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Abstract: Invasive species are now considered the second biggest threat for biodiversity and have
adverse environmental, economic and social impacts. Understanding its spatial distribution and
dynamics is crucial for the development of tools for large-scale mapping, monitoring and manage-
ment. The aim of this study was to predict the distribution of invasive Fallopia taxa in Slovakia and to
identify the most important predictors of spreading of these species. We designed models of species
distribution for invasive species of Fallopia—Fallopia japonica—Japanese knotweed, Fallopia sachali-
nensis—Sakhalin knotweed and their hybrid Fallopia × bohemica—Czech knotweed. We designed
12 models—generalized linear model (GLM), generalized additive model (GAM), classification and
regression trees (CART), boosted regression trees (BRT), multivariate adaptive regression spline
(MARS), random forests (RF), support vector machine (SVM), artificial neural networks (ANN),
maximum entropy (Maxent), penalized maximum likelihood GLM (GLMNET), domain, and radial
basis function network (RBF). The accuracy of the models was evaluated using occurrence data for the
presence and absence of species. The final simplified logistic regression model showed the three most
important prediction variables lead by distances from roads and rails, then type of soil and distances
from water bodies. The probability of invasive Fallopia species occurrence was evaluated using
Pearson’s chi-squared test (χ2

1). It significantly decreases with increasing distance from transport
lines (χ2

1 = 118.85, p < 0.001) and depends on soil type (χ2
1 = 49.56, p < 0.001) and the distance from

the water, where increasing the distance decrease the probability (χ2
1 = 8.95, p = 0.003).

Keywords: invasive plants; species distribution model; Fallopia taxa

1. Introduction

Long-distance dispersal of species by human activities and biological invasions are a
main component of global change of the world [1,2]. Invasive species have become a major
challenge in protecting biodiversity in the new millennium [3] and one of the world’s most
costly environmental problems [4]. For the past several decades, the invasive plant species
have posed severe threats to the local biodiversity, ecosystem services, environmental
quality [5–8] and human health [9–11]. Invasive plants are, simply by occupying a large
amount of space in invaded habitats, expected to impose a significant impact on the native
vegetation and their associated food webs [12]. Invasive species may have some qualities
that are responsible for their invasive nature. Although it is to be expected that different
characteristics will be important in different places, there are some general characteristics
of invasive species: high population growth rate high dispersal, vegetative reproduction,
the ability of a species to maintain itself until conditions are favorable. Other possible
characteristics are a large native range, human commensalism, single-parent reproduction,
high genetic variability, phenotypic plasticity and maybe many others [13,14].

In Europe Fallopia taxa show a strong preference for man-made habitats and localities
along roads and watercourses. However, the hybrid F. × bohemica shows the highest
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proportion of localities outside human settlements [15]. Largescale invasion by this invasive
species is therefore likely to seriously affect biodiversity and reduce the quality of riparian
ecosystems [12]. The genus Fallopia includes three invasive taxa in Europe—F. japonica, F.
sachalinensis and F. × bohemica [15]. Japanese knotweed (Fallopia japonica (Houttuyn) Ronse-
Decraene; Polygonaceae was introduced as an ornamental plant in Europe in the 1840s and
in North America in the 1870s; and since, it has spread throughout these continents [16,17].
Japanese knotweed may cross with giant knotweed (F. sachalinensis (F. Schmidt) Ronse-
Decraene), forming a hybrid, Bohemian knotweed (F.× bohemica (Chrtek & Chrtkova) J.
P. Bailey), which possesses higher invading capabilities than its parents and forms the
majority of knotweed plants in many areas [18,19]. Representatives of the Fallopia taxa
are able to grow in diverse soil types (e.g., sand, loams, peat, alluvial and colliery soils,
clay, shingles), with various pH ranges and nutrient content [16]. They are even able to
establish on soils with high concentrations of heavy metals [20,21] and Sulphur dioxide [16].
Richards et al. [22] reported clones of Fallopia species even on highly saline soils. However,
the survival of juveniles seems to be impeded by low soil humidity and droughts [23], and
likely by extreme temperatures [16,24]. The ability to regenerate from vegetative fragments
and disperse via seeds, the ability to shade out competitors, and the ability to adapt rapidly
through epigenetic change makes knotweed a formidable invader [19].

Species distribution models (SDMs) are numerical tools that combine observations of
species occurrence or abundance with environmental variables. They are used to gain eco-
logical and evolutionary insights and to predict species distributions across landscapes [25].
SDMs are among the most widely used in ecology and conservation science [25,26]. They
have become the basic methodological framework for predicting the occurrence of non-
native species and for assessing the impact of human activities on invasive species distri-
bution [27] and becoming a tool for early detection and control of the spread of invasive
species [28]. Predicting the probability of successful establishment of plant species by
matching environmental variables has considerable potential for incorporation in early
warning systems for the management of biological invasions [29]. Species distribution
models are an increasingly important tool in conservation decision making. Predicting
the spatial distribution of invasive plants, understanding the ecological requirements of
those species and the different environmental drivers that influence their distribution can
improve the management of species invasions [30,31].

Despite the invasion of Fallopia taxa is among the most intensively studied plant
invasions globally [32], up until this point, there has been any research conducted on the
modelling of spatial distribution of Fallopia species in Slovakia. The research that has been
completed has not focused on species distribution modelling. Instead, it has focused on
actual distribution or impact on ecosystems. Renco et al. [33] investigated the communities
of soil nematodes in the forest habitats invaded and uninvaded by Fallopia japonica in Tatra
National Park, Slovakia. Mered’a et al. [34] studied cytological and morphological variation
of Fallopia taxa (Polygonaceae) in the Krivánska Malá Fatra Mountains. Cytological and
morphological variation of Fallopia sect. Reynoutria taxa (Polygonaceae) in the Krivánska
Malá Fatra Mountains. Changes in habitat conditions of invaded forest communities in
Podunajská Nížina and the impact of non-native species on biodiversity was studied by
Lukovičová et al. [35]. However, there are studies focused on distribution of Fallopia done
in Europe. Jovanović et al. [36] made a case study from Southeastern Europe with the aim
to predict in which habitats and along which corridors its future spread can be expected.
Pěknicová et al. and Pěknicová and Berchová-Bímová [37,38] predicted the distribution of
invasive species in Czech Republic where Fallopia was one of modelled species.

This study focuses on spatial prediction of distribution of three invasive Fallopia species
in Slovakia. We performed several distribution models to model the potential distribution
of these species and identified most important prediction variables, which can be drivers of
species distributions.
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2. Results

We performed several distribution models and select those with the best prediction
power based on AUC criteria (Table 1). The general problem with species distribution
models is that there will always be variation between variability in results between dif-
ferent methods, without any unambiguous indicators of which model is the right one. A
possible solution to account for this inter-model variability is to fit ensembles of forecasts
by simulating across more than one method.

Models from Table 1 served as the input for the final ensembled prediction model
(Figure 1). The model shows the probability of invasive Fallopia species distribution in
the area of Slovakia. The highest probability of occurrence is along the roads and rivers,
as they represent the corridors of invasive species spreading. The Southern Slovak Basin
and Košice Basin (situated in the east of Slovakia) are parts with the highest chance of
occurrence of Fallopia taxa. The map shows the link between the road density and the
occurrence of this invasive species in the area of southwestern Slovakia located in the
Danubian Lowlands. Areas without a dense road network are least likely to occur Fallopia.
Effect of the river network is clearly shown on the map. Rivers also present corridors of
spreading Fallopia species in Slovakia and the river network forms continuous area with
the high probability of spreading the species. This probability is highest on the river Váh
and Hron. The lower probability of presence is also related to mountain areas. This can be
caused not just by the higher elevation, but also by the presence of the protected areas and
national parks, where invasive species are removed.

Table 1. Accuracy evaluation statistics of models used for ensemble model.

Method AUC COR TSS Deviance

glm 0.90 0.63 0.7 0.75
rf 0.94 0.76 0.82 0.53

maxent 0.94 0.73 0.79 0.92
glmnet 0.92 0.55 0.77 2.78

brt 0.94 0.74 0.8 0.66
svm 0.92 0.69 0.76 0.65
mars 0.93 0.75 0.8 0.62
rbf 0.90 0.62 0.71 0.76

gam 0.93 0.73 0.79 0.87
ranger 0.94 0.75 0.81 0.52

In addition to the prediction map, Figure 1 also shows the uncertainty of the prediction
of the ensembled model. The greatest uncertainty can be seen in areas with the mean values
of probability, outside the limit values (0 or 1). It was in these places that there was the most
often discrepancy/indecision of individual models. The overall uncertainty of prediction
(proportion of cells with an uncertainty of more than 50%) was 34%.

Secondary output of distribution modeling (Figure 2) is also the evaluation of variable
importance (computes as the difference between a full model and one with each variable
successively omitted). This evaluation pointed out more important variables, which has a
higher impact on prediction. Because of a good prediction result of GLM, we produced
logistic regression, for better reproducibility and simpler further prediction of Fallopia
spp. This model helps to investigate the probability of the occurrence of a dichotomous
dependent variable by fitting the log odds and independent variables to a linear model,
which are easy to interpret.

The final simplified logistic regression model showed the three most important pre-
diction variables lead by distances from transport lines (roads and rails), then the type of
soil (fluvisols, haplic luvisols, leptosols, mollic fluvisols and mollic gleysols, planosols and
stagnosols) and the distances from the water bodies (Table 2).
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Table 2. Coefficient table of logistic regression model.

Term Estimate Std. Error Statistic
(z Value) p-Value

(Intercept) 2.24 0.417 5.39 7.21 × 10−8 ***

Distance from transport lines −0.00222 0.000339 −6.56 5.29 × 10−11 ***

Soil type: Fluvisols 2.17 0.451 4.82 1.40 × 10−6 ***

Soil type: Haplic Luvisols −1.25 0.570 −2.20 2.81 × 10−2 *

Soil type: Leptosols 0.203 0.848 0.239 8.11 × 10−1

Soil type: Mollic Fluvisols and Mollic Gleysols −0.363 0.611 −0.594 5.52 × 10−1

Soil type: Planosols and Stagnosols 0.681 0.585 1.17 2.44 × 10−1

Distance from water bodies −0.000250 0.0000875 −2.85 4.34 × 10−3 **

Statistically significant differences at: * p < 0.05; ** p < 0.01 and *** p < 0.001.

The tested predictive power of this model achieved 0.91 AUC what is comparable
with the result from the ensembled model.

The probability of Fallopia spp. occurrence significantly decreases with increasing
distance from the transport lines (χ2

1 = 118.85, p < 0.001; Figure 3). Probability also depends
on soil type (χ2

5 = 49.56, p < 0.001), being the highest is on Fluvisols. Less but still significant
is the distance from the water, where increasing the distance decrease the probability
(χ2

1 = 8.95, p = 0.003).
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bodies and different soil types. Water bodies distances represent 10% (red), 50% (blue) and 90%
(green) percentile.

The final simplified logistic regression model showed natural disturbance (rivers)
or anthropogenic disturbance (roads and rails) plays a role in explaining the presence of
Fallopia spp. in Slovakia. The most important biophysical factor from used environmental
variables are types of soil.

3. Discussion

The spread of invasive species depends on several ecological factors, the most impor-
tant of which are environmental requirements, nutrient saturation, composition of invaded
community, distance from roads and rivers, and effect of human activities [39]. Our results
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suggest that distance from transport lines, soil type and distance from water bodies are the
most important factors for predicting the distribution of Fallopia taxa.

In this study, we designed distribution models of three invasive Fallopia species for
the area of Slovakia to predict their spread. By our field mapping, we obtained current
presence and absence data on selected transects. Habitat suitability predictions from SDMs
are typically based on species occurrence data and are essentially occurrence probability or
habitat suitability estimates. However, SDMs often do not involve true absence information,
as confirmed absences are typically unavailable in most survey and monitoring databases.
Given this difficulty to obtain absence information, several presence-only SDM approaches
have been developed. The use of pseudoabsences involves many assumptions and needs
careful model planning [40,41], and it is not surprising that studies generally suggest using
absence data whenever they are available [28,42]. Another reason for using true absence
data is to avoid uncertainty of the model. A major criticism and source of uncertainty in
species distribution models is the lack of true absence information for accurate species
distribution predictions [43,44]. The overall uncertainty of prediction (proportion of cells
with an uncertainty of more than 50%) was 34%.

3.1. Distance from Transport Lines

Distance from roads and railways was the most important factor for Fallopia taxa
spreading. Their presence along roads and railway is very frequent in Slovakia. Roads are
especially well-documented sites for exotic plant invasion [45,46] and represent obvious
dispersal corridors in a landscape [47]. They serve multiple functions that enhance exotic
species invasion in this landscape: they act as corridors for dispersal, provide suitable
habitat, and contain reservoirs of propagules for future episodes of invasion. [47]. Close
associations between invasive Fallopia species and human disturbance along rail or road
infrastructures have been reported [23,48] The occurrence of knotweeds is closely related to
human-derived pressures [49]. Otherwise, roadside soils often contain high concentrations
of heavy metals, released from fuel burning, wear out of tires, leakage of oils, and corrosion
of car metal parts [50] and this pollution by metals may promote the clonal growth of
Fallopia taxa [21]. This can lead to building their own environmental niche and thus favor
their own expansion [51–53].

3.2. Soil Type

In our model, probability of Fallopia taxa occurrence also depends on soil type, being
the highest on Fluvisols. Many studies do not consider soil type as an important predicting
variable because Fallopia species have the ability to live in variety of soil types and varying
levels between a pH of 3.0–8.5 [36]. Other studies, which included soil type variables in
modelling process [21,37], suggest that soil type is one of the most important factors for
predicting distribution of this species. One of the key mechanisms of plant invasiveness
of Fallopia taxa is allelopathy—chemically mediated interference between plants, whereby
secondary compounds produced by Fallopia species directly or indirectly (through affecting
soil biota) suppress the growth and fitness of other species [54]. Fallopia is more allelopathic
when resources of nutrients are abundant, and this may contribute to their superiority in
nutrient-rich soils [55]. Its regeneration from fragments is affected by edaphic properties,
with lower regeneration rates in poor soils [48,56]. Possibly because Fallopia species are
usually dispersed on much richer soils [57]. Another explanation of the soil type variable
importance could be using fine scale environmental layer and validated presence and
absence data. Fine-scale data helps identifying conditions with the highest probability
of invasion [58] and grain size smaller than 1 km should be preferred in SDM studies.
However, models using finer grain size data should be trained and validated with carefully
validated occurrence records [59].
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3.3. Distance from Water Bodies

Less but still significant variable was the distance from the water bodies (rivers,
streams), where increasing the distance decreased the probability of spreading Fallopia taxa.
Riparian zones along rivers may serve as corridors for dispersal of exotic species [60,61]
and may facilitate invasion both by providing corridors in a landscape and by creating
disturbance [47]. High levels of invasion are found especially in lowland sandy areas and
river corridors [62] as they may contribute to the dispersal of alien propagules [63]. Fallopia
species can regenerate from stem fragments, and this regeneration is increased when they
spent some time in water, what is potentially highlighting the role of hydrochory in the
evolutionary history of this species [48,64,65]. They often form dense stands along rivers
and have negative impacts on biodiversity and ecosystem functions and also threaten the
stability of river banks [66]. Fallopia rhizomes both displace roots and the structure they
provide to soil, also amplify bank-erosion forces [67]. Due to their life form, vitality and
their enormous ability to regenerate themselves, they are extremely hard to fight [66].

A practical application of species distribution models might involve identifying envi-
ronmental drivers of species distribution and abundance and predicting locations of high
invasion risk [68] Predicting the probability of successful establishment of plant species has
considerable potential for incorporation in the management of biological invasions [29].
SDMs have been extensively used to predict the potential geographical ranges of invasive
species and some of those were used to predict distribution of Fallopia species. Jovanović
et al. [36] predicted the future range of invasive Fallopia species in Southeast Europe. The
results of this study predict the most suitable range for F. japonica and F. sachalinensis (in
the north of the region studied) and for F. × bohemica (central Southeast Europe). This
study predicts that Fallopia species could expand their range in riparian habitats up to
30–40%. Pěknicová et al. [37] constructed local SDMs for invasive alien plant species in the
Kokořínsko Protected Landscape Area in Czech Republic. Bourchier at al. [69] conclude
existing knotweed sites occupy just over half of the suitable habitat in British Columbia,
indicating there are still significant areas to be invaded.

In summary, we believe that species distribution models can provide useful tool for
invasive species management, and this study and the distribution map can provide insight
for to guide decisions regarding prevent and control the spread of invasive Fallopia species.

4. Materials and Methods
4.1. Study Area

This study was conducted over entire Slovakia for following reasons: (i) Fallopia species
create populations throughout Slovakia, (ii) the availability of all literature-recommended
GIS layers needed for the modelling, and (iii) with regard to Slovak legislation, mandating
the removal of these species from both public and private land, the creation of a prediction
model provides useful information for species management at the regional and local level.

Slovakia is land-locked country in Central Europe and covers an area of 49,034 km2.
This country belongs to regions with variable environmental, geological, geomorphological
and climate conditions. Most territory of Slovakia, especially the northern and central
mountain areas, are in the Carpathians biogeographical region (moderately warm and cool
regions with daily maximum air temperature ≥ 16 ◦C and <16 ◦C, respectively). The re-
maining areas lie in the Pannonian lowland plain (warm region with more than 50 summer
days annually in average and daily maximum air temperature ≥ 25 ◦C). Relatively base-
rich bedrocks, mainly limestone, various limnic and marine sediments as well as volcanic
bedrocks such as andesite, form the majority of the Slovak territory. Acidic bedrocks are
less frequent, occurring in high mountains (e.g., Tatry Mountains, Slovenské rudohorie
Mountains) and in some of the flysc series of the Western Carpathians [70]. Geographical
location, vertical differentiation, diverse geological substrate and rugged relief provide
suitable conditions for the spread of many species.
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4.2. Fallopia Occurrence Data

The base of the occurrence data was based on the Fallopia species database, composed
from a long-term mapping of the state nature conservancy of Slovakia, literary sources and
phytological research [71]. Due to the fact that the occurrence data in this database do not
come from the same time period, they were not obtained by the same mapping method
and contain only information about the presence of the species, we decided to verify the
accuracy of the data and add the absence of the species with own terrain mapping.

To confirm the current presence of Fallopia species were randomly selected 100 geo-
referenced records from the database from a long-term mapping. These points from the
database represents the central points of the presence transects, which confirm the accuracy
of the database. To confirm the absence of the species, we designed another 100 transects.
Both the presence and absence transect were 1 km long and 60 m wide. The occurrence
of Fallopia species was mapped in the field research performed in June–October 2019. A
total of 417 records were used for modeling, 317 of those represent the presence of the
species and 100 represent the absence of the species (Figure 4). In all subsequent analysis,
the occurrence/absence data were represented as center points of transects.
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4.3. Environmental Data

The selection of environmental variables was based on a literature study of the proper-
ties and environmental requirements of invasive species of the genus Fallopia and of existing
distribution models [16,36–38,72]. We collated 19 environmental predictors from multiple
sources that provide the characteristic landscape conditions environmental requirements of
Fallopia species.

All input layers were reprojected to the local coordinate system (EPSG:5514). Vector
layers were converted to rasters and resampled and aligned to 50 × 50 m spatial resolution.
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To better capture, the influence of layers elements that did not directly overlap with
occurrence data, were derived proximity layers indicating the distance from the center of
each pixel representing a given element to the center of all surrounding pixels. To improve
the fit of certain algorithms (such as artificial neural networks) were continuous variables
normalized between 0 and 1 by divide by maximum value of each variable. All the raster
layers were then collected into a multilayer raster stack. The environmental variables were
processed in QGIS (QGIS.org, 2021).

Firstly, all available and literature-recommended environmental variables (19 layers)
were tested for multicollinearity with variance inflation factor (VIF). Highly correlated
variables with VIF higher than 5 were excluded from the analysis through a stepwise
procedure. The remaining 12 environmental variables can be found in Table 3 (those
excluded were bioclimatic factors such as annual mean temperature, annual temperature
range, the maximum temperature of the warmest month and the minimum temperature of
the coldest month).

Table 3. List of used environment variables with variable inflation factor (VIF).

ID Layer Description Type VIF Source

1. Transport_dist
Euclidean proximity map of roads
and rails (range: 10,573 m; mean:

1159 ± 1190 m)
Continuous 1.64 Institute of Landscape Ecology of SAS

2. Aspect Categorized aspect directions Categorical (n = 8) 1.01 Derived from DEM

3. CLC
CORINE Land Cover 2018

(hierarchical 3-level
CLC nomenclature)

Categorical (n = 31) 1.44 EEA (2018)

4. Landform Type of slope landform Categorical (n = 36) 1.63 Institute of Landscape Ecology of SAS

5. Soil_texture Soil texture Categorical (n = 12) 1.08 Institute of Landscape Ecology of SAS

6. Soil_type Soil type Categorical (n = 22) 1.42 Institute of Landscape Ecology of SAS

7. Rivers_dist Euclidean proximity to rivers (range:
6937 m; mean: 348 ± 390 m) Continuous 1.25 Institute of Landscape Ecology of SAS

8. DEM Digital elevation model
(range: 2521 asl; mean: 454 ± 313 m asl) Continuous 4.08 EEA (2018)

9. Slope Surface slope (range: 76◦; mean:
9 ± 8◦ m) Continuous 1.62 Derived from DEM

10. Water_bodies_dist
Euclidean proximity map of

waterbodies (range: 17,430 m; mean:
3228 ± 2219 m)

Continuous 1.18 Institute of Landscape Ecology of SAS

11. Min_temp_01 Minimum temperature in January
(range: 7 ◦C; mean: −8±1 ◦C) Continuous 2.42 Fick and Hijmans, 2017 (WorldClim)

12. Precipitation Precipitation (range: 1184 mm; mean:
734 ± 169 mm) Continuous 2.57 Fick and Hijmans, 2017 (WorldClim)

4.4. Ensemble Distribution Model Development and Evaluation

Occurrence data were randomly split to the train dataset (70% of data) used for fitting
models and test dataset for evaluation (30%). At first, the 12 most-used, standalone machine
learning and statistical methods for species distribution modelling were fitted: generalized
linear model (GLM), generalized additive model (GAM), classification and regression trees
(CART), boosted regression trees (BRT), multivariate adaptive regression spline (MARS),
random forests (RF), support vector machine (SVM), artificial neural networks (ANN),
maximum entropy (Maxent), penalized maximum likelihood GLM (GLMNET), domain,
and the radial basis function network (RBF). We applied the default parameters for all
models, in line with typical usage of sdm package [69]. Each model was evaluated against
training data, using 10 runs of 5-folds cross-validation replication methods (XXX models
in total). Models which meet >0.9 AUC (area under the curve) criteria on the test dataset
determinate were subsequently used to build the ensemble model (Table 1). The final model
assembling was achieved in two steps: (1) by averaging the predictions of partial models
(for every run and every replication) for each algorithm; (2) by calculating the weighted
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mean based on the AUC statistics for every algorithm from the first step. To determine
the importance of predictor variables in explaining the species distribution were used
a randomization procedure that measures the correlation between the predicted values
and predictions where the variable under investigation is randomly permutated. If the
contribution of a variable to the model is high, then it is expected that the prediction is more
affected by a permutation, and therefore, the correlation is lower. Therefore, ‘1–correlation’
can be considered as a measure of variable importance [73,74]. Alongside the ensembled
model, the uncertainty map among partial model predictions were also calculated. It ranges
between 0 and 1, where 0 means all the models predicted the same value (either presence
or absence), and 1 refers to maximum uncertainty = inconsistency among different models.
Distribution models were produced an R environment [75].

4.5. Logistic Regression

To simplify the final predictions, restricted AIC-based stepwise logistic regression
with Bernoulli error distribution and logit link function was used. For model improvement,
were filtered out levels of categorical variables with less than 10 records. To test non-linear
responses, the continuous variables used second-degree polynomials. The deviance table
was tested by chi-square statistics. To compare the model’s predictive power as objectively
as possible, AUC statistics from 100 randomly sampled models (70% train, 30% test) were
averaged. All statistical tests were performed in an R environment [75].

5. Conclusions

We used 12 models to design the final simplified logistic regression model, which
showed the 3 most important prediction variables lead by distances from roads and rails,
then by type of soil, with the highest being Fluvisols, and distances from water bodies. The
probability of invasive Fallopia species occurrence significantly decreases with increasing
distance from transport lines and depends on soil type and the distance from the water,
where increasing the distance decreases the probability. Roads and rivers provide not
just a suitable habitat but present corridors of spreading this invasive species in Slovakia.
The probability of Fallopia taxa occurrence along these structures is very high—highest
on the river Váh and Hron. Our distribution model also showed areas such basins as the
areas with the highest probability of occurrence of invasive Fallopia species. The highest
probability of spreading this species was in the Southern Slovak Basin and the Košice Basin.
The probability of distribution is lowest in the mountain areas of Slovakia, what can be
caused not just by the higher elevation, but also by the presence of the protected areas and
national parks, where invasive species are removed.

In summary, we believe that species distribution models can provide useful tool for
invasive species management, and this study and the distribution map can provide insight
for to guide decisions regarding prevent and control the spread of invasive Fallopia species.
Given that environmental monitoring of invasive species and their next removal is very
costly and sometimes simply impossible in the case of a large area, the model of Fallopia
species distribution could provide an operational tool for such decisions

Author Contributions: All authors contributed meaningfully to this study. P.G. and S.D.—research
topic; P.G. and M.Š.—methodology, data acquisition and analysis; P.G. and M.Š.—writing—original
draft preparation; P.G. and M.Š.—writing, review and editing; S.D. supervision. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Scientific Grant Agency of the Ministry of Education, Science,
Research and Sport of the Slovak Republic and the Slovak Academy of Sciences, grant numbers
VEGA 2/0018/19 Ecological Analyses of Landscape Acculturation in Slovakia since Early Prehistory
until Today.



Plants 2022, 11, 1484 11 of 13

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vitousek, P.; Mooney, H.A.; Lubchenco, J.; Mellilo, J.M. Human Domination of Earth. Science 1997, 227, 494–499. [CrossRef]
2. Shea, K.; Chesson, P. Community Ecology Theory as a Framework for Biological Invasions. Trends Ecol. Evol. 2002, 17, 170–176.

[CrossRef]
3. Genovesi, P.; Shine, C.; Europe, C. European Strategy on Invasive Alien Species: Convention on the Conservation of European Wildlife

and Habitats (Bern Convention); Council of Europe: Strasbourg, France, 2004; ISBN 978-92-871-5488-0.
4. Pimentel, D.; McNair, S.; Janecka, J.; Wightman, J.; Simmonds, C.; O’Connell, C.; Wong, E.; Russel, L.; Zern, J.; Aquino, T.; et al.

Economic and Environmental Threats of Alien Plant, Animal, and Microbe Invasions. Agric. Ecosyst. Environ. 2001, 84, 1–20.
[CrossRef]

5. Pejchar, L.; Mooney, H.A. Invasive Species, Ecosystem Services and Human Well-Being. Trends Ecol. Evol. 2009, 24, 497–504.
[CrossRef]

6. Kueffer, C. Plant Invasions in the Anthropocene. Science 2017, 358, 724–725. [CrossRef]
7. Jones, B.A.; McDermott, S.M. Health Impacts of Invasive Species through an Altered Natural Environment: Assessing Air

Pollution Sinks as a Causal Pathway. Environ. Resour. Econ. 2018, 71, 23–43. [CrossRef]
8. Bartz, R.; Kowarik, I. Assessing the Environmental Impacts of Invasive Alien Plants: A Review of Assessment Approaches.

NeoBiota 2019, 43, 69. [CrossRef]
9. Pyšek, P.; Richardson, D.M. Invasive Species, Environmental Change and Management, and Health. SSRN 2010, 35, 25–55.

[CrossRef]
10. Stone, C.M.; Witt, A.B.; Walsh, G.C.; Foster, W.A.; Murphy, S.T. Would the Control of Invasive Alien Plants Reduce Malaria

Transmission? A Review. Parasites Vectors 2018, 11, 1–18. [CrossRef]
11. Jones, B.A. Tree Shade, Temperature, and Human Health: Evidence from Invasive Species-Induced Deforestation. Ecol. Econ.

2019, 156, 12–23. [CrossRef]
12. Gerber, E.; Krebs, C.; Murrell, C.; Moretti, M.; Rocklin, R.; Schaffner, U. Exotic Invasive Knotweeds (Fallopia Spp.) Negatively

Affect Native Plant and Invertebrate Assemblages in European Riparian Habitats. Biol. Conserv. 2008, 141, 646–654. [CrossRef]
13. Lodge, D.M. Biological Invasions: Lessons for Ecology. Trends Ecol. Evol. 1993, 8, 133–137. [CrossRef]
14. Turlings, L. Invasive Plants and Animals: Is There a Way Out? Invasive plants and animals: Is there a way out? In Proceedings of

the Conference on Alien Invasive Species, Leiden, The Netherlands, 26 September 2000; pp. 10–18.
15. Mandák, B.; Pyšek, P.; Bímová, K. History of the Invasion and Distribution of Reynoutria Taxa in the Czech Republic: A Hybrid

Spreading Faster than Its Parents. Preslia 2004, 76, 15–64.
16. Beerling, D.J.; Bailey, J.P.; Conolly, A.P. Fallopia Japonica (Houtt.) Ronse Decraene (Reynoutria Japonica Houtt.; Polygonum

Cuspidatum Sieb. & Zucc.). J. Ecol. 1994, 82, 959–979. [CrossRef]
17. Barney, J.N.; Tharayil, N.; DiTommaso, A.; Bhowmik, P.C. The Biology of Invasive Alien Plants in Canada. 5. Polygonum

Cuspidatum Sieb. & Zucc. [=Fallopia Japonica (Houtt.) Ronse Decr.]. Can. J. Plant Sci. 2006, 86, 887–906.
18. Bailey, J. The Japanese Knotweed Invasion Viewed as a Vast Unintentional Hybridisation Experiment. Heredity 2013, 110, 105–110.

[CrossRef]
19. Gillies, S.; Clements, D.R.; Grenz, J. Knotweed (Fallopia Spp.) Invasion of North America Utilizes Hybridization, Epigenetics,

Seed Dispersal (Unexpectedly), and an Arsenal of Physiological Tactics. Invasive Plant Sci. Manag. 2016, 9, 71–80. [CrossRef]
20. Sołtysiak, J.; Brej, T. Characteristics That Make the Fallopia Genus (Polygonaceae) Highly Invasive. Ecol. Quest. 2012, 16, 23–27.

[CrossRef]
21. Michalet, S.; Rouifed, S.; Pellassa-Simon, T.; Fusade-Boyer, M.; Meiffren, G.; Nazaret, S.; Piola, F. Tolerance of Japanese Knotweed

Sl to Soil Artificial Polymetallic Pollution: Early Metabolic Responses and Performance during Vegetative Multiplication. Environ.
Sci. Pollut. Res. 2017, 24, 20897–20907. [CrossRef]

22. Richards, C.L.; Walls, R.L.; Bailey, J.P.; Parameswaran, R.; George, T.; Pigliucci, M. Plasticity in Salt Tolerance Traits Allows for
Invasion of Novel Habitat by Japanese Knotweed s. l. (Fallopia Japonica and F.×bohemica, Polygonaceae). Am. J. Bot. 2008, 95,
931–942. [CrossRef]

23. Tiébré, M.-S.; Saad, L.; Mahy, G. Landscape Dynamics and Habitat Selection by the Alien Invasive Fallopia (Polygonaceae) in
Belgium. Biodivers. Conserv. 2008, 17, 2357–2370. [CrossRef]

24. Baxendale, V.J.; Tessier, J.T. Duration of Freezing Necessary to Damage the Leaves of Fallopia Japonica (H Outt.) R Onse D
Ecraene. Plant Species Biol. 2015, 30, 279–284. [CrossRef]

25. Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev.
Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]

26. Johnson, C.J.; Gillingham, M.P. An Evaluation of Mapped Species Distribution Models Used for Conservation Planning. Environ.
Conserv. 2005, 32, 117–128. [CrossRef]

27. Guisan, A.; Zimmermann, N.E. Predictive Habitat Distribution Models in Ecology. Ecol. Model. 2000, 135, 147–186. [CrossRef]

http://doi.org/10.1126/science.277.5325.494
http://doi.org/10.1016/S0169-5347(02)02495-3
http://doi.org/10.1016/S0167-8809(00)00178-X
http://doi.org/10.1016/j.tree.2009.03.016
http://doi.org/10.1126/science.aao6371
http://doi.org/10.1007/s10640-017-0135-6
http://doi.org/10.3897/neobiota.43.30122
http://doi.org/10.1146/annurev-environ-033009-095548
http://doi.org/10.1186/s13071-018-2644-8
http://doi.org/10.1016/j.ecolecon.2018.09.006
http://doi.org/10.1016/j.biocon.2007.12.009
http://doi.org/10.1016/0169-5347(93)90025-K
http://doi.org/10.2307/2261459
http://doi.org/10.1038/hdy.2012.98
http://doi.org/10.1614/IPSM-D-15-00039.1
http://doi.org/10.2478/v10090-012-0002-6
http://doi.org/10.1007/s11356-017-9716-8
http://doi.org/10.3732/ajb.2007364
http://doi.org/10.1007/s10531-008-9386-4
http://doi.org/10.1111/1442-1984.12068
http://doi.org/10.1146/annurev.ecolsys.110308.120159
http://doi.org/10.1017/S0376892905002171
http://doi.org/10.1016/S0304-3800(00)00354-9


Plants 2022, 11, 1484 12 of 13

28. Václavík, T.; Meentemeyer, R.K. Invasive Species Distribution Modeling (ISDM): Are Absence Data and Dispersal Constraints
Needed to Predict Actual Distributions? Ecol. Model. 2009, 220, 3248–3258. [CrossRef]

29. Thuiller, W.; Richardson, D.M.; Pyšek, P.; Midgley, G.F.; Hughes, G.O.; Rouget, M. Niche-based Modelling as a Tool for Predicting
the Risk of Alien Plant Invasions at a Global Scale. Glob. Change Biol. 2005, 11, 2234–2250. [CrossRef]

30. Gallien, L.; Douzet, R.; Pratte, S.; Zimmermann, N.E.; Thuiller, W. Invasive Species Distribution Models-How Violating the
Equilibrium Assumption Can Create New Insights. Glob. Ecol. Biogeogr. 2012, 21, 1126–1136. [CrossRef]

31. Donaldson, J.E.; Richardson, D.M.; Wilson, J.R. Scale-Area Curves: A Tool for Understanding the Ecology and Distribution of
Invasive Tree Species. Biol. Invasions 2014, 16, 553–563. [CrossRef]

32. Pyšek, P.; Richardson, D.M.; Pergl, J.; Jarošík, V.; Sixtova, Z.; Weber, E. Geographical and Taxonomic Biases in Invasion Ecology.
Trends Ecol. Evol. 2008, 23, 237–244. [CrossRef]
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