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Abstract: The genetic resources of cereal crops in terms of resistance to aphids are reviewed. Phy-
tosanitary destabilization led to a significant increase in the harmfulness of this group of insects. The
breeding of resistant plant genotypes is a radical, the cheapest, and environmentally safe way of pest
control. The genetic homogeneity of crops hastens the adaptive microevolution of harmful organisms.
Both major and minor aphid resistance genes of cereal plants interact with insects differentially.
Therefore, rational breeding envisages the expansion of the genetic diversity of cultivated varieties.
The possibilities of replenishing the stock of effective resistance genes by studying the collection of
cultivated cereals, introgression, and creating mutant forms are considered. The interaction of insects
with plants is subject to the gene-for-gene relationship. Plant resistance genes are characterized by
close linkage and multiple allelism. The realizing plant genotype depends on the phytophage bio-
type. Information about the mechanisms of constitutional and induced plant resistance is discussed.
Resistance genes differ in terms of stability of expression. The duration of the period when varieties
remain resistant is not related either to its phenotypic manifestation or to the number of resistance
genes. One explanation for the phenomenon of durable resistance is the association of the virulence
mutation with pest viability.

Keywords: plants; insects of the Aphididae family; phytophage–host plant interaction; resistance
mechanisms; resistance genes

1. Introduction

The phytosanitary destabilization caused by the biocenotic balance disruption, which
entailed significant economic losses, and the expansion of the composition of dominant
harmful organisms has become prolonged. In recent years, many regions of the world
have witnessed an increase in the harmfulness of aphids that feed on cultivated plants.
For instance, only in the western United States, an outbreak of the Russian wheat aphid
Diuraphis noxia (Kurdjumov) has caused a loss of wheat and barley yield worth over one
bln dollars within 20 years since 1986 (the first detection of the pest) [1]. Another invasive
phytophage, the hedgehog grain aphid Sipha maydis Passerini, was first discovered in the
USA in 2007 on Leymus condensatus (J. Presl) Á. Löve, and since then, has infested almost all
cereal crops in vast areas [2,3]. Another recent example is the infestation of sorghum fields
by the sugarcane aphid, Melanaphis sacchari Zehntner, since 2013. Since 2014, all sorghum
fields in Louisiana and Mississippi have been infested with sugarcane aphids, and USD
$10 million has been spent on protective measures. The yield losses of susceptible sorghum
hybrids can reach as high as 60% [4].

The degree of cereal aphid harmfulness depends on the number of pests and the
timing of their settling on plants, as well as on the duration of insects feeding [5,6]. The
greatest damage to winter and spring crops is caused by the pests migrating to fields
during the sprouting phase [7]. The harmfulness of aphids is also expressed in a decrease
in the sowing and other consumer qualities of seeds [8,9]. The feeding of the greenbug
Schizaphis graminum Rond. causes qualitative changes in the biochemical composition of
plants and leads to serious changes in physiological processes: for example, free amino
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acids accumulate in the damaged leaves, which is usually observed in aging plant tissues.
In resistant forms, the composition of metabolites changes in such a way that they become
unappetizing or toxic, while the biochemical composition of susceptible plants becomes
modified in such a way that the plants become attractive to insects for feeding [10]. As a
result of the Russian wheat aphid reproduction on wheat plants, the content of chlorophyll
decreases, and there occurs a selective inhibition of the synthesis and accumulation of
proteins necessary for the normal life of plants [11,12]. At the same time, the increased
concentration of free amino acids apparently promotes greater fertility of insects and the
appearance of winged individuals [13,14]. In addition, the bright yellow color of infected
plants attracts winged aphids [15]. Due to the rather weak ability of cereal aphids to
distinguish between forage and non-forage plants, these pests can be important vectors of
virus diseases in beets and potatoes [16,17].

According to the specific features of development and the composition of plants on
which they feed, aphids are divided into two biological groups; that is, non-migratory and
migratory. According to the place of feeding, the aphids can be distinguished as those that
damage the above-ground organs of cereals or the roots. The most harmful and widespread
are the aphids that feed on the above-ground organs of cereal plants.

The eggs of the non-migratory aphids usually winter on the leaves of winter cereal
crops of perennial and wild grasses. In southern regions, overwintering of adults is
possible. In spring, larvae hatch and develop into wingless females called fundatrix. The
latter reproduce parthenogenetically and yield several generations. The emerging winged
females fly to other plants, including spring grasses, where they continue reproducing. The
number of aphid generations and fecundity depend mainly on weather conditions. After
the spring crops have been harvested, insects feed on the sprouts from the shattered grain
and wild-growing grasses and then migrate to the winter crop seedlings. In autumn, alate
sexuparae appear, which give birth to larvae that turn into winged males and wingless
females. After mating, females lay the eggs that winter [18]. Among the non-migratory
species, the most harmful ones and most discussed in the literature are the greenbug S.
graminum, the English grain aphid, Sitobion (Macrosiphum) avenae F., the Russian wheat
aphid, D. noxia, and the corn leaf aphid, Rhopalosiphum maidis Fitch.

The migrating aphids live on grasses only in summer, and in the fall, they move to
their primary host plants, usually trees or shrubs. Insects winter on them in the egg phase.
In spring, larvae hatch from the eggs, giving rise to numerous colonies on the leaves. The
deteriorating living conditions in trees force the aphids to change their lifestyle. The emerg-
ing winged females migrate to grasses, where the aphids reproduce parthenogenetically
during the summer. In the fall, the winged individuals appear and migrate to the primary
food plants. Among the migratory species, the most important are the bird cherry-oat
aphid, Rhopalosiphum padi L., and the rose-grain aphid, Metopolophium dirhodum Walk.

One of the main reasons limiting the harmfulness of aphids on cereals is plant resis-
tance. The breeding of resistant plant genotypes is a radical and, at the same time, the
cheapest and most environmentally safe way to control aphids. The growth of losses makes
the payback of breeding for resistance grow faster than its cost. Therefore, we overview the
genetic diversity of major cereal crops (wheat, barley, oat, sorghum) in terms of aphid resis-
tance and summarize the available information on the manifestation and genetic control of
resistance traits. We also discuss the strategies for the rational use of genetic resources of
cereal crops in breeding.

2. Types of Plant Resistance to Aphids

According to the generally accepted classification of R. Painter [19], which reflects the
ecological aspects of the plant–arthropod interaction, three types (or, often, categories) of
resistance are distinguished, namely nonpreference (antixenosis) [20]; that is, rejection of
a plant when a choice is possible, antibiosis (adverse effect on the phytophage viability
during feeding), and tolerance.
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All types of resistance can be manifested simultaneously by one host plant and,
moreover, can be determined by the same factor. For instance, cyclic hydroxamic acids
and indole alkaloids contained in cereal plants can cause both antixenosis and antibiotic
resistance to aphids [21,22]. Due to the absence of easily testable marker signs of antixenosis
and antibiosis, the literature data on the relationships between resistance types are scanty
and rather contradictory. Several genes of antixenosis, antibiosis, and tolerance were
localized on five chromosomes in wheat-barley addition lines [23]. Different types of
resistance of wheat and tritordeum (Hordeum chilense Roem. and Schult. × Triticum
turgidum L., 2n = 42) to S. graminum and D. noxia were found to be controlled by different
genes [24,25]. An analysis of resistance of 26 wheat accessions to the Russian wheat aphid
and greenbug revealed a difference in the genetic systems that control the three types of
insect resistance. Moreover, it was established that the development duration and aphid
fecundity (i.e., manifestations of antibiosis) are also controlled by different genes [26].
Wheat accessions with the genes Gb3, Gbx, and Gbz are characterized by three types of
resistance to the greenbug biotypes E and I; however, no antixenosis was detected during
the interaction with biotype K [27]. On the other hand, the almost isogenic TXGBE273 line
with the Gb3 gene of resistance to S. graminum exhibits all three types of aphid resistance,
which were not detected in a susceptible analog TXGBE281 [28]. In our experiments, the
coincidence of segregation for antixenosis and antibiosis was found in cases of monogenic
(Sgr4 gene), digenic (Sgr1, Sgr2, Sgr7, and Sgr8) control of sorghum resistance to the
greenbug, and the complementary interacting genes (Sgr9, Sgr10). In “Delphi 400” × “Siete
Cerros 66” F3 wheat hybrids, the paired manifestation of antixenosis and antibiosis to bird
cherry-oat aphid was also observed [29].

In our opinion, although different genetic control of antixenosis and antibiosis is
possible, their identity is observed much more often. It is necessary to note two important
consequences that follow from the common genetic control of two types of resistance:

(1) Both antibiosis and antixenosis equally cause the appearance of pest biotypes that
overcome the resistance in the host plant;

(2) There is no need to breed resistant varieties separately for antibiosis and antixenosis
since the weakly damaged genotypes selected from the segregating populations
possess both types of resistance.

At the same time, it can be quite confidently asserted that the genetic nature of
tolerance differs from that of antixenosis and antibiosis. Tolerance is usually associated
with the high rate of development and the high compensatory response of plants, i.e., with
pest nonspecific genetic systems.

3. Mechanisms of Passive (Constitutional) Resistance of Cereals to Aphids

According to N.I. Vavilov [30], the natural (inherent) resistance of plants to harmful
organisms is subdivided into generic and specific (non-host) resistance (associated with
the specialization of parasites and determined by the divergence of hosts and parasites
in their evolution) and varietal resistance, which can be active (physiological, associated
with an active reaction of host cells, accompanied by physiological and chemical reactions
and neoplastic formations), structural (passive, mechanical, due to the morphological and
anatomical characteristics of varieties), chemical (passive), or be determined by the damage
evasion by plants due to early maturity. As N.I. Vavilov put it, resistance is the interaction
of terms. The extensive literature discusses the mechanisms of passive and, more recently,
active (induced) resistance of cereals to aphids.

The morphological and anatomical features of plants can ensure the resistance of
cereal crops to aphids to a greater or lesser extent. Studies of the genetics of plant resistance
to pests can be reduced to the study of the genetic control of certain morphological traits
only in a number of cases. Undoubtedly, resistance is usually determined by several
fundamentally different mechanisms, and it is possible to talk only about the analysis of
morphological characters that are part of the total phenotypic variance.
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The literature data on the relationship between pubescence and plant resistance to
cereal aphids are somewhat contradictory. It has been shown that the density and length of
trichomes are not the signs that mark wheat resistance to the greenbug and bird cherry-
oat aphid [31,32]. At the same time, there are known cases of R. padi feeding on wheat
varieties with dense leaf pubescence, when the insect number growth rate was much
lower and aphids’ behavior more restless [33,34]. The leaves of PI 137739 accession, which
is characterized by a pronounced antixenosis to D. noxia, have a long pubescence [35].
Antixenosis of synthetic hexaploids (T. dicoccum Schrank ex Shübl. × Ae. tauschii) to the
Russian wheat aphid is also associated with leaf pubescence [36].

Barley plants without waxy coating were less colonized by M. dirhodum [37], while
resistance to R. padi and waxy coating on leaves were closely correlated [38]. Japanese
scientists made a field estimation of the aphid (mainly R. maidis) infestation of F2 plants
from crosses of two Hordeum vulgare ssp. spontaneum K. Koch accessions characterized by
green leaves (controlled by the F9 gene) and waxy coating (Gl3 gene), with an H. vulgare L.
OUL 117 accession (yellow leaves without waxy coating, gl3gl3 f9f9). The alleles Gl3 and F9
ensured the highest level of resistance; the presence of either gl3gl3 or f9f9 homozygotes
determined intermediate resistance, while the plants with yellow leaves without waxy
coating were heavily infested by aphids [39]. X. Ni et al. studied the association of waxy
coating with resistance to D. noxia [40]. The ultrastructure and chemical composition of
the epicuticular wax on the leaves of resistant and susceptible wheat cultivars were similar
but differed from the structure and composition of the wax on the leaves of the susceptible
“Morex” barley cultivar and the resistant “Border” oat cultivar, which, in turn, differed, if
at all, from each other. With the wax removed, “Morex” remained the most favorable, and
“Border” the most resistant host.

Sorghum accessions, either without or with a slight waxy coating, are poorly infested
by S. graminum. The bloomless is controlled by the recessive genes bm1 and bm2; the
sparse bloom is determined by the recessive genes h1, h2, and h3, while antixenosis does
not manifest itself in the sprouting phase. “Shallu Grain” and IS 809 accessions inherited
resistance regardless of the bm genes [41–43].

The literature on substances produced by plants for protection against phytophages
is extremely extensive. The role of secondary plant metabolites, e.g., terpenoids, phenols,
flavonoids, alkaloids, glucosinolates, etc., is widely discussed. An active protective role is
played by protein compounds, primarily inhibitors of phytophage hydrolases (proteinases,
β-amylases, etc.) and lectins. These substances are present mainly in the storage organs of
plants, and the damage by insects induces their accumulation.

The leaves of aphid susceptible winter wheat varieties are characterized by an in-
creased content of bound and free amino acids [44,45]. Aphid resistance is also associated
with a high content of phenols and flavonoids in plant tissues [46,47]. The antibiotic re-
sistance of winter wheat to the English grain aphid closely correlates with high values of
the toxicity index, which reflects the ratio of free phenols to free amino acids content in a
plant [48].

The toxic and antifidant effect of benzoxazinoids (BXDs—cyclic hydroxamic acids
and their metabolites in cereal crop plants; i.e., DIMBOA, DIBOA, MBOA, etc.) on cereal
aphids and other phytophages, as well as on pathogens, is discussed. For instance, various
species of the Gramineae family with a relatively high concentration of BXDs are resistant
to the greenbug [49]. It has been established by now that the synthesis of BXDs in maize is
controlled by 16 genes (ZmBx1–ZmBx14, ZmGlu1–ZmGlu2) [50,51], by 13 in wheat (TaBx1–
TaBx5, TaGlu1a–TaGlu1d, TaGT1a–TaGT1d) [52,53], and by eight ScBx genes in rye [54]. The
plants of Hordeum brachyantherum Nevski, H. flexuosum (Nees ex Steud.) A. Love, H. lechleri
(Steud.) Schenck, and H. roshevitzii Bowden were found to contain DIBOA. H. lechleri had
the highest DIBOA content, as well as the genes HlBx1–HlBx5, the orthologs of Bx1–Bx5.
The accessions of H. vulgare and H. spontaneum do not contain DIBOA [55].

In the experiments of X. Ni and S.S. Quisenberry with the accessions protected by genes
of resistance to the Russian wheat aphid (Dn1, Dn2, and Dn5) and with the corresponding
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almost isogenic lines created on the basis of “Betta” cultivar, only the lines with the Dn5 gene
had a higher concentration of DIMBOA [56]. At the same time, Dn5 and the genes that
control DIMBOA biosynthesis are localized in different chromosomes. In many cases, no
explicit relationship was observed between the DIMBOA content in maize plants and the
degree of damage by aphids, which indicates the existence of several resistance mechanisms.
It is supposed that the resistance of maize and wheat is due to the combined action of
DIMBOA and other compounds such as aconitic acid [57,58].

The aphicidal and deterrent effect of indole alkaloids in cereals, of gramine first of
all, on the greenbug has been shown in [59–61]. Interestingly, the biosynthesis of DIBOA
excludes the synthesis of gramine in plants [55]. The genetic control of gramine biosynthesis
has not been well understood yet. Increased content of gramine is characteristic of H. vulgare
subsp. spontaneum and a number of H. vulgare cultivars. The presence of gramine in adult
plants of H. vulgare subsp. spontaneum is controlled by one or two genes, while the content
of gramine can also be controlled by minor genes [62]. At the same time, an analysis of
150 doubled haploid barley lines obtained from the crossing of “Steptoe” (high content of
gramine) and “Morex” (traces of gramine) showed that the grm gene, which controls the
synthesis of gramine in the seedling phase, is localized on chromosome 5 and is not linked
to minor genes of resistance to grain aphids localized on chromosomes 2 and 5 [63,64]. An
analysis of another series of doubled haploid lines also showed that QTLs, which control
resistance to R. padi and the content of gramine in plants, are not linked [65].

To elucidate the differential mechanisms of plant defense against aphids, A. Singh
et al. [66] performed a study of the aphid feeding behavior on 203 accessions of wild emmer
wheat T. turgidum ssp. dicoccoides (Korn.) Thell. differing in anatomical traits (trichome
density) and metabolite (BXDs) compositions. The trichomes and DIMBOA abundance
were shown to be the main factors that define the efficiency of defense strategy, with
trichomes being more effective compared to BXDs. The trichome density and BXDs levels
depend on the genetic background in wild emmer wheats that indicates a possibility of
using wild emmer wheat accessions rich in trichomes and BXDs in breeding for improved
resistance to aphid.

Some key genes/mechanisms involved in providing aphid resistance/susceptibility
were revealed in non-cereal crops. For example, the PHYTOALEXIN DEFICIENT 4 (PAD4)
gene functions as a key player in modulating defense in Arabidopsis against green peach
aphid Myzus persicae (Sulzer), an important pest of a wide variety of plants [67]. The
molecular mechanisms of resistance against bird cherry-oat aphids can be associated with
the tryptophan-derived compounds, tryptamine, and serotonin, which accumulate in
tissues of Setaria viridis (L.) P.Beauv. (green foxtail) plants [68].

It should be pointed out that the substances of secondary metabolism are usually
concentrated in storage tissues. Therefore, the aphids, which penetrate the phloem mainly
intercellularly, are able to avoid the harmful effects of these compounds. In this regard,
an important role may be played by the structure of pectin, a biopolymer that functions
in plants as an intercellular cement and affects the ability of aphid stylets to penetrate
into the phloem. This is how an increase in the content of methoxyl groups in pectin
increases greenbug resistance. Insects with increased activity of pectin methylesterase
and polysacharase can feed on some previously resistant varieties of sorghum [69]. The
polysaccharide matrix plays an important role in the development of relationships between
aphids and host plants: most polysaccharides inhibit the feeding of the greenbug [70].

4. Aphid–Host Plant Interaction

The acceptability of plants to feed on determines microevolutionary processes in insect
populations. The inherent heterogeneity of aphids (alternation of amphimixis and partheno-
genesis) yields a combination of advantages of the two types of reproduction. During the
reproduction of parthenogenetic generations, a rapid increase in aphid populations occurs
when each individual reproduces its own kind, which favors the preservation of any varia-
tion of the karyotype in the populations, as all mutations persist. The autumn amphigonic
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generation allows aphids to survive by producing the wintering eggs and serves as a source
of genetic variation. The genetic diversity in aphid populations is maintained by gene and
chromosomal mutations, recombination, and assimilation of immigrants; heterogeneity
of populations provides material for natural selection. These adaptive mechanisms have
led to the spread of aphids throughout the world, with the greatest abundance in the
temperate climate [18]. Genetic adaptation of phytophages to the plants they feed on is a
widespread and well-documented phenomenon. Intraspecific forms of aphids (biotypes)
that differentially interact with the host plant genotypes differ in virulence, i.e., in the
ability to overcome the host’s resistance.

Genetic mechanisms of host–parasite relationships, as well as their co-evolution, were
made clear by H. Flor, who studied the genetics of resistance of flax to rust and of virulence
of this disease agent, Melampsora lini (Ehrenb.) Lév. According to the H. Flor’s “gene-for-
gene” postulate [71], each resistance gene of the host has a corresponding specific virulence
gene of the parasite. Mutation of virulence in the parasite determines the loss of efficiency
of the host’s resistance gene. Resistance is observed when the dominant (functional) allele
of the resistance gene interacts with the dominant allele of the virulence gene. Susceptibility
is observed if the interacting alleles of one or both partners are found in the homozygous
recessive state. An important consequence of the H. Flor’s postulate is the possibility of
determining the host plant genotype without hybridological analysis by using pathogen
and pest isolates marked with a certain virulence. If a parasite isolate, avirulent to the
given resistance gene, damages the studied variety, this means that the variety does not
have this gene.

Based on the results of studies of virulence genetics, the “gene-for-gene” relationship
has been demonstrated quite substantially for a significant number of parasite–host pairs,
including the systems of the greenbug–wheat and greenbug–sorghum interaction [72,73].
Experiments with three biotypes of S. graminum (C, E, and F) showed that virulence to the
genes of wheat resistance Gb2 or Gb3 is determined in aphids by two recessive genes and a
dominant modifier(s) epistatic to one of these genes. Nevertheless, the authors consider
the observed interaction to be consistent with the “gene-for-gene” pattern when different
virulence genes control the same gene product.

The same data can be explained in a way that is closer to the classical understanding
of the “gene-for-gene” relationship. If one assumes that the Gb2 and Gb3 genes are two
closely linked resistance genes in each case, then two aphid virulence genes are required
to overcome them. The following data testify in favor of the linkage of genes inherited as
one gene, Gb2 or Gb3. The Gb2 gene of the “Amigo” cultivar, which had been transferred
from “Insave FA” rye, is known to cause antibiosis and tolerance to the biotype C, but it
is ineffective to E. The initial rye cultivar has three types of resistance to both biotypes,
i.e., is protected by at least two genes, one of which has not been transferred to wheat.
At the same time, “Amigo” is characterized by antixenosis to the biotype E but not to
C [33]. Probably, the second gene of “Amigo” with a weak effect was masked by the action
of the major gene for resistance to biotype C. The accession “Largo” carrying the Gb3
gene from Aegilops tauschii Coss. possesses antibiosis and tolerance to biotypes C and E.
Antixenosis was also revealed in some experiments [74] but not in the others [75]. “Largo”
was shown to be susceptible to biotype B; however, as in the previous case, it retained
some antixenosis [76]. In addition, the “Amigo” × “Largo” F1 hybrid is more resistant to
the biotype E as compared to “Largo” [77]. The additive effect of genes can be explained
here by the presence of a minor gene for resistance to biotypes C and E in “Amigo”. The
data obtained somewhat later indicated that the resistance of “Largo” and its derivatives is
controlled by multiallelic complementary genes, i.e., Gb3 should be one of the identified
loci [78].

The literature data on the specific interaction of cereal aphids with host genotypes are
quite numerous. For the first time, differences in the ability to feed on certain varieties of
wheat and barley were found in 1947 for S. graminum populations in the United States [79];
however, targeted studies of the pest-intraspecific variability were not carried out until
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the 60s of the last century. Ten aphids biotypes identified from 1961 to 1997 were found
to differentially interact with different host plants, e.g., A–C, E–K [80]. When testing
aphid clones collected in four U.S. states on 16 differentiators (sorghum, wheat, barley,
and rye accessions), 16 clones with 13 previously unknown virulence phenotypes were
revealed [81]. In 2010, it was announced about the discovery of 13 new biotypes [82] and
about six more in 2016 [83].

A long-term analysis of the Krasnodar (North Caucasus, Russia) population of S.
graminum revealed a high polymorphism (both general and seasonal) of the insect in terms
of frequencies of virulence to six sorghum accessions protected by the major resistance
genes. A total of 42 virulence phenotypes (biotypes) of aphids were identified, and from 18
to 36 are being identified annually. It was found that this variability also depends on the
plant resistance genes with a weak phenotypic manifestation [84,85].

Initially, some wheat accessions resistant to the Russian wheat aphid in South Africa
were found to be susceptible in the United States [86]. In 2003, a pest outbreak was
observed in the state of Colorado in crops of the “Prairie Red” cultivar protected by the
Dn4 resistance gene. A new intraspecific form (biotype 2, later designated RWA2) severely
damages all the previously identified resistance donors, except for the accessions with
the Dn7 resistance gene [87,88]. In 2003, three new aphid biotypes (RWA3–RWA5) were
identified, one of which severely damaged the accessions carrying the Dn1–Dn9 genes [89],
and later, RWA6–RWA8 biotypes were identified [90].

The data on the specificity of relationships between host plants and other cereal aphids,
namely the corn leaf aphid [91] and the English grain aphid [92,93], are scanty.

5. Mechanisms of Active (Induced) Resistance of Cereals to Aphids

Currently, an increasing number of works is devoted to the induced (active, accord-
ing to N.I. Vavilov) resistance of plants to phytophages, which link the mechanisms of
resistance to hypersensitivity—a protective reaction of a plant expressed in the rapid local
death of cells in response to the penetration of a harmful organism, accompanied by the
accumulation of toxic products in dead cells. Hypersensitivity is typical for plant resistance
to phytopathogens and is observed when aphids occupy various agricultural crops [94].
The induced resistance of cereals to the Russian wheat aphid is being studied especially
actively; the literature on the greenbug is less extensive.

The pest–plant interaction includes several stages: secretion of inducers (elicitors),
recognition of elicitors by a plant cell using receptors, signal transduction into the genome,
activation of the transcription of immune response genes, and synthesis of protective
compounds. Plant responses to Hemiptera insects share many common features with the
reactions to phytopathogens. There are two types of mechanisms involved in internal
and external lines of defense. The external (basal) line of plant defense is provided by
the transmembrane pattern recognition receptors (PRR) located on the cell surface, which
recognize conservative pathogen-associated molecular structures (patterns) (PAMP), such
as lipopolysaccharides, peptidoglycans, and bacterial proteins. The main transmembrane
receptors are receptor-like kinases (RLK) and receptor-like proteins (RLP). These PRRs
induce pattern-triggered immunity (PTI). The internal line of defense is associated with
effector proteins delivered inside the plant cell. This is effector-triggered immunity (ETI)
provided by the R-gene encoded cytoplasmic receptors, most of which belong to the
conservative family of NLR proteins, characterized by the presence of nucleotide-binding
site (NBS) and leucine-rich repeat (LRR) domains. Effector proteins can be recognized either
directly by cell NLR receptors or indirectly through modifications of host NLR-associated
proteins [95–97]. The NBS-LRR gene clusters were mapped on the chromosome regions
carrying resistance to corn leaf aphids in barley [98]. With the use of a PCR-based approach,
the ESTs (Expressed Sequence Tags) homologous to NBS-class Resistance Gene Analogs
(RGA) were identified in resistant wheat genotypes infested by Russian wheat aphid [99].
So far, only four plant NBS-LRR genes have been identified, which were shown to interact
with insects [100]. Two of them are involved in controlling aphid resistance in crops. In
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tomato Lycopersicon peruvianum (L.) Mill., the Mi-1 gene belongs to the CC-NBS-LRR (coiled
coil–nucleotide-binding site–leucine-rich repeat) subfamily. It confers a dual resistance both
to the root-knot nematode Meloidogyne incognita Kofoid and White and certain biotypes of
potato aphid Macrosiphum euphorbiae Thomas [101]. Another NBS-LRR gene, Vat, confers
resistance to Aphis gossypii Glover and some viruses in melon [102].

In barley, an active protective role can be played by phytophage hydrolase inhibitors,
which are present mainly in the storage organs of plants and the accumulation of which
is induced by the damage done by insects. For instance, the content of trypsin and chy-
motrypsin inhibitors in leaves was increasing during the colonization of barley by S.
graminum and R. padi, and the accumulation was the most intense in the aphid-resistant
cultivar “Frontera” [103]. The infestation of barley by D. noxia, S. graminum, and R. padi
is accompanied by the release of ethylene [104,105]. The feeding of S. graminum on the
resistant cultivar “Frontera” led to a rapid accumulation of hydrogen peroxide and an
increase in peroxidase activity [105].

It has been shown that the colonization of sorghum by S. graminum and of wheat by D.
noxia induces the accumulation of phenols and pathogenesis-related (PR) proteins [106–108].
So, insects induce the accumulation of chitinases, β-1,3-glucanases, and other compounds
in resistant varieties; the former play an important role in the processes leading to the
appearance of a hypersensitive reaction in the plant tissue. Apparently, the main elicitors of
resistance, in this case, are glycoproteins [108–111]. The recognition of the feeding aphids
by a plant leads to the activation of signaling systems, and there occurs a manifold increase
in the concentration of such compounds as jasmonic and salicylic acids, ethylene, etc. [94].

It has been shown, for example, that the Russian wheat aphid is recognized by plants
with the help of the NADP-oxidase signaling system. The feeding of D. noxia on the resistant
cultivar “Tugela DN” led to a rapid accumulation of hydrogen peroxide and salicylic acid, as
well as to an increased peroxidase activity [112,113]. A study of differential gene expression
during the feeding of the Russian wheat aphid on wheat with the Dnx resistance gene made
it possible to identify sequences similar to Pto and Pti—the genes that are involved in the
tomato–bacteria Pseudomonas savastanoi (Janse) Gardan interaction according to the “gene-
for-gene” rule [114]. The plants inhabited by the Russian wheat aphid with an expressed
Dnx gene were found to contain over 180 genes associated with signaling and protective
functions. In addition, it has been shown that the lipoxygenase signaling system may play
an important role in phytophage recognition [115]. The infestation of plants carrying the
Dn7 resistance gene by two D. noxia biotypes led to the activation of several signaling
systems, that is, Ca2+-phosphoinositide, lipoxygenase, and NADPH-oxidase. The plants
on which aphids of the RWA1 biotype were feeding have demonstrated the differential
expression of a larger number of genes compared with the plants inhabited by RWA2 (a
biotype with a wider spectrum of virulence) [116,117]. A study of gene expression during
the infestation by D. noxia of almost isogenic wheat lines characterized by different types of
resistance—Tugela-Dn1 (antibiosis), Tugela-Dn2 (tolerance), and Tugela-Dn5 (antixenosis
and weak antibiosis)—made it also possible to reveal the difference between the signaling
systems activated in plants [118].

By using almost isogenic wheat lines (a susceptible one and another with the Gb3
gene for resistance to S. graminum), Y. Weng et al. demonstrated the manifestation of
systemic resistance in plants induced by insect feeding [119]. The transcriptomic studies
have demonstrated that sorghum plants coordinately regulate defense gene expression
after an attack by S. graminum; however, the aphids were able to avoid triggering activation
of some otherwise potentially effective plant defensive pathways, possibly through their
particular mode of feeding [120].

Initiation of physical and chemical response was shown to start soon after the onset
of aphid feeding, and the production of specific metabolites can have a major effect on
aphid–plant interaction. So, the analysis of gene expression and metabolic dynamics
in maze leaves infested by corn leaf aphids has revealed the dramatical transcriptional
and metabolomic changes during the first few hours after initiation of feeding. Aphid
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performance was increased on the transposon insertion mutants of three BXDs biosynthesis
genes, Bx1, Bx2, and Bx6 and greatly decreased by transposon insertion in a homolog of the
terpene synthases TPS2 and TPS3 [121].

In a number of recently published review articles, the mechanisms both of consti-
tutional and induced resistance to aphids are comprehensively considered. A schematic
representation of immune response involving PTI induced by plasma membrane pattern
recognition receptors (PRRs) and ETI (effector-triggered immunity) in plant–aphid interac-
tions was drawn in [122]. The schemes illustrating aphid–plant interaction during feeding
and signal networks associated with plant defense are presented in [123,124]. A model
of recognition of aphid feeding by resistant and susceptible plants and a scheme of plant
signaling pathways involved in aphid resistance and aphid defense response signaling are
presented in [94]. The main steps in the activation of plant defense responses to herbivore-
associated molecular patterns resulting in compatible plant–arthropod interactions (plant
susceptibility) or incompatible interactions (plant resistance) are summarized by C.M.
Smith and S.L. Clement [125].

6. Genes of Aphid Resistance in Cereal Crops

There are three types of genetic control of resistance: oligogenic, polygenic, and cyto-
plasmic. The most studied is the genetics of resistance of cereal crops to the greenbug and
Russian wheat aphid. The overwhelming majority of works reveal the specific oligogenic
resistance of plants to pests; only sorghum is the case for discussing cytoplasmic resistance
to S. graminum [126,127].

The allelism of resistance genes is difficult to distinguish from the tight linkage. In both
cases, the contrastingly different damage is observed as a result of interaction with different
biotypes of the pest, and the absence (in the case of allelism) or very rare occurrence (in
the case of linkage of nonresistant phenotypes) is observed in F2 hybrids from crosses of
resistant forms.

The non-allelic interactions of resistance genes are known, that is, epistasis, comple-
mentation, and the additive effect. Epistasis is manifested in the way that genes with
low expressivity are not manifested in the presence of highly expressive genes. Their
manifestation is masked by high resistance, which depends on the major genes. The genes
with low expressivity are usually manifested when the major genes lose effectiveness. Com-
plementation, in its essence, may not be different from the additive effect. If the degree of
the resistance gene expression is below the phenotypic manifestation threshold, then it can
manifest itself in the presence of the second gene, which also does not have an individual
phenotypic expression. The interaction, in this case, resembles complementation, though,
in fact, it is a manifestation of the additive effect of resistance genes.

The realizing plant genotype depends on the biotype of the insect, i.e., different resis-
tance genes in one and the same cultivar can be expressed against different phytophage
populations. As a rule, resistance genes that appear in the sprouting phase (the juvenile
genes) act throughout the life of plants. At the same time, the expressiveness of resistance
can change during plant ontogenesis. Resistance genes can differ in the stability of manifes-
tation, which depends on the external environment and genetic background. For example,
the sorghum hybrid “Cargill 607E” loses its resistance to the greenbug biotype I at low
temperatures [128]. It was shown that the GRS 1201 and GRS 1204 wheat lines are protected
by Gb6, a gene of resistance to S. graminum. At the same time, the level of expression
of resistance in the GRS 1204 line is lower, which is associated with the difference in the
genetic background [129]. The expression of the Dn1 gene for wheat resistance against
Russian wheat aphids can also be influenced by their genetic background [130].

6.1. Genes Controlling Aphid Resistance in Wheat

A systematic study of the inheritance of wheat resistance to the greenbug has been
carried out in the United States since the late 1950s. Studies of a vast gene pool have
identified a very small supply of resistance genes. So, to date, 15 Gb genes of phytophage
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resistance have been identified in wheat (Table 1). Among them, only 2 alleles belong
to Triticum aestivum L., 10 have been transferred from Aegilops tauschii Coss., 1 from Ae.
speltoides Tausch, and 2 from Secale cereal L. Most genes, with the exception of Gb1, are
dominant and are expressed throughout plant ontogenesis. All the genes mentioned in
Table 1 provide high resistance against individual insect biotypes. Only one resistance gene,
Gb3, has been widely used in breeding programs in the southern Great Plains [131].

Table 1. Wheat aphid resistance genes.

Chromosome Resistance Genes of T. aestivum Resistance Genes of Related
Species

S. graminum resistance genes

No data available Gb1 [132] -

1A - Gb2 (S. cereale) [133,134]
Gb6 (S. cereale), linked to Gb2 [135,136]

7A Gby [137] Gb5 (Ae. speltoides) [138]

7D -

Gb3 (Ae. tauschii) [134,139]
Gb4 (Ae. tauschii), either tightly linked

to or allelic with Gb3 [140,141]
Gb7 (Ae. tauschii), linked to Gb3 [142]

Gb8 (Ae. tauschii) [143]
Gbx1, Gba, Gbb, Gbc, Gbd, Gbz (Ae.

tauschii), either allelic with or tightly
linked to Gb3 [141,144]

D. noxia resistance genes

1B - Dn7 (S. cereale) [145]
Dn2414 (S. cereale) [146]

7B - Dn1881 (T. durum) [147]

D genome - Dn3 (Ae. tauschii) [148]

1D Dn4 [149,150] -

7D

Dn1 [151,152]
Dn2 [150,151]

Dn1 and Dn2, probably, allelic [149]
Dn5 [153,154]

Dn6 [149,155], either allelic with or
tightly linked to Dn1, Dn2, and Dn5

[156]
Dn8 [157]
Dn9 [157]

Dn10 [158]
Dnx [157]

Dn2401 [158]
Dn100695 [159]
Dn626580 [160]

-

S. avenae resistance genes

6A - Sa1 (T. durum) [161]

A number of identified resistance genes have temporary symbols. The Gby gene iden-
tified in the Sando’s selection 4040 line is localized on the 7A chromosome [137]. Tolerance
to the greenbug biotype I displayed by the bread wheat line KSU97-85-3, which has Ae.
tauschii 1675 in its pedigree is controlled by the dominant gene Gbz, which is localized on
the long arm of the 7D chromosome and is allelic or closely linked to the Gb3 resistance
gene [144]. Five more dominant genes were identified in line with the genetic material of
Ae. tauschii: the Gbx1 gene in the accession KS89WGRC4 (Wichita/TA1695//2*Wichita),
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Gba in TA4152L94 (CETA/Ae. tauschii), Gbb in TA4152L24 (CROC 1/Ae. tauschii), Gbc in
TA4063.1(68111/RUBGY//WARD/[TA2477]), and Gbd in TA4064.2 (ALTAR 84/[2481]).
Similar to the Gbz gene, Gbx1, Gba, Gbb, Gbc, and Gbd are localized on the long arm of
the 7D chromosome. It is assumed that the Gbd gene is different from Gbx1 or Gbz. The
genes Gbx1, Gba, Gbb, Gbc, and Gbd are either allelic or closely linked to the Gb3 resistance
gene [141].

QTLs associated with weak expression of resistance have been identified. For instance,
the use of doubled haploid substitution lines in the synthetic hexaploid synthetic 7D (T.
dicoccoides (Körn. ex Asch. and Graebn.) Schweinf. × Ae. squarrosa L.) (AABB × DD) has
shown that the 7D chromosome contains two QTLs that cause antibiosis to S. graminum,
and two more causing antibiosis to D. noxia, as well as two QTLs controlling antixenosis to
the Russian wheat aphid [162]. By using a similar approach, a QTL of antixenosis to the
greenbug was identified in the substitution line Chinese Spring (synthetic 6A) (T. dicoccoides
× Ae. tauschii) on the 6A chromosome near the centromere, and the second QTL controlling
antixenosis to D. noxia was found on the long arm of the chromosome 6A. This is the first
time that the localization of resistance genes to two aphid species on the 6A chromosome
was reported [163].

Interesting work linking resistance genes and immune response was carried out using
a series of substitution lines created with the S. graminum-susceptible cultivar “Chinese
Spring” and the resistant synthetic T. dicoccum × Ae. tauschii. The biomass, as well as the
content of carbohydrates and soluble proteins, were compared in plants of these lines and
parental forms infested by S. graminum, as well as in the control, non-infested ones. The
biomass of plants of the substitution lines 5A and 6A was similar in the two variants of the
test. Previously it was demonstrated that these lines show antixenosis against the insect
and apparently carry genes conferring constitutional resistance. The substitution lines 1A,
1B, 7B, and 7D infestation by aphids led to a significant increase in the content of proteins.
In previous experiments, the lines were characterized by antibiosis against aphids, i.e.,
antibiotic resistance may be associated with the expression of genes responsible for protein
synthesis. The highest content of carbohydrates during colonization by insects was found
in the lines 1D and 6D, which carry genes of tolerance to S. graminum. It is supposed that
an increase in carbohydrate content causes more intensive plant growth [164].

Oligogenic inheritance of resistance is also revealed when studying the interaction of
grain crops with the Russian wheat aphid. This species has become a major cereal pest in
the United States and South Africa in a short period of time. Most often, resistance is found
in the forms originating from Central Asia and the Caspian Sea area, i.e., the regions where
the pest is endemic [165]. During approximately 25 years of intensive research, 10 wheat
resistance genes have been identified and assigned permanent symbols. Most of the genes
are located on the 7D chromosome. Only the Dn4 gene, identified in the cultivar “Turtsikum
57” from the USSR and widely used in the breeding of commercial varieties, however, lost
its effectiveness (such as a number of other genes) in 2003 with the appearance of a new
aphid biotype RWA2. The highest level of resistance to the Russian wheat aphid biotypes
currently prevailing in wheat crops is provided by the Dn10 gene; the efficiency of Dn2401,
Dn2414, Dn7, and Dn626580 is somewhat lower [166].

The Dn genes localized on the 7D chromosome are characterized by cluster organiza-
tion. It was shown that in the bread wheat accession, PI 294,994 from Bulgaria resistance
is controlled by the dominant Dn5 gene located on the long arm of chromosome 7D [153].
At the same time, there are data on the control of a trait by two—a dominant and a reces-
sive [167], or two dominant genes [149]. Y. Zhang et al. showed that the contradiction in
the obtained data is due to the heterogeneity of the accession PI 294,994 [168]. Segregation
in F2 from a cross of the lines isolated from PI 294,994 with a susceptible tester indicated
monogenic or digenic control of the trait. It was also supposed that PI 294,994 carried three
resistance genes: two on the long arm of the 7D chromosome and one on the short arm of
the chromosome 1D. X.M. Liu et al. showed that the Dn1, Dn2, and Dn5 genes are closely
linked and localized not on the long but on the short arm of the 7D chromosome near the
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centromere [157]. The microsatellite marker Xgwm111 located on the 7DS chromosome is
closely linked to Dn1, Dn2, Dn5, and Dnx. A resistance gene designated by the symbol
Dn8 was localized on the short arm of chromosome 7D, and the Dn9 gene on the long arm
of chromosome 1D in the accession PI 294994, i.e., as previously assumed, PI 294,994 is
protected by three resistance genes. The Dnx gene identified in the accession PI 220,127
from Afghanistan is presumably new but may be allelic to the Dn6 gene. A subsequent
revision showed that the Dn5 gene is localized on the long, instead of the short, arm of the
7D chromosome [154].

The localization and relationships of the Dn1, Dn2, Dn4, Dn5, Dn6, and Dnx genes,
as well as the genes for resistance to the Russian wheat aphid, have been studied in a
number of wheat accessions. The resistance genes in four accessions (PI 47545, PI 222666,
PI 222668, and PI 225245), as well as Dn1, Dn2, Dn5, Dn6, and Dnx, are closely linked to the
microsatellite markers Xgwm44 and Xgwm111 localized on the short arm of the chromosome
7D. When testing allelic relationships, segregation for resistance was not revealed in F2
from crosses of resistant forms with each other. Therefore, the above-mentioned genes are
either alleles of the same locus or are closely linked members of the Dn resistance genes
family. The Dn4 gene and the previously uncharacterized Dn gene from the accession
PI 151,918 are either allelic or closely linked and localized on the short arm of the 7D
chromosome [169].

The use of microsatellite markers proposed by X.M. Liu et al. [169] has shown the pres-
ence of the Dn4 gene in seven local wheat accessions from Pakistan, Iran, and Uzbekistan;
3 accessions from Pakistan and Tajikistan have a block of Dn1, Dn2, Dn5, Dn6, and Dnx
genes [170], i.e., these resistance genes are found in a very diverse material from Asian
countries.

The Russian wheat aphid causes not only yellowing of plant tissue by the degree
to which phenotypes in hybrid populations are usually classified but also leaf rolling.
The non-rolling of leaves in resistant lines W-162 and W-134 is under the digenic control.
Less chlorotic F2 plants usually had non-rolled leaves, but also there were other variants,
e.g., green (i.e., resistant) rolled and yellow (susceptible) straight leaves [171]. J.H. Peng
et al. [172] identified 28 SSR loci associated with leaf chlorosis and 8 more with rolling.
New chromosomal regions associated with resistance to the RWA2 biotype of the Russian
wheat aphid, and the presence of new D. noxia resistance genes localized in homeologous
groups other than bread wheat groups 1 and 7, were also identified.

By using a series of doubled haploid lines obtained from crosses of winter wheat
varieties “Spark” and “Rialto”, QTLs controlling tolerance to a D. noxia population from
Argentina were identified on several chromosomes: on 4DS (two genes) and on 5DS, 3BS,
3AS, and 7AL. In addition, antibiosis QTLs were identified on the chromosomes 4A, 1B,
and 5B. It was proposed to designate the new genes as QDn.unlp genes [173].

Inheritance of resistance to such widespread species as the English grain aphid and
the bird cherry-oat aphid has been poorly studied. The durum wheat accession C273
carries the dominant Sa1 gene of resistance to S. avenae localized on the long arm of the 6A
chromosome [161]. Bread wheat lines Linyuan 207, J231, and J248 each have one effective
dominant gene of resistance to the English grain aphid [174,175].

Synthetic hexaploid wheat CWI76364 (T. dicoccum PI 94623/Ae. tauschii WX1027)
carries the bird cherry-oat aphid antibiosis QTL on the long arm of the 4B chromosome,
as well as two tolerance QTLs on chromosomes 5AL and 5BL [176]. It was shown that the
spring bread wheat variety “Delfi 400” (Kazakhstan) has two dominant complementary
genes that control R. padi antixenosis and antibiosis [29].

We are aware of only one publication on the inheritance of wheat resistance to yellow
sugarcane aphid Sipha flava (Forbes). O.G. Merkle and K.J. Starks found that the resistance
of wheat to this pest had been transferred from Ae. tauschii and is controlled by a dominant
gene. Recently, there have been increasing reports of the growing harmfulness of the
hedgehog grain aphid, a new species for the American continent [177]. The use of a series
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of doubled haploid lines from “Spark” and “Rialto” has revealed QTLs controlling tolerance
to a population of S. maydis from Argentina on the chromosomes 1A, 1B, 2A, and 2D [178].

6.2. Genes Controlling Aphid Resistance in Barley, Oats, and Rye

To date, only four alleles of greenbug resistance are known in barley. Back in 1945, I.M.
Atkins, R.G. Dahms identified two Korean winter barley varieties, “Omugi” and “Dobaku”,
showing high heritability of the resistance trait [179]. Quite a few commercial varieties have
been produced using “Omugi”. An analysis of the inheritance of aphid resistance showed
that “Omugi”, “Dobaku”, “Derbent”, “Kearney”, and “Will” have a common dominant
resistance gene primarily designated Rsg1a and later re-designated Rsg1 [180–183]. The
trisomic analysis has shown that the resistance gene of the “Will” variety is localized in the
centromeric segment of the chromosome 1 [183], and the use of molecular markers allowed
mapping of the Rsg1 locus on the long arm of the chromosome 3H [184]. The variety
“Post” [185] was created by individual selection from a hybrid population of “Harrison”
× “Will”, and the heterogeneity of this variety in terms of aphid resistance necessitated
the selection of the variety “Post 90” [186]. The Rsg1a gene controls resistance to aphid
biotypes B–G, I–K, CWR, and WWG, but not to H [187–190].

The second dominant gene, Rsg2b, which confers resistance to the same aphid biotypes
as Rsg1a, was identified in a local accession from Pakistan PI 426,756 [187,190,191]. At
the same time, the expression of the Rsg2b gene is somewhat lower than that of Rsg1a,
i.e., it is better to use the variety “Post 90” in breeding [192]. However, in subsequent
experiments [193], PI 426,756 was more resistant to the E biotype compared to “Post 90”.
Moreover, the Rsg2b gene, unlike Rsg1a, was effective against the aphid TX1 isolate, i.e., the
differential insect–host plant interaction was observed. Based on this, new gene symbols,
Rsg1 and Rsg2, have been proposed. The variety “Wintermalt” is little damaged by biotypes
G and J, while it is susceptible to all other intraspecific forms of the insect [188,190]. In
addition to “Wintermalt”, biotype G resistance is also possessed by varieties “Colter” and
“Bancroft”, which are recommended for use in breeding [194]. Subsequently, “Wintermalt”
and “Colter” were shown to be severely damaged by the TX1 aphid biotype [193].

The complexity of the Rsg1 locus has now been shown: an accession of H. vulgare ssp.
spontaneum WBDC336 (PI 682028) has the Rsg1.a3 allele, which ensures resistance to such
greenbug biotypes as C, E, H, I, WY81, WY12 MC, and WY86 [195]. It has also been shown
that H. vulgare ssp. spontaneum accession WBDC053 (PI 681777) carries the Rsg2.a3 allele,
which is closely linked to the Rsg2 locus or is an allelic variant of Rsg2. Accession WBDC053
is resistant to the biotypes B, C, E, I, TX1, WY4A, WY4B, WY81, WY12MC, and WY86;
however, it is severely damaged by aphid biotypes F, H, WY10MC, and WY10B [196].

Large-scale studies related to the search for and creation of donors of barley resistance
to D. noxia have been carried out in the United States. As a result of the evaluation of
24,800 accessions from the USDA-ARS National Small Grains Collection, 39 forms (mainly
from Afghanistan and Iran) were found to be highly resistant to the Russian wheat aphid,
and 181 were moderately resistant [197].

Two lines, STARS-9301B (PI 573080, a selection from the Afghani accession PI 366450)
and STARS-9577B (PI 591,617 selected from the accession Ciho 4165 collected by N.I. Vavilov
in Afghanistan), were soon recommended for the use in breeding [198,199]. The STARS-
9301B line was found to contain an incompletely dominant Rdn1 resistance gene (initially
designated Dnb1) and a dominant Rdn2 (=Dnb2) resistance gene. Recessive epistasis of
Rdn2 on Rdn1 was revealed [200]. Barley lines PI 366,444 and PI 366,453 from Afghanistan
have two either common or closely linked aphid resistance genes. Linkage of one of the
resistance genes to the B-hordein STS marker located on the short arm of chromosome 5
was shown [201]. Resistance genes in these accessions from Afghanistan and STARS-9301B
are believed to be identical [200]. In the STARS-9301B line, the Rdn1 and Rdn2 resistance
genes were localized on the short arm of the 1H chromosome and on the long arm of the
3H chromosome, and also the third gene, Rdn3, was localized on the 2H chromosome [202];
the STARS-9577B line carries two resistance genes, Rdn1 and Rdn2 [203].
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The resistance revealed in the STARS-9301B accession at the germination stage is clearly
manifested in adult plants as well. By now, spring commercial varieties “Burton” (resistance
donor STARS 9301B) and “RWA 1758” with resistance from STARS 9577B [204,205] have been
obtained, which display effective resistance against five aphid biotypes in the USA [206].
Not only these two donors are involved in the breeding, but also other accessions with
resistance to the Russian wheat aphid. For instance, by using seven barley accessions from
Iran and Afghanistan, winter backcross lines were selected on the basis of the “Schuyler”
variety [207]. Subsequently, in 2007 alone, 43 spring lines with 36 different sources of
resistance in the pedigree were offered to breeders [208,209], and a year later, another
7 lines were offered [210].

In Mexico, the artificial infestation of plants in a field with D. noxia resulted in the
identification of 15 resistant spring forms [211]. The laboratory evaluation of the best
accessions, ASE/2CM//B76BB and Gloria/Come, revealed antibiosis, tolerance [212], and
antixenosis [213] to the phytophage. Both lines are protected by a common dominant gene
of resistance to the Russian wheat aphid. No reciprocal differences have been revealed,
which means that the trait is determined only from the side of the nucleus [214].

When assessing the damage caused by D. noxia in 76 forms of barley from Iran,
17 accessions were isolated, and the genetic control of the trait was studied under laboratory
conditions in the two most resistant ones. The accession Schz.B-108 has a dominant aphid
resistance gene, and the little damage to Shz.B-106 is determined by an incompletely
dominant gene [215]. The resistance to D. noxia displayed by intergeneric hybrids of barley
and Elymus trachycaulus (Link) Gould ex Shinners was shown to be dominant [216].

J. Weibull made a comparison of the mass of R. padi individuals feeding on hybrids
from crossing two lines of H. vulgare subsp. spontaneum with the “Golf” variety [217]. The
F2 populations obtained from different F1 plants differed in resistance and, in some cases,
were more susceptible than the “Golf” variety. The obtained data are interpreted in favor
of the presence of several resistance genes with the additive effect.

The Japanese scientists used doubled haploid barley lines to map the QTLs controlling
aphid resistance in the TR306 line. The observation of plant colonization in the field by
insects for two years has shown the prevalence of R. maidis and R. padi, as well as individual
colonies of S. graminum and Sitobion akebiae Shinji. The short arm of chromosome 1 was
found to contain a QTL with a strong effect; this QTL is linked to another one controlling
the heading date. A minor QTL is located on chromosome 5 [218].

The genetic control of resistance to R. maidis was investigated in five lines of barley.
The lines EB921, DL529, and K144 each have one dominant resistance gene; the monogenic
recessive control of the studied trait was found in Manjula and EB2507 [219].

Information on the resistance of oats to S. graminum is very scanty. J.H. Garden-
hire [220] showed that resistance of the accession Russian 77 (CI 2898) to the greenbug
biotype A is controlled by a dominant gene, subsequently designated Tg1. Later, R.L.
Wilson et al. identified four resistant accessions: CI 1579 (South Africa), CI 1580 (Scotland),
CI 4888 (Italy), and PI 186,270 (Argentina) [221]. A study of the inheritance of resistance of
three accessions to two biotypes of S. graminum showed that PI 186,270 and CI 1580 each
have one dominant gene (Grb1 and Grb2, respectively), which control resistance to biotype
C; the line CI 4888 was found to contain Grb3, a dominant gene of resistance to the aphid
biotype B. All three accessions were shown to possibly have resistance genes with a weak
phenotypic manifestation to both aphid biotypes [222]. The resistance gene Grb2 works
against biotypes E [74], I [189], and only partially against F–H [188,223].

We are aware of only several publications discussing the interaction of S. graminum and
rye. The resistance of the “Caribou” variety to biotype B is apparently determined by one
dominant gene [224], which is ineffective against the aphid biotype C [225]. An Argentinian
rye accession, “Insave F.A.”, carries Rpv, a dominant gene of greenbug resistance [226].
As a result of crossing the bread wheat variety “Chinese Spring” with “Insave F.A.”, and
with rye cultivars “Elbon” and “Balbo”, an octoploid triticale cultivar “Gaucho” showing
resistance to the insect biotype C was created [227]. This cultivar is also protected by



Plants 2022, 11, 1490 15 of 28

a dominant gene [228]. Subsequently, the “Amigo” wheat variety was developed with
resistance transferred from “Gaucho” [133]. In “Amigo”, resistance is controlled by the
dominant Gb2 gene localized on chromosome 1A (translocation 1AL.1RS) [134] and closely
linked to the Sec-1 locus [229]. In contrast to the original rye variety, “Amigo” and “Gaucho”
are severely damaged by aphids of biotype E, i.e., “Insave F.A.” carries at least two aphid
resistance genes [74,77]. The resistance genes of this accession are effective against biotypes
B, C, E, G, H, and I [77,188,189,225] but are ineffective against biotype F [188,230]. Rye
accessions CI 187 and PI 240,675 are resistant to biotype F, i.e., their resistance genes are not
identical to those of “Insave F.A.” [226].

6.3. Genes Controlling Aphid Resistance in Maize and Sorghum

There are two known genes for maize resistance to the corn leaf aphid. The resistance
of the inbred maize line Hi38-71 to R. maidis is controlled by a recessive aph gene; the line
Hi34 was found to contain a recessive aph2 gene on the short arm of the chromosome
2 [231,232].

The resistance to biotype C of S. graminum discovered in the accessions of wild
sorghum Sorghum virgatum (Hack.) Stapf PI 38,108 and T.S. 1636 is controlled by two
dominant complementary genes. The resistance genes in S. virgatum and Sudan-grain
(an S. virgatum derivative) are identical. The use of S. virgatum resulted in producing
highly resistant forms SA 7536-1 (Shallu Grain) and KS-30, which later were widely used
in breeding [233,234]. According to D.E. Weibel et al. [235], accessions IS 809, PI 264,453
(S. bicolor (L.) Moench), and SA 7536-1 have monogenic, incompletely dominant resistance
control. The level of resistance in IS 809 exceeded that of other accessions, which may be
due to the action of minor genes. Derivatives of S. virgatum and the line IS 809 have lost
resistance to biotype E, but KS-30 is resistant to biotypes F–H. The accessions PI 264,453
and “Capbam” are resistant to biotype E, i.e., their resistance genes differ from those of
S. virgatum. A broom sorghum accession “Deer” and an accession of Sudan grass “Piper”
are characterized by resistance to biotype B and susceptibility to C, which also evidences a
difference in genetic control in these forms from those previously discussed [225].

According to A.G.O. Dixon et al. [126], resistance to biotype E in accessions PI264453,
“Sarvasi”, and a number of other forms is inherited polygenically. Moreover, both accessions
were found to have cytoplasmic resistance to the pest.

The grain sorghum accession KS 97 has two complementary dominant resistance
genes expressed against biotype I [236].

The RFLP analysis was used to study the localization of resistance genes to four
biotypes (C, E, I, K) of S. graminum in four sorghum accessions. The accessions BTx 623, PI
550607, Tx 2783 line (isolated from “Capbam” variety), and Tx 2737 line obtained using
SA7536-1 accession were analyzed. At least nine QTLs (Ssg1–Ssg9) that affect resistance
were identified in eight linkage groups. None of the loci conferred resistance to all aphid
biotypes [237].

To identify QTLs of resistance of sorghum to biotypes I and K, 93 recombinant inbred
lines were obtained from crossing GBIK and Redlan accessions. By using 113 molecular
markers (38 SSR and 75 RAPD), 9 QTLs that control resistance and tolerance to S. graminum
were identified. Moreover, each QTL determined 5.6–38.4% of the phenotypic variance.
Four SSR markers and one RAPD marker are associated with the expression of all traits
of resistance and tolerance. The authors believe that these markers are linked to genes of
nonspecific resistance and tolerance, while the remaining four markers are associated with
specific resistance [238].

A comparison of the genetic similarity of 26 sources of sorghum resistance to the
greenbug biotype I using AFLP markers revealed a high level of polymorphism in the
studied accessions, most of which were divided into two clusters [239].

The genes of sorghum greenbug resistance were identified in a number of sorghum
accessions. The accession VIR-457 (PI 264453, USA) carries dominant (Sgr1) and recessive
(Sgr2) resistance genes. The Sgr1 gene was also detected in accessions i-589430 (PI 264453,
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Spain) and VIR-3852 (Sarvashi, Hungary). These forms are assumed to also have the
Sgr2 gene. The accessions VIR-9921 (Shallu, USA) and VIR-9922 (KS-30, USA) have an
incompletely dominant Sgr3 resistance gene. The dominant gene in the accession VIR-
6694 (Deer, USA) was assigned the symbol Sgr4. Dominant (Sgr5) and recessive (Sgr6)
genes were found in accessions VIR-1362 (Durra white, Syria) and VIR-1240 (Dzhugara
white, China). The variety “Sorgogradskoe” (VIR-9436, Russia) has the Sgr5 gene. It is
assumed that the Sgr5 and Sgr6 genes are present in accessions VIR-10092 (“Odessky 360”,
Ukraine) and VIR-5091 (Cherhata, Morocco). The accession VIR-924 (Dzhugara white,
China) is protected by the dominant (Sgr7) and recessive (Sgr8) genes. The accession
VIR-923 (Dzhugara white, China) has at least one of these genes. The accession VIR-930
(Dzhugara white, China) has two dominant complementary resistance genes (Sgr9, Sgr10).
One of the two dominant genes in the accession VIR-1237 (Dzhugara white, China) was
assigned the symbol Sgr11 [240].

The inheritance of resistance to the Krasnodar greenbug population has been analyzed
for nine forms of grain sorghum and Sudan grass. The dominant gene of the “Capbam”
accession (VIR-455, USA), which manifests itself against individual clones of the insect,
differs from the previously identified Sgr1–Sgr11 resistance genes and is denoted by the
symbol Sgr12. In addition to the dominant Sgr1 gene, the variety “Sarvashi” (VIR-3852,
Hungary) is also protected by a recessive gene (obviously Sgr2) against individual aphid
clones. Grain sorghum accessions VIR-928 and VIR-929 (Dzhugara white, Western China)
have two highly effective dominant resistance genes that differ from Sgr1–Sgr4, Sgr6, Sgr9,
and Sgr10 genes. The resistance genes of the VIR-929 accession also differ from the Sgr5
gene. The accession k-928 was found to contain a third dominant resistance gene, which
is expressed against individual aphid clones. The symbol Sgr13 has been assigned to this
gene. Sudan grass accessions VIR-100 and VIR-122 (Ukraine) have two dominant genes
of resistance to the insect; one dominant and one recessive resistance gene were found in
accessions VIR-62, VIR-99 (Ukraine), and VIR-96 (Russia). Dominant resistance genes of the
variety “Odesskaya 25” (VIR-122), which manifest themselves against some clones from
the natural aphid population, are designated by the symbols Sgr14 and Sgr15 [241].

As in the above-considered systems of interaction between S. graminum and host
genotypes, there are numerous data in the literature on the preservation of weak resistance
in sorghum accessions following the loss of the effectiveness by the main genes [74,188].
The joint inheritance of oligogenes (Sgr1, Sgr4, Sgr5, Sgr6) and weakly expressed resistance,
which manifests itself when plants are colonized by virulent insect clones, have been
analyzed. It was shown that resistance, in this case, does not depend on the “residual
effect” of oligogenes but on the interaction of minor genes of resistance–virulence. Minor
genes can be independent or weakly linked to the major resistance gene. The differential
host–insect interaction in terms of minor resistance–virulence genes was observed, as well
as an increase in the frequency of clones during seasonal changes in the natural population,
which are maximally compatible with the “Sarvashi” variety, which was widely used in
breeding, concerning both the major and minor resistance genes [242].

The dominant gene RMES1 ensuring sorghum resistance to an invasive species of
sugarcane aphid M. sacchari was mapped in the Chinese grain sorghum variety “HN16”
on chromosome 6 [243,244]. By using the NGS technology and transcriptomic analysis,
four QTLs (intervals) containing genes of resistance to M. sacchari were identified in line
407B on chromosome 6, and the qtlMs.6-1 locus contains the previously identified RMES1
gene [245].

7. Gene Pool and Cereal Crops Breeding for Resistance to Aphids

The increasing genetic homogeneity of cultivated crops promotes the acceleration of
adaptive microevolution of harmful organisms. The results of numerous studies show that
the nature of the phenotypic manifestation and inheritance cannot distinguish resistance
that can potentially be overcome by insects from the insurmountable (durable) one. Both



Plants 2022, 11, 1490 17 of 28

major and minor aphid resistance genes in cereal crops interact differentially with pest
genotypes. Therefore, the possibility of insect adaptation is quite obvious in both cases.

The specificity of the host plant relationship, first of all, with the greenbug has been
discussed in numerous publications for over 70 years. Over the years, a fairly large number
of resistant forms have been identified; some of them were widely used in breeding and,
unfortunately, inevitably lost their effectiveness.

It was supposed that the reason for the long-term persistence of resistance should be
sought not in the mechanisms of host–parasite interaction but in the negative consequences
for the phytophage of the corresponding virulence mutation. The data obtained for the
system of sorghum–greenbug interaction confirmed a hypothesis about the relationship
between the rare virulence of the phytophage and reduced viability. Clones from the
Krasnodar population of S. graminum virulent to the Sgr5 and Sgr6 resistance genes are
less fertile compared to avirulent ones and are displaced during the reproduction of model
populations on a susceptible sorghum line [246].

The useful life duration of a resistance gene in case of its wide use in breeding does
not exceed 10 years. The Russian wheat aphid is a key pest of cereal crops in the United
States. In 1994, wheat varieties with the Dn4 resistance gene were released into production,
and already in 2003, in Colorado, a phytophage outbreak was observed in crops of the
“Prairie Red” variety protected by this gene. A new infraspecific form (biotype 2, later
designated RWA2) quickly became dominant (73–95%) in wheat and barley crops in at
least four states [247]. Another example is the cultivation in the USA of sorghum hybrids
resistant to biotype E of S. graminum. Sales of seeds of these hybrids began in 1982; by
1986, the volume of sales in Oklahoma amounted to 38% of the total [248]. In 1989 resistant
hybrids occupied about half of the sorghum area in Kansas and 90% in Texas [249]. The
spread of the “sorghum” biotype I was noted in 1990, while all the previously found sources
of resistance turned out to be ineffective [189]. In Russia, sorghum is a less common crop,
so the predominance of aphid clones virulent to the “Sarvashi” variety widely used in
breeding in southern regions of the country was noted approximately 20 years after the
release of varieties and hybrids with this resistance donor in the pedigree [240].

A rational breeding strategy envisages, first of all, broadening the genetic diversity of
cultivated varieties. Depending on the characteristics of the crop, the specific contribution
of one or another method of expansion (search for resistant forms among cultivated species,
introgression, mutagenesis) can be different.

The identification of new resistance genes from cereal collections is the easiest way to
replenish their stock; however, donors of new genes are usually rare. For example, among
more than 23,000 sorghum accessions evaluated by T.L. Harvey et al. in the 1980s for
resistance to S. graminum, not a single form resistant to biotype I could be identified [189].
After an unsuccessful attempt to find forms resistant to D. noxia among the randomly
selected 5,000 accessions of local wheat, screening of databases on 17,778 accessions held
by ICARDA, Australia and Russia (VIR) genebanks has been carried out. The screening
took into account such parameters as (1) the origin of accessions (regions where the pest
was recorded) and yielded 10,200 accessions, (2) rainfall (aphid prefers relatively dry
conditions), which shortened the list to 3338 forms, and (3) temperature and altitude,
leaving 1125 accessions from 521 locations on the list. The resistance of 510 genotypes from
the ICARDA collection was assessed, and 12 more or less resistant forms were selected,
among which six (from Pakistan, Iran, and Uzbekistan) are characterized by a high level of
resistance to the Russian wheat aphid [250]. The molecular screening has shown that most
of these identified accessions have either the Dn4 gene or a block of Dn1, Dn2, Dn5, Dn6,
and Dnx genes, and only two accessions are most likely protected by unknown resistance
genes [170]. Nevertheless, the gene pool of grain crops is far from being exhausted, as is
evidenced by extensive information.

High resistance to the phytophage is often found in local cultivated cereal species.
N.I. Vavilov [30] believed that “ . . . resistance is developed under the influence of natural
selection only under those conditions that promote the development of infection, and, as a
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rule, are detected only where one or another parasite is present, against which resistance
is developed through selection”. We found sorghum forms most resistant to S. graminum
among local accessions from China but not from Africa (the primary homeland of the crop),
which is associated with the long-standing insect–host plant relationship [240]. In a study
of 1358 accessions of barley from the countries of East and South Asia, heterogeneous
forms were identified that differ in the level of expression of greenbug resistance. The high
resistance of 98 accessions is controlled by alleles that are not identical to alleles of the
previously identified Rsg1 gene. The occurrence of resistant forms is the highest among the
material from the provinces of Shaanxi, Shanxi, and Henan in the Central Natural Region of
China, which may be due to favorable conditions for aphids development and the duration
of S. graminum coexistence with barley [251].

N.I. Vavilov wrote: “Ecogeographic correctnesses in the detection of resistance are
relatively common, inherent in various plants which often belong to different genera and
even families” [30]. In particular, 371 accessions of oats from the countries of Asia and the
Far East of the Russian Federation were studied, and 95 forms heterogeneous in terms of
resistance to S. graminum were identified. Seven homozygous resistant lines were selected,
and these forms were shown to be protected by different alleles of resistance genes, which
also differ from the Grb3 gene [252].

At present, the introgression of resistance genes has become widespread. The main
advantage of this method of expanding genetic diversity is the certainty that the source
of a given gene has not been used in breeding yet. The important role of introgression is
evidenced, for example, by the previously discussed results of studies on the inheritance
of wheat resistance to S. graminum: out of 15 Gb resistance genes, only two alleles actually
belong to T. aestivum. It is believed that due to differences in the structure of coding
sequences, the introgressed genes provide a wider range of durable resistance compared
to the genes of the recipient species. The wild barley ancestor H. spontaneum 5 (Hsp5)
is characterized by partial resistance to several aphid species: R. padi, S. avenae, and
Utamphorophora humboldti Knowlton. The comparative study of R. padi feeding behavior
on infested plants of Hsp5 and a susceptible variety, “Concerto”, has revealed that the
protection factors of wild barley are localized in mesophyll layers and phloem tissues.
Aphid resistance was associated with the increased expression of the major genes involved
in the signaling of the phytohormones jasmonate, abscisic acid, and ethylene, as well as of
the protective peptides thionins. In addition, a reduced level of accumulation of essential
amino acids in the phloem of the resistant genotype was observed [253].

At the same time, numerous literature data indicate that insects can overcome the
resistance of varieties with foreign genes just as easily as resistance from closely related
species.

In case of gene pool exhaustion, mutant forms created using traditional and biotech-
nological methods become of primary importance. The variability observed among so-
maclones (plants obtained in in vitro culture) is so great that the application of mutagens
often does not increase its level. The most promising objects for studies of somaclonal
variability may be S. graminum and D. noxia—the species that are believed to inject toxins
into plants while feeding. For instance, R. Zemetra et al. evaluated the resistance of wheat
calli to the Russian wheat aphid extract in vitro and identified three somaclonal variants
with a higher level of resistance to the pest compared to that in the original form [254].
Selection can also be carried out after plant regeneration. New sources of resistance can
also be obtained by targeted changes in gene sequences, in particular, with the application
of gene and genome editing approaches using TALEN and CRISPR/CAS9 tools [255].

8. Conclusions and Future Outlooks

The interaction of two adjoint evolving systems is a characteristic feature of genetic
control of plant resistance to diseases and pests. Involving as many varieties as possible
in breeding and their rational use is needed. There are several ways of pest management,
which are based on increasing plant populations diversity in space and time:
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- Alternation of varieties with different resistance genes in time;
- Cultivation of mixtures of genetically different varieties or even crops aligned only for

precocity;
- “Mosaics”, i.e., simultaneous cultivation of a large number of varieties with different

resistance genes in the pest area;
- Breeding of multiline varieties, i.e., mechanical mixtures of phenotypically similar

lines differing in resistance genes;
- Pyramiding, i.e., association of various resistance factors in one genotype.

These strategies are not alternatives to each other and can be used in any combination.
The slowing down of the process of pests’ adaptation to resistant varieties depends

on the expansion of the bank of effective resistance genes, as well as on the knowledge of
the evolutionary mechanisms of pest compatibility with host plants. A long-term study of
aphid population variability in terms of virulence to host plant resistance genes is necessary
in order to propose a reasonable distribution scheme for varieties with different resistance
genes. Nevertheless, the creation of irregular, that is, unregulated in any way, variety
mosaics is quite possible at the present time.
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