell
into four clades (Figure 3). Dothideomycetes and Eurotiomycetes form the bulk of the
identified Ascomycetes representing 45.2% and 35.7%, respectively. All Eurotiomycetes
identified belong to the order Eurotiales, while the identified Dothiodeomycetes comprise
the orders Pleosporales and Botryosphaeriales [34]. Two isolates (KB1S1-4 and KB2S2-15)
cluster with the Dothideomycetes, however, they could not be placed in any of the two
orders with absolute certainty. Identified Sordariomycetes form the minority of identi-
fied Ascomycetes (19%) and are grouped into two orders, Hypocreales and Glomerellales
(Figure 3). Unknown isolate KB1S4-9 clustered with Sordariomycetes and was inferred to
belong to the Glomerellales as it grouped with species within this order [34]. The closest
BLAST match for isolate KB2S2-15 formed the eighth clade (Figure 3).
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Table 1. Molecular identity of endophytic fungi from four solanaceous plants.

Isolates Accession Numbers Host Plant Best BLAST Match (Accession Number) Identity (%)

KB1S2-7 MG214581 Capsicum annum Macrophomina phaseolina (KT862032) 99
NA2S2-45 MG214587 Solanum nigrum Mucor moelleri (KP900321) 99
KA1S1-37 MG214583 S. nigrum Macrophomina phaseolina (FJ395243) 100
OA3S1-49 MG214585 S. nigrum Macrophomina phaseolina (KT768130) 100
KA1S4-40 MG214584 S. nigrum Macrophomina phaseolina (KT768130) 100
OA3S1-51 MG214604 S. nigrum Rhizoctonia solani (JQ616871) 100
NP2S2-61 MG214605 S. tuberosum Rhizoctonia solani (KT783526) 99
KA1S1-34 MG214568 S. nigrum Aspergillus aculeatus (KJ862074) 100
KB1S1-3 MG214573 C. annum Aspergillus sp. (EF669604) 99

KT1S1-20 MG214569 Lycopersicon esculentum Aspergillus flavipes (KC426997) 100
OA1S1-46 MG214592 S. nigrum Penicillium simplicissimum (KM396382) 99
KB1S4-8 MG214560 C. annum Albifimbria terrestris (KU845884) 99

KB2S2-17 MG214582 C. annum Macrophomina phaseolina (JN672592) 100
KB2S4-18 MG214565 C. annum Ascomycota sp. (KT240142) 100
KB1S4-10 MG214561 C. annum Albifimbria terrestris (KU845884) 99
KT1S1-21 MG214571 L. esculentum Aspergillus ochraceopetaliformis (JQ647894) 100
KT1S1-24 MG214575 L. esculentum Aspergillus terreus (KP793450) 99
KT2S1-27 MG214576 L. esculentum Aspergillus terreus (KX011595) 100
KB1S4-13 MG214590 C. annum Penicillium oxalicum (KU743897) 100
KB3S4-19 MG214579 C. annum Cylindrobasidium evolvens (KT201654) 100
KT3S4-33 MG214567 L. esculentum Aspergillus aculeatus (KM278131) 100
KT1S1-22 MG214574 L. esculentum Aspergillus terreus (KT778597) 100
OA3S1-52 MG214598 S. nigrum Pyrenochaeta lycopersici (AB695298) 99
KB2S2-16 MG214586 C. annum Massarinaceae sp. (JF502440) 97
KB1S4-9 MG214563 C. annum Fungal endophyte isolate (KP335438) 99

NP1S4-59 MG214578 S. tuberosum Colletotrichum coccodes (JX294026) 99
NA2S2-44 MG214591 S. nigrum Penicillium simplicissimum (KM396382) 99
KA1S2-39 MG214580 S. nigrum Epicoccum nigrum (KT276982) 100
OA2S1-48 MG214595 S. nigrum Plectosphaerella oligotrophica (KX446769) 99
KB1S4-11 MG214588 C. annum Myrothecium cinctum (DQ135998) 100
OA3S1-50 MG214594 S. nigrum Plectosphaerella cucumerina (KT826571) 100
KB1S4-12 MG214570 C. annum Aspergillus foveolatus (AB249010) 100
KT1S1-23 MG214572 L. esculentum Aspergillus ochraceopetaliformis (JQ647894) 100
KA1S1-35 MG214577 S. nigrum Aspergillus terreus (KM491895) 99
NP1S5-64 MG214602 S. tuberosum Pyrenochaeta lycopersici (AY649593) 99
NP2S1-55 MG214599 S. tuberosum Pyrenochaeta lycopersici (AY649594) 100
NP2S1-60 MG214603 S. tuberosum Uncultured Pyrenochaeta (JQ247357) 100
KB1S1-1 MG214596 C. annum Purpureocillium lilacinum (KT224843) 100

NP3S4-63 MG214593 S. tuberosum Periconia sp. (KP269005) 97
KA2S1-42 MG214566 S. nigrum Uncultured Pleosporales (GU909731) 94
NP2S1-56 MG214600 S. tuberosum Pyrenochaeta lycopersici (AY649594) 100
NP3S2-62 MG214601 S. tuberosum Pyrenochaeta lycopersici (AY649594) 100
OA1S1-47 MG214597 S. nigrum Pyrenochaeta lycopersici (KF494161) 100
KB1S1-4 MG214562 C. annum Uncultured fungus (FJ528715) 99

KT2S2-29 MG214589 L. esculentum Penicillium citrinum (KT385733) 100
KB2S2-15 MG214564 C. annum Uncultured ectomycorrhiza (JX043219) 91
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Figure 3. Phylogram of 46 rDNA ITS sequences of root endophytic fungi and their closest BLAST
matches based on neighbor-joining analysis. Bootstrap values of >50% are shown at branching
points. Ca: Cantharellales; Ag: Agaricales; U: Unknown; Pl: Pleosporales; Bo: Botryosphaeriales; Gl:
Glomerellales; Hy: Hypocreales; and Eu: Eurotiales.

A deeper look at the distribution of fungal taxa with potential activity against P. infestans
in relation to the source host plant showed that tomato accommodated two genera, namely
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Aspergillus (87.5%) and Penicillium (12.5%), while four genera, with Pyrenochaeta being the
most abundant (62.5%), were found in potato (Figure 4).
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Figure 4. Comparative distribution of taxa with antagonistic activity against P. infestans from four
solanaceous plant species.

On the other hand, nightshade and bell pepper harbored more diverse fungi giving rise
to eight and seven known genera, respectively. Both host plants also harbored unknown
species, with the proportion being greater in bell pepper (33.3%) than in nightshade (6.7%).

2.4. In Vitro Activity of Endophytic Fungi against Mycelial Growth of P. infestans

In confrontation assays, mycelial growth retardation of P. infestans in the presence
of one of the 46 fungal endophytic isolates varied significantly (Table 2). T. harzianum
along with two endophytes (KB1S2-7 and KA1S1-34) suppressed mycelial growth of the
pathogen by 84.5%, 78.2%, and 76.5%, respectively. The other endophytes, however,
were either only moderate (KB1S4-10 and KT1S1-21), or slight (KT2S2-29 and KB2S2-
15) growth inhibitors. Macroscopic observations of the interaction zones showed that
some endophytes completely overgrew the pathogen. Members of these endophytes
including T. harzianum, Mucor moelleri, and Macrophomina phaseolina recorded the highest
inhibition (70.4–84.5%) (Table 2). Albifimbria terrestris and Penicillium simplicissimum partially
overgrew pathogen colonies giving moderate growth inhibition (51.8–56.3%). In other
cases, the growth of both endophyte and pathogen stopped once their colonies came
into contact. Mycelial growth inhibition in this group was dependent on the growth
rate of the endophytes. Fungal endophytes within the genera Aspergillus, Albifimbria,
Macrophomina, and Cylindrobasidium showed this type of interaction. Interestingly, other
endophytes within the genera Aspergillus, Penicillium, Purpureocillium, and Pyrenochaeta
created inhibition zones with the pathogen. These endophytes showed slight to moderate
inhibition percentages (13.3–46.9%) and the inhibition areas created between endophyte
and pathogen varied markedly (Table 2). Three unidentified isolates (KB1S1-4, KA2S1-42,
and KB2S2-15) formed significantly (α = 0.05) larger inhibition zones measuring 18.8, 18.3,
and 14.8 mm, respectively.
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Table 2. Mycelial growth inhibition of P. infestans and inhibition zones caused by endophytic fungi
(arranged in descending order in terms of their mycelial growth inhibition) in dual culture.

Isolate Highest BLAST Affinities Mycelial Growth Inhibition (%) * Inhibition Zone (mm) *

T16 Trichoderma harzianum 84.5 a -
KB1S2-7 Macrophomina phaseolina 78.8 ab -

KA1S1-34 Aspergillus aculeatus 76.7 ab -
NA2S2-45 Mucor moelleri 73.8 ab -
KB2S2-17 Macrophomina phaseolina 72.0 ab -
KA1S1-37 Macrophomina phaseolina 70.4 ab -
OA3S1-49 Macrophomina phaseolina 70.2 ab -
KA1S4-40 Macrophomina phaseolina 69.2 ab -
OA3S1-51 Rhizoctonia solani 69.2 ab -
NP2S2-61 Rhizoctonia solani 68.3 bc -
KB1S1-3 Aspergillus sp. 68.2 bc -

OA1S1-46 Penicillium simplicissimum 56.3 dc -
KB2S4-18 Ascomycota sp. 54.1 de -
KT1S1-23 Aspergillus ochraceopetaliformis 53.5 de 9.3 cd

KA1S1-35 Aspergillus terreus 52.0 d–f 7.0 c–e

KB1S4-10 Albifimbria terrestris 51.8 d–f -
KT1S1-21 Aspergillus ochraceopetaliformis 49.5 d–g -
KT1S1-24 Aspergillus terreus 47.0 d–h -
NP1S4-59 Colletotrichum coccodes 46.9 d–h -
KT2S1-27 Aspergillus terreus 46.5 d–h -
NA2S2-44 Penicillium simplicissimum 45.0 d–i -
NP1S5-64 Pyrenochaeta lycopersici 43.9 d–j 10.0 cd

KB1S4-13 Penicillium oxalicum 43.5 d–j -
NP2S1-55 Pyrenochaeta lycopersici 42.9 e–k 7.6 c–e

KB1S4-8 Albifimbria terrestris 41.5 e–k -
NP2S1-60 Uncultured Pyrenochaeta 39.4 f–l 17.0 a

KB1S1-1 Purpureocillium lilacinum 39.0 f–l 6.5 de

KA1S2-39 Epicoccum nigrum 39.0 f–l -
NP3S4-63 Periconia sp. 38.4 g–m 11.0 bc

KB3S4-19 Cylindrobasidium evolvens 37.3 g–m -
KA2S1-42 Uncultured Pleosporales 37.0 g–n 18.3 a

NP2S1-56 Pyrenochaeta lycopersici 36.5 g–n 11.3 bc

KT3S4-33 Aspergillus aculeatus 36.4 g–o -
NP3S2-62 Pyrenochaeta lycopersici 34.5 h–o 7.3 c–e

KT1S1-20 Aspergillus flavipes 32.2 i–p -
OA1S1-47 Pyrenochaeta lycopersici 31.4 j–q 8.0 c–e

KT1S1-22 Aspergillus terreus 31.1 j–q -
OA2S1-48 Plectosphaerella oligotrophica 30.5 k–q -
KB1S4-11 Myrothecium cinctum 28.1 l–r -
OA3S1-50 Plectosphaerella cucumerina 26.1 m–r -
OA3S1-52 Pyrenochaeta lycopersici 24.7 n–r -
KB1S1-4 Uncultured fungus 24.2 o–r 18.8 a

KB1S4-12 Aspergillus foveolatus 22.3 p–s -
KB2S2-16 Massarinaceae sp. 20.1 q–s -
KB1S4-9 Fungal endophyte isolate 20.0 q–s -

KT2S2-29 Penicillium citrinum 18.9 rs 4.8 e

KB2S2-15 Uncultured ectomycorrhiza 13.3 s 14.8 ab

* Means with the same letter are not significantly different at α = 0.05.

2.5. Potential of Endophytes Secreting Volatile Organic Compounds Active against P. infestans

Based on the results obtained from dual culture experiments, six endophytic fungal
isolates (NA2S2-45, KB2S2-17, KB1S1-4, KA2S1-42, KB2S2-15, and KB2S4-8) were selected
and subjected to further characterization regarding their ability to produce volatile organic
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compounds (VOCs) with anti-oomycete activity. All endophytes were found to produce
VOCs with varying activities against mycelial growth of P. infestans (Figure 5).
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Figure 5. Suppressive effects (%) of the VOCs secreted by the endophytic fungi against mycelial
growth of P. infestans. Error bars represent the standard error of means (n = 8).

M. moelleri (NA2S2-45), M. phaseolina (KB2S2-17), and an unidentified Pleosporales
species (KA2S1-42) retarded the growth of the pathogen to a similar extent, recording
inhibition percentages of 56.7%, 50.8%, and 48.9%, respectively. Lower suppression levels
were observed in the case of Alibifimbria terrestris KB1S4-8 (18.4%) and two unidentified
fungi, KB1S1-4 (26.8%) and KB2S2-15 (16.7%).

2.6. Effect of Crude Extracts from Selected Endophytes on Sporangial Germination of P. infestans

To assess the potential of crude extracts (CEs) obtained from selected fungal isolates
against P. infestans, sporangia were allowed to germinate in the presence of 5% of individual
CEs and germination was evaluated after 16 h. Sporangia germination in 5% acetone
(solvent control) recorded ≥90% and differed only insignificantly from that of the water
control. Sporangia reacted differentially to the individual CEs applied (Table 3).

Table 3. Effect of crude extracts from the endophytes on sporangial germination and germ tube
elongation of P. infestans.

CEs Source
Inhibition (%) 1

Sporangial Germination 2 Germ tube Growth 3

KB2S2-15 100.00 a 100.00 a

KA2S1-42 100.00 a 100.00 a

KB1S1-4 69.38 b 82.73 b

NA2S2-45 30.04 c −1.92 e

Acetone (solvent) control 0.00 d 0.00 e

(1) Inhibition percentages calculated relative to the solvent control. Means with the same letter within each column
are not significantly different at α = 0.05, (p < 0.0001), n (2) = 1600, n (3) = 160.

While the crude extract (5%) from NA2S2-45 significantly retarded sporangia germina-
tion (30%), no suppressive effect on germ tube growth was detected. A similar dosage of the
crude extract from KB1S1-4 suppressed sporangial germination by approximately 70% and
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diminished germ tube elongation by >80% compared to the solvent control. The amend-
ment of P. infestans sporangia with CEs obtained from two endophytic fungi (KB2S2-15 and
KA2S1-42) entirely suppressed their germination (Table 3). As a result, CEs from KB2S2-15,
KA2S1-42, and KB1S1-4 showed suppressive effects against sporangia germination and
germ tube development and hence were selected for further in vivo investigations.

2.7. In Vivo Activity of the Crude Extracts against P. infestans

To validate the in vitro results, the effect of CEs on leaf blight development on detached
potato leaves was investigated. CEs were incorporated into sporangial suspension to give a
dosage of (5%, w:v). This mixture was inoculated on the abaxial surface of detached leaflets
on either side of the midrib. The results obtained from two independent experiments
revealed that detached leaflets treated with either acetone or CEs in the absence of the
pathogen did not show any phytotoxic damage (Figure 6b,d–f).
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Figure 6. Detached potato leaflets treated or not with crude extracts of the endophytes and inoculated
(+Pi, uppercase latters) or not (−Pi, lowercase letters) with sporangial suspension of P. infestans.
(A,a): water control, (B,b): solvent control, (C,c): Infinito®, (D,d): KB1S1-4, (E,e): KB2S1-15, and (F,f):
KA2S1-42.

Under a high relative humidity, necrotic lesions covered with white fluffy hyphae
and sporangia of P. infestans developed on the inoculated leaflets treated only with water
(control) within 7 d (Figure 6A). Similarly, no decrease in lesion development or mycelial
colonization was detected on inoculated leaflets treated with 5% acetone compared with the
water control treatment (Figure 6B). In contrast, late blight symptoms and mycelial growth
were completely suppressed when the systemic broad-spectrum fungicide Infinito® was
applied (Figure 6C). Interestingly, the application of 5% CEs of the endophytes KB1S1-4,
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KA2S1-42, and KB2S2-15 yielded neither visible lesions nor hyphal growth of P. infestans
on the inoculated leaflets (Figure 6D–F).

3. Discussion

The screening and identification of microorganisms with antagonistic properties
against soilborne pathogens are indispensable first steps in the search for potential bio-
control agents [27,33]. In the current study, root endophytic fungi were isolated from four
solanaceous plant species obtained from three regions in Kenya with diverse climatic con-
ditions and soil properties (Table 1). This might increase the heterogeneity and number of
fungal species obtained, and hence the possibility of identifying endophytes with unusual
adaptation strategies and potential bioactivity against P. infestans [27]. The sampling regions
were a few to several hundred kilometers apart (1000 km maximum distance), differed
in elevation (2532 m maximum difference), climate, and physio-chemical soil properties
(Table S1).

In addition to soil and climatic factors, host plant species also influence the composition
of root microbiomes, with roots being shown to harbor more endophytic biodiversity than
the rest of the plant organs [35,36]. These factors may have contributed to the realization of
357 endophytic fungal isolates from Kilifi, Nyandarua, and Kiambu from the roots of four
solanaceous plant species sampled, namely S. tuberosum, L. esculentum, S. nigrum, and C.
annuum. However, only a limited proportion of approximately 13% of the isolates showed
potential activity against P. infestans. Interestingly, 63% of the endophytes were obtained
from Kilifi (Figure 2), a non-potato growing region, implying that spatial separation could
be a predominant factor limiting pathogen–antagonist interactions. Similar findings of
the occurrence of unique endophytic fungal species from Kilifi were reported by Bogner
et al. [37]. These authors attributed their findings to the hot and humid climate experienced
in the coastal region.

The type of host plant may also have been an influential factor in the availability of
antagonists. Bell pepper and nightshade each gave rise to the largest number of antagonistic
endophytes (Figure 2), which was consistent with the finding of Kim et al. [12], that red
pepper roots harbored endophytic fungi with potent activity against P. infestans. The
endophytes from nightshade and bell pepper were significantly more diverse than those
from other host plants (Figure 4). In these two plant species, unidentified endophytes were
also captured, all isolated from Kilifi. The diversity of antagonists was lower in potato and
least in tomato (Figure 4).

Although challenges in the use of sequence information on the NCBI database for
molecular identification of fungi have been cited, it remains a useful tool in the identification
of species, especially for non-sporulating endophytes [27,38]. In the current study, there
was considerable agreement between the phylogenetic relationships of the endophytes
and their corresponding closest BLAST matches, as demonstrated by the high bootstrap
support at the terminal nodes (Table 1 and Figure 3). The exceptions were isolates KB2S2-
15 and KA2S1-42, for which BLAST matches with only little similarity were found that
did not cluster in the phylogeny. These endophytes were non-sporulating on different
nutrient media, hampering morphological characterization. Similarly, isolates KB1S1-4,
KB1S4-9, KB2S2-16, and KB2S4-18 were also non-sporulating and their identity remained
concealed, as their closest BLAST matches were unknown fungal species. The isolates
KB1S1-3, NP2S1-60, and NP3S4-63 could not be identified to the species level, but molecular
and morphological traits established their genera as Aspergillus, Pyrenochaeta, and Periconia,
respectively. On a broader perspective, most of the antagonistic endophytes characterized
in this study were Ascomycetes, while the occurrence of Basidiomycetes and Zygomycetes
was limited to one or a few isolates. The Ascomycota is the largest and most diverse fungal
phylum, and its members are usually the dominant endophytes in plants in relation to
other fungal groups [39–42].

By observing the interactions of 46 potential fungal endophytes in dual culture with
P. infestans, some antagonists rapidly grew over the pathogen colony resulting in the highest
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inhibition percentages. Apart from M. moelleri, this group comprises mainly of members of
possible potato pathogens. While the pathogenicity of these endophytes has not been yet
verified, M. moelleri has been recently indicated as a potential antagonist against different
tomato pathogens including Athelia rolfsii and Colletotrichum gloeosporiodes [43]. T. harzianum
T16 also showed a similar interaction with P. infestans. Previous reports of the activity of
Trichoderma spp. against P. infestans and other pathogens have demonstrated their capacity
for complete growth over pathogen colonies in dual culture, mycoparasitism, and antibiosis
through the production of active compounds such as 6-pentyl-α-pyrone, viridiofungin
A, harzianolide, and harzianic acid [44–47]. In exclusion of putative potato pathogens,
Aspergillus spp., Penicillium spp., Albifimbria terrestris, and Cylindrobasidium evolvens were
among the antagonistic fungal endophytes identified. Members of Aspergillus and Penicil-
lium have been shown to have endophytic lifestyles in plants as well as exhibiting bioactivity
against plant pathogens (e.g., Botrytis cinerea, Trichothecium roseum, Sclerotinia sclerotiorum,
Fusarium oxysporum, and Rhizoctonia solani) with A. niger, A. terreus, and P. citrinum being
some of the well-studied antagonists [33,39,42,48,49]. In addition, a protein derived from
Aspergillus giganteus was shown to have activity against P. infestans in vitro [50]. The Basid-
iomycete C. evolvens, as a saprophyte capable of infecting wounded stem and root tissue,
is associated with decay in woody plants [51,52]. In this study, C. evolvens was isolated as
an endophyte from the roots of C. annuum and showed a moderate antagonistic activity
against P. infestans in dual culture (Table 2). Likewise, A. terrestris was isolated from the
roots of C. annuum and is morphologically similar to A. verrucaria, whose basionym was
Myrothecium verrucaria, a known plant pathogen that has been formulated into bioherbi-
cides or nematicides [53–55]. Interestingly, some endophytes exerted their antagonism by
antibiosis as indicated by the inhibition zones. In a comparable study, CEs of Aureobasid-
ium pullulans isolated from Espeletia spp., a native Andean plant, showed in vitro activity
against P. infestans [27].

In addition, endophytic fungi are also capable of producing VOCs. VOCs from
M. moelleri, M. phaseolina, and an unknown endophyte KA2S1-42 showed a higher mycelial
growth inhibition of P. infestans than those released by KB1S1-4, A. terrestris, and KB2S2-15
(Figure 5). Previous reports have shown that Mucor spp. are able to produce ethanol
while M. phaseolina has been associated with the production of several fatty acid methyl
esters with an inhibitory activity against Sclerotinia sclerotiorum [42,56]. On the other
hand, A. verrucaria excreted bioactive compounds, including antibacterial cyclopeptides
that showed herbicidal activities as well [57,58]. Moreover, the A. verrucaria isolate SYE-1
exhibited a wide antifungal activity against B. cinerea, Lasiodiplodia theobromae, and Elsinoë
ampelina on grapevine [59]. Myrothecium inundatum, a close relative of A. terrestris, has been
implicated in the production of a variety of hydrocarbon VOCs, or their derivatives, potent
against Pythium ultimum and S. sclerotiorum [60].

VOCs have been indicated to have a greater coverage of soil and organic substrata than
diffusible organic compounds (DOCs), a characteristic attributed to their gaseous state [61].
In the current study, three unknown antagonists KA2S1-42, KA1S1-4, and KB2S2-15 showed
the capability of producing VOCs as well as DOCs that affect P. infestans. In addition, M.
moelleri showed a high inhibition of P. infestans mycelium both in dual culture and through
the production of VOCs. These findings led to the selection of the antagonistic endophytes
KA1S1-4, KB2S2-15, KA2S1-42, and M. moelleri for further testing while putative pathogens
were left out of subsequent studies.

Consistent with dual culture findings, CEs from the antagonistic endophytes KB1S1-4,
KB2S2-15, and KA2S1-42, showed a suppressive activity against sporangia germination
and the germ tube growth of P. infestans. While CEs from KB1S1-4 at a concentration of 5%
exhibited considerable suppressive effects against sporangial germination and germ tube
elongation of the pathogen, CEs from KB2S2-15 and KA2S1-42 entirely blocked sporangia
germination (Table 3). In a similar set up, Linkies et al. [62] found that upon exposure
to ethyl-acetate extracts from Chaetomium cochliodes and C. elatum at a dosage of 30%,
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sporangia germination of P. infestans was considerably inhibited. However, this dosage is
much higher (six-fold) than that used in our study.

On the other hand, although CEs from M. moelleri (NA2S2-45) showed a relatively
weak activity against sporangia germination, it did not inhibit germ tube development, sug-
gesting that the anti-Phytophthora metabolites produced by this fungus are rather confined
to the gaseous phase, which could not be extracted from the culture filtrates in concentra-
tions sufficient to affect the germination of P. infestans sporangia. Several reports agree
with the ability of endophytic, rhizospheric, or phyllospheric fungi in producing diffusible
compounds with anti-oomycete activity [12,27,45,63,64]. Tellenbach et al. [65] reported that
a strain of Phialocephala europaea was able to produce metabolites containing sclerin and
sclerotinin with activity against Phytophthora citricola. Our earlier studies showed that strain
T23 of T. harzianum (recently re-identified as T. asperellum) secreted viridiofungin A with
a strong inhibitory effect against sporangia germination of P. infestans [45]. In the current
study, although the biologically active metabolites produced by KB1S1-4, KB2S2-15, and
KA2S1-42 have not been identified, it was evident that these endophytes produce potent
compounds with a strong activity against P. infestans.

In the detached leaflet assay, the application of CEs from the endophytes KB1S1-4,
KB2S2-15, and KA2S1-42 entirely protected inoculated leaflets and suppressed the hyphal
growth of P. infestans (Figure 6). Likewise, Bae et al. [66] found that CEs from Trichoderma
atroviride showed inhibitory activities against Phytophthora sojae, P. capsici, and P. melonis and
induced defense reactions in the detached leaves of pepper and tomato plants. Furthermore,
Kim et al. [12] reported a substantial in vivo activity of Fusarium oxysporum strain EF119
against tomato late blight. Similar results were also reported by Chandrakala et al. [64],
where culture filtrates from T. virens and T. viride proved to be effective against sporangia
germination of P. infestans and impeded the establishment of late blight on potato.

Overall, we report preliminary evidence for targeting the late blight pathogen by
particular fungal endophytes both in vitro and in vivo. Based on their promising in vitro
performance against the late blight pathogen, three endophytes (KA1S1-4, KB2S2-15, and
KA2S1-42) were selected from a total of 357 isolates. These endophytic isolates proved
to be very active in protecting potato leaflets from P. infestans. This biological activity is
associated with DOCs and VOCs with anti-oomycete properties. However, the purification
and elucidation of the chemical structures of these bioactive molecules have not been
accomplished in this study. Therefore, it is still a rich field for future investigations,
particularly in terms of clarifying modes of action of the metabolites involved to determine
whether they target single or multiple pathways in P. infestans. This will shed light on the
possibility of combining them to improve their efficacy and hence both the reliability and
durability of the biocontrol.

4. Materials and Methods
4.1. Sampling Regions and Collection of Plant Materials

Root samples from four solanaceous plant species including potato (Solanum tuberosum
L.), tomato (Lycopersicon esculentum L. Mill.), bell pepper (Capsicum annuum L.), and African
nightshade (Solanum nigrum L.), were collected from three sampling regions in Kenya
(Nyandarua, Kilifi, and Kiambu) with variable soil types. From each region, root systems
of twelve apparently healthy plants were obtained along with representative soil samples.
Immediately after collection, intact roots were washed thoroughly under running tap water
to remove soil and adhering debris, air dried, and stored at 4 ◦C until further processing.
In order to determine their physio-chemical properties, soil samples were analyzed at the
Soil Science laboratories of Jomo Kenyatta University of Agriculture and Technology (Juja,
Kenya) (Table S1). pH and electrical conductivity (EC) were determined in a soil: water
mixture (2:5, w:v), while total soil organic carbon was measured using the Walkley–Black
rapid titration method [67].
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4.2. Isolation of Fungal Root Endophytes and P. infestans

Root segments of 3–4 cm from primary and secondary roots of each plant were surface
sterilized by immersion in 70% alcohol for 1 min and immediately transferred into 2.5%
sodium hypochlorite (Carl Roth, Karlsruhe, Germany) for 5 min. Root segments were
rinsed three times with sterile distilled water for 5 min and blotted between sterile paper
towels to remove excess moisture. To ascertain the success of surface sterilization, sterilized
root segments were briefly imprinted on PDA (Figure S1). Subsequently, the ends of
the root segments were trimmed off and further divided into three fragments of approx.
1 cm length, which were placed on PDA amended with 0.05 g/L chloramphenicol (Merck
KGaA, Darmstadt, Germany). Finally, plates were sealed with Parafilm and incubated at
22 ± 1 ◦C in the dark. Only endophytic fungi emerging from successfully surface sterilized
roots (Figure S2) were subcultured onto fresh PDA. Isolates were purified through either
single-spore isolation or hyphal tip transfer for sporulating and non-sporulating colonies,
respectively. Pathogens (e.g., Fusarium spp.) were excluded from further tests.

P. infestans was isolated from single lesions of potato leaves obtained from a late blight
susceptible variety (Duke of York) growing under field conditions in Hohenheim, Stuttgart,
Germany. To induce fresh sporulation, blighted leaves were placed in a humid chamber at
20 ◦C for 48 h. Colonized leaf segments were placed between two surface sterilized tuber
slices (5 mm thickness) and incubated for 7 d at 20 ◦C in the dark (Figure S3). Mycelia
emerging from the upper side of a slice were transferred to unclarified V8-based agar
medium containing 200 mL V8 juice, 2 g CaCO3, 0.05 g β-sitosterol, 0.05 g ampicillin,
0.05 g vancomycin, 0.01 g pentachloronitrobenzene (PCNB), and 15 g agar in 800 mL
deionized water. A pure culture of the pathogen generated from the tip of a single hypha
was maintained on corn meal agar (CMA, 17 g/L; Sigma-Aldrich, Munich, Germany) and
reactivated after every 3–4 transfers on CMA by inoculation on sterile potato leaflets.

4.3. Primary Screening of Endophytes for Anti-Oomycete Activity against P. infestans

A high throughput confrontation assay was established to screen 357 potential antago-
nistic endophytes against P. infestans. Owing to the slow growth of P. infestans, 5 mm Ø
agar plugs from the border of an actively growing colony were inoculated on the center of
20% V8 agar plates and incubated at 20 ◦C for 72 h in darkness. Subsequently, agar plugs
(5 mm Ø) from four different endophytic fungi were placed equidistant, 5 mm from the
edge of the Petri plates pre-inoculated with the pathogen (Figure S4). Control treatments
were set up in a similar way in the absence of endophytes. Isolates observed to retard the
growth of P. infestans compared to the control were selected for further testing and purified
to generate axenic cultures.

4.4. DNA Extraction, PCR Conditions, and Sequencing

Genomic DNA was extracted from mycelia of root endophytic fungi selected from the
screening experiment using the method described by Liu et al. [68]. PCR was conducted
in a 40 µL reaction mixture using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4
(5′-TCCTCCGCTTATTGATATGC-3′) primers [69] to amplify the internal transcribed spacer
regions (ITS1-5.8S-ITS2). A single PCR reaction was comprised of 8 µL of Phusion® HF
buffer (5×), 0.8 µL of dNTPs (10 mM), 1 µL of each of the forward and reverse primers
(10 µM), 0.4 µL of Phusion® polymerase (2 U/µL), and 27.8 µL of ultra-pure water. The PCR
program started with an initial denaturation step at 98 ◦C for 30 s, followed by 35 cycles
at 98 ◦C for 10 s, 54 ◦C for 20 s, and 72 ◦C for 35 s and a final extension step at 72 ◦C for
10 min. Success of amplification was ascertained on 1% agarose gels visualized with 0.05%
ethidium bromide with the aid of a gel documentation system (Quantum 1100 PEQLAB,
VWR, Darmstadt, Germany). Amplified PCR products were purified using Innu PREP
PCR-pure kit (Analytik Jena AG, Jena, Germany) and their concentration adjusted to meet
requirements for Sanger sequencing by Source Bioscience Company (Berlin, Germany).
Sequences from single reads with the forward primer (ITS1) were trimmed and edited
with GENtle v 2.0 and compared to those deposited at the NCBI database. Endophytic
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fungi whose sequences showed a similarity of >99% to database entries were considered
identical to the reference fungi [33], and their taxonomic classification carried out using
the MYCOBANK Database [34]. Evolutionary history was deduced using the Neighbour-
Joining method as described by Saitou and Nei [70] with a bootstrap test of 1000 replicates
to determine the percentage when replicate trees of related taxa clustered together [71].
The maximum composite likelihood method [72] was used to calculate the evolutionary
distances, used to infer the phylogenetic tree. Finally, sequence data were submitted to
GenBank.

4.5. Establishment the Anti-Oomycete Activity of the Endophytes

To validate the inhibitory effect of screened fungal endophytes against P. infestans,
a dual culture assay was performed. The assay was similar to that described under 4.3
except that the pathogen and each unique endophytic isolate were inoculated at 7 cm
distance. P. infestans was also inoculated on 20% V8 agar plates 72 h prior the antagonistic
isolates. Three replicates were prepared for each isolate and plates inoculated only with
the pathogen served as control. Trichoderma harzianum (T16) shown to have antagonistic
properties against several plant pathogens [45,46] was used as a positive control, while
pathogen colonies grown in the absence of the endophytes served as negative control. The
experiment was laid out in a randomized complete block design. The initial (72 h post
inoculation; hpi) and the final (12 d post inoculation; dpi) colony diameter of the pathogen
were measured. The percentage of mycelial growth inhibition was calculated using the
formula ascribed by Edgington et al. [73]. In addition, the inhibition zones created between
the pathogen and the tested endophytic fungal colonies were recorded.

4.6. Impact of Volatile Organic Compounds Extracted from the Endophytes on Mycelial Growth of
P. infestans

The ability of selected endophytic fungi to produce volatile organic compounds (VOCs)
was assessed following the modified procedure of El-Hasan et al. [74]. Briefly, agar plugs
(5 mm Ø) bearing P. infestans mycelium were placed on the center of V8 agar plates and
incubated for 72 h. Subsequently, the lid was replaced with an upside-down agar plate
inoculated with an agar plug colonized by an endophyte. Both Petri dishes were separated
with a sterile cellophane sheet and held together with Parafilm. Positive and negative
controls consisted of T. harzianum and sterile PDA plugs, respectively. Mycelial growth
inhibition (in %) was calculated as described above.

4.7. Suppressive Activity of Crude Extracts of Root Endophytic Fungi against Sporangial
Germination of P. infestans

Putative endophytic fungi that formed inhibition zones in dual culture and/or pro-
duced active VOCs were tested for their ability to produce diffusible organic compounds
with anti-oomycete activity. To this end, 1 L of 20% V8 broth was inoculated with ten agar
plugs (5 mm Ø) of an actively growing endophyte culture. The cultures were incubated on
an orbital shaker at 125 rpm and 20 ◦C in the dark for 12 d. Control treatments, where the
endophytes were absent, were set up. Crude extracts (CEs) were prepared from culture
filtrates according to El-Hasan et al. [45]. The resulting CE residues were re-dissolved in
2 mL acetone.

Sporangia of P. infestans were produced on detached potato leaflets. For this purpose,
an agar plug (3 × 3 mm) was placed on the abaxial side of a detached leaflet surface
sterilized with 2.5% sodium hypochlorite. A drop of sterile deionized water was introduced
on the interface and the inoculated leaflets were placed in a humid chamber made by
inverting the Petri dish containing water agar over lids containing sterile moist filter
paper. Cultures were incubated at 20/18 ◦C (light/dark) for 7 d in a growth chamber
with a 16 h light cycle. Sporangia were harvested by briefly vortexing infected leaflets in
a sterile centrifuge tube containing V8 liquid medium. Mycelia and leaf fragments were
trapped using double layers of sterile muslin cloth and the resulting sporangial suspension
(5 × 104 sporangia/mL) was used in subsequent experiments.
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To determine the effect of CEs on sporangia germination, 25 µL of each extract were
combined with an equal volume of water in a sterile 1.5 mL microcentrifuge tube. The
tubes were aseptically left open for three hours to allow solvent evaporation. Subsequently,
475 µL of the sporangia suspension were added to the CE solution. Cultures were incubated
at 20 ◦C in the dark to allow sporangia germination, the experiment was terminated after
16 h by the addition of 100 µL lactophenol blue. Acetone was used as solvent control.
The percentage of germinated sporangia and the length of germ tubes were determined
using a light microscope (Axioskop 2, Carl Zeiss Microscopy GmbH, Göttingen, Germany).
Images were taken with an AxioCam MRm digital camera (Carl Zeiss) and measurements
determined with the corresponding AxioVision software (SE64 Release 4.8.3 SP1; Carl
Zeiss).

4.8. Activity of the Crude Extracts against P. infestans on Detached Potato Leaflets

For the in vivo bioassay, leaflets were harvested from the fourth to sixth fully expanded
leaves obtained from potato plants (var. Duke of York) grown under greenhouse conditions.
CEs that showed activity against germination of P. infestans sporangia were tested for their
activity in vivo against the pathogen on detached leaflets. Acetone was evaporated from
the crude extracts as described above, and each extract reconstituted to give a concentration
of 5% in a sporangial suspension. Two droplets of 50 µL each were inoculated on the
abaxial surface of detached leaflets on either side of the midrib. Control treatments were
set up in a similar way and comprised water, 5% acetone, and a conventional fungicide
(Infinito®; Bayer CropScience, Langenfeld, Germany). Leaflets were placed individually in
a humid chamber and incubated for 7 d at 20/18 ◦C (light/dark) with a 16 h photoperiod.
All treatments were set up in four replicates. The assay was conducted twice.

4.9. Data Analysis

If not mentioned elsewhere, experiments were repeated at least twice in triplicate in a
completely randomized design. All statistical analyses were performed using SAS software
(SAS Institute Inc.). The MIXED and GLIMMIX procedures were applied to determine
whether there were treatment effects in the experiments conducted within this study. Data
were assessed and transformed when necessary to ensure they met model assumptions.
Pairwise comparisons among treatments were carried out using Tukey test (α = 0.05).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11121605/s1, Table S1. Characteristics of sampling regions;
Figure S1. Isolation of fungal root endophytes. (a) Endophytic fungi emerging from cultured roots,
(b) Clean short press plate, (c) Contaminated short press plate; Figure S2. Isolation of fungal root
endophytes from solanaceous plants, (A) Endophytic fungi arising from cultured roots, (B) Pure
fungal colonies; Figure S3. Isolation of P. infestans (a) P. infestans mycelia growing on the surface
of an inoculated potato tuber slice (b) Pure colony of P. infestans on 20% V8 agar (c) Mycelia of P.
infestans on potato leaflets inoculated with the pathogen; Figure S4. Dual antagonistic assay of fungal
endophytes and P. infestans. (a) Co-culture of P. infestans (center colony) with four root endophytes to
screen for activity against the pathogen’s mycelia (b) Setup of dual culture assay on the introduction
of an endophyte 72 h after P. infestans (left colony) inoculation (c) Schematic representation of the
measurement (R2) used in calculating percentage of inhibition.
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