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Abstract: The design of an adequate culture medium is an essential step in the micropropagation
process of plant species. Adjustment and balance of medium components involve the interaction
of several factors, such as mineral nutrients, vitamins, and plant growth regulators (PGRs). This
work aimed to shed light on the role of these three components on the plant growth and quality of
micropropagated woody plants, using Actinidia arguta as a plant model. Two experiments using a
five-dimensional experimental design space were defined using the Design of Experiments (DoE)
method, to study the effect of five mineral factors (NH4NO3, KNO3, Mesos, Micros, and Iron) and
five vitamins (Myo-inositol, thiamine, nicotinic acid, pyridoxine, and vitamin E). A third experiment,
using 20 combinations of two PGRs: BAP (6-benzylaminopurine) and GA3 (gibberellic acid) was
performed. Artificial Neural Networks (ANNs) algorithms were used to build models with the whole
database to determine the effect of those components on several growth and quality parameters.
Neurofuzzy logic allowed us to decipher and generate new knowledge on the hierarchy of some
minerals as essential components of the culture media over vitamins and PRGs, suggesting rules
about how MS basal media formulation could be modified to assess the quality of micropropagated
woody plants.

Keywords: artificial intelligence; basal medium composition; in vitro culture medium; mineral
nutrition; modeling; neurofuzzy logic; plant tissue culture

1. Introduction

Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq, known as the hardy kiwi, is a
deciduous climbing plant native to China, Japan, Korea, and Siberia [1]. The fruit is small
and hairless, thus it can be eaten as a whole without peeling [2,3]. Although recent studies
have focused on the micropropagation of this species, an optimized culture medium for its
multiplication is not yet formulated.

The development of a suitable culture medium for plant tissue culture implies the
combined use of multiple factors such as mineral nutrients, vitamins, or plant growth
regulators. These components interact in a complex and often in a hidden way [4]. The
optimization of basal media has been a difficult task since its beginning around 1900.
Deciphering the role of each component of the culture medium would lay the foundations
for the design of suitable media to obtain healthy micropropagated plants [5,6].

Due to a large number of variables involved in the development of such complex
media, some computer-based tools such as response surface methodology [7–9] or Chi-
squared automatic interaction [10,11] have been introduced for plant tissue researchers
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to decipher the importance of media components on the growth and quality of tissue-
cultured plants, avoiding the limitations of traditional statistics and response surface
methodologies [12,13]. Recently, some machine learning tools based on artificial intelligence
(AI) algorithms open new horizons to the plant biotechnology field since they seem to be
able of solving the problems that arise during the development of a new culture medium,
achieving smart solutions for new species or cultivars [14]. Artificial Neural Networks
(ANNs) have certain advantages over other approaches [15]. These tools are flexible
and versatile, allowing new results to be incorporated into the previous database and
re-analyzed to extract additional information, creating new and useful knowledge [16].

For example, Gago et al. [17] were able of identifying the key factors for simultaneous
rhizogenesis and acclimatization of Vitis vinifera using neurofuzzy logic technology, which
combines artificial neural networks and fuzzy logic algorithms. ANN tools combined
with the data mining strategy also allowed them to evaluate the effect of culture media
composition on plant growth parameters of various apricot cultivars [18].

Later, combining DoE and neurofuzzy logic technology, Nezami-Alanagh et al. [19]
were able to establish the specific effect of each ion of culture media on shoot multiplication
of Pistacia vera, but also on the appearance of physiological disorders of pistachio rootstocks
cultured in vitro.

Recently, in a previous study carried out in our lab, Hameg et al. [4] successfully
applied this methodology to study the mineral nutrition of A. arguta, proving that the
newly developed R medium for this species, which differed from MS basal medium [20]
by reducing the nitrogen content and increasing Mesos and Iron concentration, performed
better for kiwiberry micropropagation.

In addition to mineral nutrients, whose effects on different plant species have been
widely studied, vitamins constitute an essential component of most plant tissue culture
media [5]. The type or amount required for the plant remains unclear [21]. In a recent study,
Arteta and coworkers [22], taking advantage of ANN tools, shed light on the role of certain
vitamins such as pyridoxine, vitamin E, and Myo-inositol on the shoot number and shoot
length of A. arguta.

Plant Growth Regulators (PGRs) are vital organic compounds synthesized by plants,
which play an essential role in their differentiation and development at low concentra-
tions [23,24]. The addition of suitable PGRs to the culture media has been effective in
regenerating kiwiberry shoots [25]. It is widely accepted that their addition is required
for successful shoot initiation and subsequent proliferation [26,27]. Here, the effect of two
PGRs, the cytokinin 6-benzylaminopurine (BAP) and the gibberellin gibberellic acid (GA3),
was studied to elucidate their importance on healthy kiwiberry micropropagation.

In this study, it has been hypothesized that although MS medium performs reasonably
well, its composition (mineral, vitamins, and PRGs) could be modified to improve the
quality of micropropagated plants, avoiding the morphophysiological disorders described
in some woody species [19,28], also in arguta [4], when MS was selected as basal culture
medium. For this, a strategy based on data mining was applied. Data from two previous
studies focused on the effect of mineral nutrients [4] and vitamins [22] on the microprop-
agation of A. arguta were merged with the results of a new experiment focused on the
effect of two PGRs. All treatments were established based on the original MS formulation.
A new and unique database was generated and modeled using a neurofuzzy logic tool
to better understand the role and importance of mineral nutrients, vitamins, and PGRs.
Neurofuzzy logic could decipher the critical variables that determine the healthy growth of
micropropagated plants, generating rules on whether or not to modify the original formu-
lation of MS medium. The computer-based tool (ANNs) that have been used to study how
MS basal media formulation could be modified to assess the quality of micropropagated
woody plants.
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2. Results

Results of fractional statistical analysis (ANOVA) revealed that while mineral nutrient
variations caused statistically significant effects on all the parameters studied (Figure 1A,
green color), vitamins caused effects only on the leaf area parameter (Figure 1B, green
color). PRGs caused significant effects on the growth parameters (Figure 1C, green color).
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Figure 1. Average results for the different treatments of the mineral nutrients database (A), the
vitamins database (B), and the PGRs database (C) for all parameters measured (SN: shoot length, SL:
shoot length, LA: leaf area, SQ: shoot quality, BC: basal callus, H: hyperhydricity). Green graphs indicate
statistically significant differences among the treatments, red graphs are the opposite. Different letters
indicate statistically significant differences (p < 0.05).

In this study, despite having taken special care to select the most homogeneous
material possible in terms of explant size as well as in the determination of the response
parameters (see data acquisition in the Section 4), it has been evident a great variation in the
values determined for each one of the parameters. This great variance difficult to describe
which treatment caused the best response (e.g., Figure 1A, SN). Several treatments produced
better results than MS for several parameters (for example, M31, Figure 1A), but not for all.
This makes it very difficult for a researcher to select the combination of components that
would produce the best response for each parameter to design a formulation better than
MS. The interpretation of the results of the statistical analysis has been difficult and has
made it impossible to identify the critical variables or establish the optimal combination of
mineral nutrients, vitamins, and PGRs for the healthy micropropagation of Actinidia arguta.

Neurofuzzy logic succeeded in modeling the six growth and quality parameters of
A. arguta as a function of the mineral ions, vitamins, and PGRs concentrations (Table 1).
Model Train Set R2 values were higher than 70%, considered a high model predictability
indication [18]. Furthermore, all calculated f -ratios were higher than the f critical values
(α = 0.01), confirming the model quality and accuracy as there are no statistically significant
differences between predicted and experimental values.

Differences in growth parameters are mainly explained by variations in mineral
nutrients and PGRs and also in some vitamin concentrations, being pointed out as critical
factors by neurofuzzy logic. For the SN, the model achieved a high Train Set R2 (82.3%)
and generated four submodels being the interaction between Fe2+ and Na+ the one with
the highest contribution. The model established other additional submodels, with lower
contributions: the interaction between K+ and SO4

2− and the independent effect of GA3
and BAP (Table 1).
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Table 1. Neurofuzzy logic model train set R2, ANOVA parameters for training (f -ratio, degrees
of freedom (df1: model and df2: total), f -critical value for α = 0.01), and critical factors (inputs
selected by the model) for each output (SN: shoot number, SL: shoot length, LA: leaf area, SQ: shoot
quality, BC: basal callus, H: hyperhydricity). The inputs with a stronger effect on each output have
been highlighted.

Outputs Submodel Train Set R2 (%) f -Ratio df1 df2 f -Critical (α = 0.01) Critical Factors

SN

1

82.3 19.14 17 87 2.18

Fe2+ × Na+

2 GA3
3 K+ × SO4

2−

4 BAP

SL

1

70.3 7.56 20 84 2.10

Na+−

2 Mg2+

3 NO3
− × K+

4 Vitamin E
5 BO3

−

6 GA3 × BAP
7 Co2+

8 Myo-inositol

LA

1

77.7 38.34 7 84 2.86

Na+

2 GA3
3 K+ × NO3

−

4 SO4
2−

SQ

1

85.6 49.47 9 84 2.63

NO3
−

2 K+

3 NH4
+

4 Fe2+

5 MoO4
2−

6 BAP

BC
1

96.0 120.91 14 84 2.30
PO4

3− × NH4
+

2 SO4
2−

H

1

84.4 19.76 18 84 2.16

Co2+ × NH4
+

2 I−

3 SO4
2− × NO3

−

4 Ca2+ × Fe2+

5 BAP

Eight different submodels were generated for the SL parameter (R2 = 70.3%), being the
Co2+ the variable with the highest effect on this parameter. Other submodels established
by the model were the ones showing the independent effect of Na+, Mg2+, BO3

−, Vitamin
E, and Myo-inositol, and two submodels showing the interaction between NO3

− and K+

and between GA3 and BAP, respectively (Table 1).
For the LA, the interaction between K+ and NO3

− was the main factor (R2 = 77.7%).
Besides, it was also established the independent effect of Na+, SO4

2−, and GA3 on the LA,
but their contribution was lower (Table 1).

Neurofuzzy logic excluded vitamins as critical factors for the morphophysiological
quality responses, including only minerals and PGRs. For the SQ (R2 = 85.6%), six sub-
models were generated, being the effect of NO3

− the one with the highest contribution.
Five additional submodels included the independent effects of four ions: K+, NH4

+, Fe2+,
MoO4

2−, and one PGRs: BAP.
For the BC (R2 = 96.0%), neurofuzzy logic generated two submodels, the interaction

between PO4
3− and NH4

+ as the one with the stronger contribution, and the independent
effect of SO4

2−.
The hyperhydricity model included five submodels (R2 = 84.4%), being the interaction

SO4
2− and NO3

− the main factor. The four additional submodels involved the interaction
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between Co2+ and NH4
+, between Ca2+ and Fe2+, and the independent effect of I− and

BAP (Table 1).
Together with the Train Set R2, ANOVA parameters and the selection of the critical

factors, FormRules® software generates simple ‘IF THEN’ rules which described how the
critical factors (ions, vitamins, PGRs, and their interactions) affect each output. Rules are
shown in Tables 2 and 3.

As it was mentioned, the SN parameter was mainly explained by the interaction
between Fe2+ and Na+ (Table 1). The model showed the positive effect of Low Na+ on the
shoot regeneration when combined with any level of Fe2+ tested, except for the combination
of High Na+ with High Fe2+, which also promotes the shoot formation (Table 2, rules 1, 3,
5, and 6). The meaning of High, Mid, and Low terms can be consulted in Table S1, in which
the limit values of each one has been included as Supplementary Information for a better
understanding. The model also highlighted the independent and positive effect of High
GA3 on SN parameter (Table 2, rules 9), and the negative effect of BAP at any concentration
(Table 2, rules 19 and 20). Finally, an inverse relationship between K+ and SO4

2− has been
pointed out. To favor new shoot proliferation Low, Mid, and High levels of K+ should be
combined with High, Mid, and Low levels of SO4

2− respectively (Table 2, rules 12, 14, and
16), while any other combination leads to lower shoot proliferation (Table 2, rules 10, 11, 13,
15, 17, and 18).

SL is also highly dependent on the Co2+ concentration in the media. Low concentra-
tions should be used to achieve the highest SL (Table 2, rule 43). The model also stated
the independent effect of three ions: the positive effect of Mid-High BO3

− and High Mg2+

(Table 2, rules 25, 33, and 34) on the SL, and Low-Mid concentrations of Na+ (Table 2, rules
21 and 22). The neurofuzzy logic model established as positive to obtain long shoots, the
inverse relationship between NO3

− and K+. In order to obtain longer shoots, Low-High
K+ should be combined with High-Low NO3

− (Table 2, rules 27 and 28). Other ratios
worsen shoot sizes. The interaction between PGRs has also an important effect on shoot
size (Table 2, rules 35, 40, and 42, respectively), being some of the following combinations
necessary to promote a High SL:

(i) Low BAP and Low GA3
(ii) Mid_2 BAP and High GA3
(iii) High BAP and High GA3

Finally, when the media was supplemented with Low Vitamin E and Myo-inositol,
High SL was promoted (Table 2, rules 30 and 46).

The leaf area parameter is affected negatively by Na+ ion concentration. Low Na+

concentrations are recommended to achieve High leaf area (Table 2, rule 48). The neuro-
fuzzy logic established that a High concentration of NO3

− in combination with any level
of K+ (Table 2, rules 53 and 55) and the independent effect of High-level of SO4

2− (Table 2,
rule 57), were necessary for obtaining a High LA. Eventually, the rules described a negative
effect of the GA3 on this parameter, showing that Low levels of GA3 promoted the largest
LA (Table 2, rule 50).

The predictability of the models of morpho-physiological responses is even higher
than those of the growth parameters as can be assessed by the Train Set R2 values (Table 1).
NO3− ion concentration has been selected as the most critical factor affecting the shoot
quality, being necessary to maintain Low to Mid concentrations of this ion to achieve the
High SQ parameter (Table 3, rules 10 and 11). Other submodels stated the independent
effect of four ions (NH4

+, K+, MoO4
2−, and Fe2+) and one PGR (BAP). The rules established

that to achieve high-quality shoots it was necessary to supplement the media with Low
Fe2+, High K+ and NH4

+, Mid MoO4
2−, and Low BAP (Table 3, rules 1, 4, 6, 8, and 13).
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Table 2. Rules for morpho-physiological growth responses (SN: Shoot number; SL: Shoot length and LA: Leaf area) with their membership degree (MD) generated
by neurofuzzy logic. The inputs with the strongest effect indicated by the model have been highlighted.

Rules [NO3−] [K+] [Na+] [SO42−] [Fe2+] [BO3−] [Mg2+] Vit E [Co2+] Myo BAP GA3 SN SL LA MD

1 Low Low High 1.00
2 High Low Low 1.00
3 Low Mid High 1.00
4 High Mid Low 1.00
5 Low High High 1.00
6 High High High 0.79
7 Low Low 1.00
8 Mid Low 1.00
9 IF High THEN High 0.58

10 Low Low Low 1.00
11 Low Mid Low 1.00
12 Low High High 1.00
13 Mid Low Low 0.75
14 Mid Mid High 1.00
15 Mid High Low 1.00
16 High Low High 1.00
17 High Mid Low 1.00
18 High High Low 1.00
19 Low Low 1.00
20 High Low 0.80

21 Low High 1.00
22 Mid High 1.00
23 High Low 1.00
24 Low Low 1.00
25 High High 1.00
26 Low Low Low 1.00
27 Low High High 1.00
28 High Low High 1.00
29 High High Low 1.00
30 Low High 0.94
31 IF High THEN Low 0.91
32 Low Low 1.00
33 Mid High 1.00
34 High High 1.00
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Table 2. Cont.

Rules [NO3−] [K+] [Na+] [SO42−] [Fe2+] [BO3−] [Mg2+] Vit E [Co2+] Myo BAP GA3 SN SL LA MD

35 Low_1 Low High 1.00
36 Mid_2 Low Low 1.00
37 Mid_3 Low Low 1.00
38 High_4 Low Low 1.00
39 Low_1 High Low 1.00
40 Mid_2 High High 1.00
41 Mid_3 High Low 0.50
42 High_4 High High 1.00
43 Low High 1.00
44 Mid Low 1.00
45 High Low 1.00
46 Low High 0.83
47 High Low 0.79
48 Low High 1.00
49 High Low 1.00
50 Low High 0.97
51 High Low 1.00
52 IF Low Low THEN Low 1.00
53 High Low High 1.00
54 Low High Low 0.72
55 High High High 0.57
56 Low Low 1.00
57 High High 1.00

Table 3. Rules for morpho-physiological quality responses (SQ: Shoot quality; BC: basal callus and H: hyperhydricity) with their membership degree (MD) generated
by neurofuzzy logic. The inputs with the strongest effect indicated by the model have been highlighted.

Rules [NO3−] [NH4
+] [K+] [SO42−] [Ca2+] [Co2+] [I−] [Fe2+] [MoO42−] [PO43−] BAP SQ BC H MD

1 Low High 1.00
2 High Low 1.00
3 Low Low 1.00
4 High High 1.00
5 Low Low 1.00
6 High High 1.00



Plants 2022, 11, 1284 9 of 22

Table 3. Cont.

Rules [NO3−] [NH4
+] [K+] [SO42−] [Ca2+] [Co2+] [I−] [Fe2+] [MoO42−] [PO43−] BAP SQ BC H MD

7 IF Low THEN Low 1.00
8 Mid High 1.00
9 High Low 1.00
10 Low High 1.00
11 Mid High 1.00
12 High Low 1.00
13 Low High 0.93
14 High Low 1.00
15 Low Low_1 Low 1.00
16 Mid Low_1 Low 1.00
17 High Low_1 Low 1.00
18 Low Mid_2 Low 0.58
19 Mid Mid_2 Low 1.00
20 High Mid_2 Low 0.97
21 Low Mid_3 High 1.00
22 IF Mid Mid_3 THEN High 1.00
23 High Mid_3 High 1.00
24 Low High_4 High 1.00
25 Mid High_4 High 1.00
26 High High_4 High 1.00
27 Low High 1.00
28 Mid High 0.52
29 High High 0.78

30 Low Low 1.00
31 High THEN High 1.00
32 Low Low Low 1.00
33 High Low Low 1.00
34 Low Mid Low 1.00
35 High Mid Low 1.00
36 Low High High 1.00
37 High High High 1.00
38 Low_1 Low High 1.00
39 IF Low_1 High THEN High 1.00
40 Mid_2 Low High 1.00
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Table 3. Cont.

Rules [NO3−] [NH4
+] [K+] [SO42−] [Ca2+] [Co2+] [I−] [Fe2+] [MoO42−] [PO43−] BAP SQ BC H MD

41 Mid_2 High High 1.00
42 Mid_3 Low Low 1.00
43 Mid_3 High Low 1.00
44 High_4 Low Low 1.00
45 High_4 High Low 1.00
46 Low High 0.75
47 High Low 1.00
48 Low Low High 1.00
49 High Low High 1.00
50 Low High Low 1.00
51 High High Low 1.00
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Basal callus formation and hyperhydricity are two parameters that evaluate the ap-
pearance of physiological disorders and were included to estimate the negative effect of
some medium components on the final quality of the micropropagated plantlets (Figure 1).
To facilitate reader understanding, High BC (up to 4) or H values (up to 3) mean plantlets of
excellent quality. On the contrary, low values (0) mean poor quality due to the appearance
of necrotic basal callus and/or high hyperhydricity symptoms (Figure 2).
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Figure 2. Shoot quality rating (A): 1(very poor). 2 (poor). 3 (moderate). 4 (good) and 5 (very good);
basal callus formation rating (B): 1 necrotic). 2 (big). 3 (moderate) and 4 (absent) and hyperhydricity
rating (C): 1 (high). 2 (low) and 3 (absent).

The interaction between NH4
+ and PO4

3 has the strongest effect on the BC parameter,
being the combination of Low NH4

+ and Mid_3-High PO4
3− the best one to avoid the

presence of basal callus (Table 3, rules 21–26). The model pinpointed that SO4
2− was

necessary for achieving healthy plantlets (Table 3, rules 27–29).
The neurofuzzy logic model determined an interaction between SO4

2− and NO3
−

on hyperhydricity. The disorder can be avoided (High H) maintaining a High SO4
2−

ion concentration in the medium, independently of the concentration of NO3
− (Table 3,

rules 36 and 37). The model stated that hyperhydricity was also avoided by the interaction
of Low Co2+ with any concentration of NH4

+ (Table 3, rules 48 and 49), as well as the
interaction between Low-Mid_2 Ca2+ and any level of Fe2+ (Table 3, rules 38–41). High I−

also caused a positive effect on this parameter (Table 3, rule 31). Finally, Low BAP caused
low to no hyperhydricity (Table 3, Rules 46).

3. Discussion

Murashige and Skoog (MS) [20] is a very well-designed medium for plant tissue
culture, being cited in over 88.000 publications according to Google Scholar web search
engine. Nonetheless, it seems to be unsuitable for some species, due to the occurrence of
physiological disorders such as shoot tip necrosis or hyperhydricity [27,28], and for being
supra optimal for some kiwifruit species [29,30]. Some authors have reported that it is
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necessary to reduce its composition by half or even more to enhance plant micropropa-
gation [31–33]. A wide range of strategies has been implemented to improve plant tissue
culture protocols by modifying the composition of the most commonly used basal media,
such as One-Factor-At-a-Time (OFAT) [34]. However, this strategy of studying a single or
a few factors has several drawbacks, since it only provides reduced information on the
partial “optimum” of each factor, ignoring the interactions between them and increasing
exponentially the number of treatments to be evaluated [35]. Over time, this strategy was
almost abandoned because plant basal media design requires a multivariate approach, as
has been demonstrated [12,13].

The use of DoE to modify and improve the MS culture medium reduces the num-
ber of treatments but, at the same time, assesses an adequate sampling of the design
space [36,37]. Recently, this methodology was applied successfully in our lab [4], to design
an optimized R medium and to improve the mineral nutrition of Actinidia arguta. The
mineral content of this medium reduced by 20% the nitrogen content but increased by
200% the Mesos (CaCl2·2H2O, MgSO4·7H2O, KH2PO4), by 100% the Micros (MnSO4·4H2O,
ZnSO4·7H2O, H3BO3, KI, CuSO4·5H2O, Na2MoO4·2H2O, CoCl2·6H2O) and by 50% the
Iron (FeSO4·7H2O, Na2·EDTA) compared to MS. However, the variation of other medium
components such as vitamins and PGRs, which might modulate the effect of the mineral
nutrients, were not included in that database.

In this study, it has been hypothesized that although MS medium performs quite well,
its composition (mineral, vitamins, and PRGs) could be modified to improve the quality
of the micropropagated woody plantlets, avoiding the morpho-physiological disorders
described in some woody species [16], and also in arguta [4], when MS was used as
culture medium. To that end, a strategy based on data mining was used. Data from two
previous studies focused on the effect of mineral nutrients [4] and vitamins [22] on the
micropropagation of Actinidia arguta were merged with the results of a new experiment
focused on the effect of two PGRs. It should be noted that some modifications have been
made compared to previous databases: (i) EDTA has been removed as a factor and only
Fe2+ ion is considered, (ii) shoot number (SN) and shoot length (SL) parameters have been
curated to better represent the most viable shoots for subsequent stages of micropropagation
(see Material and Methods). All treatments were established based on the original MS
formulation. A new and unique database was generated, which was modeled using a
neurofuzzy logic tool to decipher the critical variables (mineral nutrient, vitamin, and PGR)
that determined the healthy growth of micropropagated woody plants and to obtain some
rules on whether or not to modify the original formulation of MS medium and how to do it.

The statistical analysis carried out through ANOVAs shows that there are statistically
significant differences between treatments for the growth and quality parameters of the
micropropagated plants (Figure 1). Particularly, the variations in the mineral nutrients
seem to have significant effects on the whole set of variables, followed by the PGRs (3 out
of six) and the vitamins (only 1 out of 6). ANOVA does not allow easy interpretation of
the results, since it indicates which treatments lead to the same or different results, but not
which factors cause the detected effect. Thus, by using this traditional ANOVA strategy is
practically impossible to select the best overall treatment which fulfills all the requirements
for all studied parameters, as demonstrated here.

Artificial neural network tools such as neurofuzzy logic emerged as a novel strategy
able to manage big databases and find hidden trends between variables, pointing out
the importance of certain medium components [16,28]. Thus, each treatment was split
up into a set of factors that include the concentration of each component. Twenty-four
factors, of which 17 are mineral ions, 5 are vitamins and 2 are PGRs were used as inputs to
model growth and quality parameters. Accurate models allow the selection of the critical
factors and complement the statistical analysis. The structure of the global experimental
design (3 independent experiments) does not allow establishing the effect of interactions
between mineral nutrients, vitamins, and PGRs, but it does reveal a hierarchy regarding
the importance of a particular component or group of components.
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The set of critical factors selected by the neurofuzzy logic models (Table 1) includes
13 out of 17 mineral nutrients (excluding Cl−, Cu2+, Mn2+, and Zn2+ as key factors),
2 out of 5 vitamins, and the two PGRs. Among components explored, nitrogen sources
(NO3

− and NH4
+) seem to have special importance as they were included in 5 out of

6 parameters, followed by SO4
2−, K+, and BAP in 4 out of 6. Fe2+, Na+, and GA3 affected

3 out of 6 parameters, while Co2+ only affected 2 out of 6. Other medium components
(Ca2+, PO4

3−, Mg2+, BO3
−, MoO4

2−, I−, Myo-inositol, and vitamin E) are involved in
just 1 out of 6 parameters. The main role of mineral nutrients, over vitamins and PGRs,
was demonstrated.

Nitrate, ammonium, potassium, and sulfate ion and the interactions between them
affected all parameters studied, so the model reveals their importance in agreement with
previous in-house results [4].

Nitrogen sources (NO3
− and NH4

+) are constituents of proteins, nucleic acids, and
chlorophyll, being crucial to plant life [5]. Neurofuzzy logic established that NO3

− affected
both growth and quality parameters (SL, LA, SQ, and H). The importance of this ion
has been recently reported by several authors. For pistachio rootstocks, Nezami and
collaborators [28] determined that levels of NO3

− around 35 mM, in combination with
0–0.3 mM Fe2+ and Cu2+ ranged from 0.1–0.3 µM, were needed to improve shoot length.
Here, the optimal ranges for A. arguta suggest that it could be maintained up to the MS levels
(39.41 mM; Table 4), without interacting neither with Fe2+ and Cu2+. The differences in the
interactions shown by the model compared to pistachio are probably due to the limitation
of the number of factor interactions in the model training parameters (3 versus 2 in the
present study), or the possible different nutritional requirements of these two different
woody species. Silvestri et al. [38] did not find significant differences in shoot length with
variations in NH4NO3 and KNO3, in in vitro micropropagation of Corylus avellana. This
lack of significant results might be due to the use of elevated KNO3 salt concentration
in that study, well above the ranges used in the present study, which may lead to the
conclusion that concentrations above KNO3 MS levels do not affect the shoot length.

Table 4. Ranges (mM and mg L−1) and meaning of the ideal levels (Low, Mid, and High) after the
fuzzification process by neurofuzzy logic software to achieve the optimal parameter values.

Input Level Range

NH4
+ (mM) High 12.37–20.61

NO3
− (mM) Mid–High 14.35–39.41

K+ (mM) Mid 7.28–17.46
Ca2+ (mM) Low–Mid_2 0.75–5.89
Mg2+ (mM) High 2.44–4.50

PO4
3− (mM) Mid_3–High_4 1.60–3.75

SO4
2− (mM) High 2.85–5.20

Fe2+ (mM) Low 0.10–0.30
BO3

− (mM) Mid–High 0.05–0.15
MoO4

2− (mM) Mid 0.0005–0.0012
Na+ (mM) Low 0.20–0.60
Co2+ (mM) Low 0.00001–0.00008

I− (mM) High 0.0040–0.0075
Myo (mg L−1) Low 0–500
Vit. E (mg L−1) Low 0.00–0.50
GA3 (mg L−1) Low 0.00–0.50
BAP (mg L−1) Low 0.50–1.50

Interestingly, the nitrate ion did not interact with the other nitrogen source in the
in vitro culture media, the ammonium ion (NH4

+), although they share one mineral salt
(NH4NO3). Contrary to NO3

−, ammonium ion only affected morphophysiological param-
eters. The model established that NH4

+ interacts with PO4
3− affecting the basal callus (BC)

and with Co2+ affecting the hyperhydricity (H). The variability of these two parameters was
entirely explained by phosphate and cobalt ion, independently of NH4

+ levels. Although



Plants 2022, 11, 1284 14 of 22

cobalt is not considered an essential element in plant tissue culture, is a component of
vitamin B12 which is involved with nucleic acid synthesis [39]. Evidence of its stimulatory
effect on the growth and differentiation of plant tissue cultures is hard to find [5]. In this
study, Co2+ levels over 0.08 µM (Tables 4 and S1) induced shoot hyperhydricity.

Another abnormality involving NH4
+ ion was the induction of BC. The presence of this

ion interacting with PO4
3− above 1.60 and up to 3.75 mM (Tables 4 and S1) concentrations

reduced the basal callus. Our previous studies working with ions corroborate the use of
1.17–3.75 mM PO4

3− to avoid big/necrotic callus [4]. Other authors reported that basal
callus was stimulated by 5× levels of MS KH2PO4 (6.25 mM), although the tested levels in
that study exceeded the 3× assayed in the present work [40], which probably proves that
the optimal range is restricted to 12.37–20.61 mM.

Another nitrate ion interaction was the one involving K+. It is worth noting that
the interaction between NO3

− and K+ was critical for two different parameters: SL and
LA, and they both independently affected the SQ. Potassium has been described as an
essential factor controlling plant growth [41]. Potassium and nitrate ions share the same
salt, potassium nitrate (KNO3), although each one of them is present in other media salts
(NH4NO3, KH2PO4, KI). The role of some of these salts has been widely discussed in
different studies, using a large variety of plant species such as stevia [42], pear [7], and
barley [40], but a clear comprehension and understanding of their effect have not been
retrieved. This could be due to those reports discussing the results based on the effect of the
salt, rather than the effect of the individual ions that form the salts. It is obvious, that any
change in the concentration of one of the salts will always affect, in this case, at least the
two ions that constitute it, but also the total concentration of that ion in the medium. Over
the years, it has been almost impossible to make decisions or establish precise and accurate
cause-effect relationships on the role of mineral nutrients since most studies are based on
the salt composition of the medium... This phenomenon is known as ion confounding [36],
and it can be avoided by working with ion data instead of salt data. Recently, various
studies began to discern the specific effect of individual ions. Akin and collaborators [10]
reported that hazelnut plant shoot quality improved when K+, NH4

+, and NO3
− ions were

added at precise concentrations (K+ ≤ 46 mM, NH4
+ ≤ 20 mM, and NO3

− ≤ 88 mM) to
the culture media. These results disagree with the optimal ranges for these ions in the
present study (Table 4), and also with the previous ones [4], demonstrating that ions are
more useful to identify cause-effect relationships rather than salts.

Some previous studies pointed out the beneficial effect of increasing the concentra-
tion of Meso salts of MS medium (MgSO4, CaCl2, KH2PO4) to improve the number of
shoots [43]. Hunková et al. [44] indicated the superiority of using a treatment of MSx3
Mesos components (MgSO4, CaCl2, KH2PO4) versus MSx4 on the in vitro growth of several
berry fruits, and the greater number of shoots that gives rise to for Amelanchier alnifolia. But
here, NO3

− also interacted with SO4
2−, affecting the hyperhydricity, and the latter also

interacted with K+, affecting the SN. To the best of our knowledge, these effects never have
been reported.

The sulfate ion is also known to have a positive effect on callus formation in different
species [43,45,46]. Previous studies proved that the presence of SO4

2− (0.49–5.20 mM)
reduced the formation of basal callus for A. arguta [4], an effect also described in the present
study, although it should be at 2.85–5.20 mM (Table 4) to achieve the best results for the
rest of the parameters. It is worth noting that the model training parameters were adjusted
from 4 maximum inputs per submodel in that study [4] to just 2 in this study (see training
parameters in the Section 4) This model adjustment was done to simplify the rules and to
clarify which minerals are crucial. The implications of this adjustment can be observed
in the effect of K+ over SQ. Although in our previous study, the positive effect of K+ on
interaction with SO4

2− was pointed out for SQ [4,22], in the present study sulfate ion did
not appear as a key factor affecting this parameter, probably underlining the predominant
role of K+, as this ion persisted as critical for this parameter in both studies. In the present
study, a strong interaction of K+ with both NO3

− and SO4
2− was described, being necessary
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to have Low K+ levels and High NO3
− and SO4

2− or vice versa, to achieve the highest results
for SN, SL, and LA. For SQ, High levels of K+ always should be supplemented. Overall, K+

supplemented at Mid-range (7.28–17.46) mM is highly recommended (Tables 4 and S1).
As discussed above, the importance of Mesos was demonstrated in several studies [43,45,46],

but since the authors based their conclusions on salts, the ion confounding effect arises
and no clues about the effect of single ions can be achieved, such as Mg2+. Magnesium
is an essential component of plants as part of the chlorophyll molecule and is crucial for
the activity of many enzymes and necessary for maintaining the integrity of ribosomes [5].
Neurofuzzy logic established the importance of this ion in the culture medium, being neces-
sary to supply Mg2+ at 2.44–4.50 mM (Table 4) to achieve longer shoots. That optimal range
is slightly higher than the one obtained for the same species in our previous studies [4,22].
This correction of the optimal range could be because the model now considers all the
components of the medium (minerals, vitamins, and PGRs). Hidden interactions between
all these components could determine the need for this small adjustment in magnesium
concentration and suggest that the levels of Mg2+ can be infra-optimal in MS.

Micros such as Co2+ (discussed above), I−, MoO4
2−, and BO3

− must be carefully
adjusted for proper plant tissue culture because they are completely necessary but their
optimal concentration range is narrow and minor variations can cause either toxicity or defi-
ciency [47,48]. ANN tools identified the importance of these ions and established the optimal
concentration ranges for successful shoot development. In this way range of 0.05–0.15 mM
BO3

− (rule 33, 34, Table 2), 0.5–1.2 µM MoO4
2− (rule 8, Table 3), and 4.0–7.5 µM I− (rule 31,

Tables 3 and S1), should be taking into account for plant micropropagation.
The neurofuzzy logic model established the interaction between Na+ and Fe2+ as

the main submodel affecting the SN (Table 2, rules 1–6). Equimolar supplementation
of the Fe2+ and EDTA components in the culture medium is mandatory to avoid iron
precipitation [5,49]. Since only Fe2+ plays a physiological role in plant growth, only this
ion was included in the database (Table S3). Variations in iron levels have been studied for
different species with disparate results. Kothari and collaborators [50] concluded that shoot
regeneration of Eleusine coracana L. was enhanced by quadrupling the Fe/EDTA MS levels.
For other species such as red raspberries and Gerbera hybrida, an Fe/EDTA concentration
higher than 1 mM was toxic, probably due to the EDTA, showing that MS levels (0.1 mM)
were adequate to obtain high shoot number, length, and good quality [5,43,51]. Neurofuzzy
logic established that 0.1–0.3 mM Fe2+ improved the shoot quality and stated the crucial
effect of iron on the shoot number, but it is highly dependent on the interaction between
other ions. The adjustment of iron concentration is a complex task, due to the known
toxicity of EDTA and sodium, being this toxicity dependent on the species [28,52]. Some
authors pointed out that the basal medium MS includes Na2·EDTA in excess (37.3 mg L−1)
to chelate FeSO4·7H2O (27.8 mg L−1) [51]. MS medium (pH 5.8) seems to induce Fe2+

precipitation (up to 45%) due to at that pH the Fe/EDTA is not stable [47]. Recent
studies have been conducted in which Fe/EDTA has been replaced by other chelators,
such as Fe/EDDHA [53,54], which may be a compromise solution to facilitate the adjust-
ment of iron salts in the in vitro culture medium, avoiding the toxic effect of EDTA at
high concentrations.

Although most of the key factors were the mineral nutrients, PGRs also contribute
to explaining the variability of five out of six parameters. According to the literature,
gibberellins and cytokinin exert antagonistic effects on numerous developmental processes,
including shoot and root elongation, cell differentiation, shoot regeneration in culture, and
meristem activity [55,56]. But, although PGRs play an important role in shoot regeneration
and elongation, their effect can be inhibited as a consequence of an imbalance in nutrient
concentration [50,57,58]. This could explain why the neurofuzzy logic model not only
stated BAP as detrimental for shoot multiplication (SN), despite being a cytokinin but also
established that BAP at 0.50–1.50 mg L−1 caused shoot hyperhydricity. Several authors
have suggested that cytokinins such as BAP might promote this phenomenon in plant
tissue culture [59,60]. This study also supports that some physiological disorders, such
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as hyperhydricity, can be induced during plant micropropagation depending on the BAP
levels in the medium.

Vitamins remain the least studied components of plant tissue culture medium and
their role is currently unclear [21]. Our recent studies [22,61,62], carried out to assess the
role of mineral nutrients and vitamins, provided new findings pointing out the positive
effect of these organic compounds on the shoot number and length of A. arguta. ANOVA
results show that variations in the vitamins within the limits of the study only significantly
affect the leaf area of A. arguta. The ranges of Myo-inositol and vitamin E concentrations
established by that ANNs model were readjusted with the new information provided by
the PGRs data included in this database, suggesting that to achieve longer shoots, the
media should be supplemented with up to 500 mg L−1 Myo-inositol and up to 0.5 mg
L−1 vitamin E. It should also be noted that the model did not establish any interaction
between PGRs and vitamins, as the experimental design was not conceived to that end. A
much clearer cause-effect of vitamins and their interaction with other components of the
medium could be achieved by developing a future single experimental design that includes
all factors simultaneously (minerals, vitamins, and PGRs).

4. Materials and Methods
4.1. Plant Material and Stock Condition

Shoots of Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq cv. Issai were micropropa-
gated on Cheng stock medium [63], supplemented with 1 mg L−1 6-benzylaminopurine
(BAP) and 1 mg L−1 gibberellic acid (GA3), 8 g L−1 agar, and 30 g L−1 sucrose. The pH
was adjusted to 5.8 before autoclaving (121 CC for 15 min at 105 KPa). The explants were
cultured in 200 mL glass vessels containing 30 mL of medium each. The cultures were kept
at 25 ± 1 ◦C under a 16 h photoperiod with 40 µmol m−2 s−1 irradiance provided by cool
white fluorescent tubes, as previously described in detail [4].

4.2. Micropropagation Culture Conditions

Nodal segments of about 2 cm were cultured in 200 mL culture vessels containing
30 mL of each medium for 50 days. All treatments from all three experiments were
supplemented with 2 mg L−1 glycine, 30 g L−1 sucrose, and 8 g L−1 agar. Control treatments
were supplied with MS mineral nutrients and vitamins and with 1 mg L−1 BAP, and
1 mg L−1 GA3. The cultures were maintained at the same temperature and photoperiod as
described above.

Each treatment included five replicates of three explants each contained in glass vessels
sealed with plastic caps. The experiments were carried out in triplicate. The shoots were
harvested after 50 days.

4.3. Experimental Design and Data Acquisition

In this study we have combined in a new and unique database the results of three
independent experiments carried out in our lab:

The first experimental design focused on the study of mineral nutrition [4]. Salts
of MS medium [20] were classified into 5 independent factors (single salt or group of
salts) as described elsewhere [4]: (i) NH4NO3, (ii) KNO3, (iii) Mesos, (iv) Micros, and (v)
iron. Each factor had several levels corresponding to different concentrations of the MS
medium (Table 5), following a D-optimal design [37] established through the software
Design-Expert® [64]. The generated database included 34 treatments, 33 generated by the
software using a modified D-optimal design [7] plus 3 additional points of MS media used
as controls (Table S2). The MS treatment data was calculated as the average of the three
additional points. All treatments were supplemented with MS vitamins [20] and 1 mg L−1

BAP, and 1 mg L−1 GA3.
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Table 5. Design Expert®’s five-factor design for the mineral nutrient and vitamin experiments.

Mineral Nutrient Factors Media Salts Range (×MS)

Factor 1 NH4NO3 0.2–1×
Factor 2 KNO3 0.1–1×

Factor 3 (Mesos) CaCl2·2H2O 0.25–3×
MgSO4·7H2O

KH2PO4
Factor 4 (Micros) MnSO4·4H2O 0.1–1.5×

ZnSO4·7H2O
H3BO3

KI
CuSO4·5H2O

Na2MoO4·2H2O
CoCl2·6H2O

Factor 5 (Iron) FeSO4·7H2O 1–5×
Na2·EDTA

Vitamin Factors Vitamins Range (× MS)

Factor 1 Myo-inositol 0–10×
Factor 2 Thiamine 0–10×
Factor 3 Nicotinic acid 0–10×
Factor 4 Pyridoxine 0–3×
Factor 5 Vitamin E – 1

1 Vitamin E concentration levels ranged between 0 and 1.0 mg L−1 (see Table S2).

The second experimental design focused on the effect of vitamins [22]. The same design
was used as in the previous case (D-optimal for 5 factors). In this case, the 5 independent
factors were: Myo-inositol (Myo), thiamine (Thia), nicotinic acid (Nic), and pyridoxine (Pyr)
plus a fifth one the vitamin E (Vit E) not present in MS medium (Table 5). As previously
described, a database included 34 treatments (33 generated by the software plus 1 additional
point (average of 3 treatments) of MS media used as control (Table S2).

A third experiment was carried out to evaluate the effect of PGRs. The experimen-
tal space was designed to decipher the effect of extreme concentrations from very low
(0 mg L−1) up to very high (2.5 mg L−1 BAP or 1 mg L−1 of GA3) on shoot growth and
quality responses. Thus, 20 combinations of both PRGs were tested (Table S2).

Finally, mineral nutrient, vitamin, and PGR databases were merged into one single
database, which ultimately contains the three different experimental designs mentioned
(Tables S3–S5). This circumstance will prevent the model to detect any nutrient-vitamin,
vitamin-PGR, or nutrient-PGR interactions, but as stated before, it should allow the selection
of crucial components for the A. arguta healthy in vitro growth.

The following growth responses were evaluated as described previously [4] (Figure 2):

1. Shoots number (SN), number of new regenerated shoots per explant, longer than
1 cm.

2. Shoot length (SL), length from the base to the tip of the new regenerated shoots longer
than 1 cm.

3. Leaf area (LA), the sum of areas of the leaves >1.5 cm was measured (cm2) for all the
explants (the original and the new ones), using a portable laser leaf area meter (Meter
CI-202, CID biosciences, WA, USA).

As the MS mineral salts have been reported for promoting physiological disorders in
some plants [28], the next three morphophysiological quality responses were also evaluated
in all the explants (the original and the new ones; Figure 2):

1. Shoot quality (SQ) as indicative of shoot vigor, was visually assessed, and scored from
1 to 5 (1 very poor, 2 poor, 3 moderate, 4 good, and 5 very good).

2. Basal callus (BC), callus formation at the cut edge of shoots was visually assessed and
scored from 1 to 4 (1 necrotic, 2 big, 3 moderate, and 4 absent).
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3. Hyperhydricity (H), was visually assessed and scored from 1 to 3 (1 high, 2 low, and
3 none).

A complete database was built using 25 inputs (Tables S3–S5): 18 ions, 5 vitamins,
and 2 PGRs; and 6 outputs (SN, SL, LA, SQ, BC, and H). The use of individual ions and
vitamins makes easier the understanding of the specific effects of each avoiding the ion
confounding [36,37].

4.4. Statistical Analysis

The complete database was firstly analyzed through a traditional statistical compara-
tive analysis using ANOVA (p < 0.05) with Tukey’s Studentized Range (HSD) post-hoc test,
performed by the software R version 4.1.2 [65].

4.5. Artificial Neural Network Analysis

The complete database was analyzed with FormRules® v4.03 [66], which is a neuro-
fuzzy logic software that combines artificial neural networks and fuzzy logic [15,67]. This
technology was able to model the database, build “intelligent” mathematical models for
each output and express the results as a set of meaningful rules. Modeling was carried out
as previously described in detail elsewhere [4,68]. Briefly, this software uses a technology
based on the ASMOD algorithm (Adaptive Spline Modelling Of Data) to minimize the
number of relevant inputs, reducing the model complexity, and facilitating accuracy with
fewer inputs [67,69].

The predictability and accuracy of the neurofuzzy logic model were assessed using
the coefficient of determination (Train Set R2, Equation (1), and the ANOVA parameters
(f -ratio) as explained previously [4,68].

Train Set R2 =

(
1− ∑n

i=1
(
yi − y′i

)2

∑n
i=1
(
yi − y′′i

)2

)
× 100 (1)

where yi is the experimental value from the data set, yi
′ is the value calculated by the model,

and yi” is the mean of the dependent variable. Briefly, for each output, the higher the
Train Set R2 value, the better the model predictability. R2 values higher than 70% indicate
reasonable model predictabilities [67]. Additionally, ANOVA evaluates differences between
experimental and predicted values. If the ANOVA f -ratio is higher than the f -critical value
there are no statistical significance differences between predicted and experimental values,
thus the model is accurate for predictions [68,70].

Several statistical fitness criteria were evaluated to obtain models with the best Train
Set R2, such as Leave One Out Cross-Validation (LOOCV), Cross-Validation (CV), Bayesian
Information Criterion (BIC), Minimum Description Length (MDL), and Structural Risk
Minimization (SRM). As described previously [68,71], LOOCV and CV are validation
methods that split the data into subgroups that can be used for training and testing.
Contrary, BIC, MDL, and SRM are statistical significance methods that use all the data
for training. After the evaluation of all of them, it was found that SRM provided the best
results, ensuring the highest predictability, accuracy, and easier-to-understand rules. The
training parameters selected for modeling are presented in Table 6.

FormRules® software uses a neurofuzzy logic tool to provide the results as ‘IF THEN’
rules, expressed through linguistic tags which go from Low to High. The rules were given
a specific membership degree ranging from 0 to 1, making the interpretation easier [18,72].
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Table 6. Train parameters setting for neurofuzzy logic (FormRules® v4.03) software.

FormRules® v4.03

Minimization parameters (ASMOD)
Ridge Regression Factor: 1 × 10−6

Model Selection Criteria
Structural Risk Minimization (SRM)
C1LA, SQ, BC = 0.970
C1SN, H = 0.868
C1SL = 0.750
C2 = 4.8
Number of Set Densities: 2
Set Densities: 2, 3
Adapt Nodes: TRUE
Max. Inputs Per SubModel: 2
Max. Nodes Per Input: 15
Minimization parameters (ASMOD)
Ridge Regression Factor: 1 × 10−6

5. Conclusions

The novel strategy of reducing the experimental design space (using DoE) and jointly
modeling three independent databases (using ANNs), greatly facilitated the understanding
of the results in a simpler way than with the traditional analysis (ANOVA), but also to
acquire very useful knowledge about the effect of each media component and their hidden
interactions. The ANNs models elucidated the essential role of the mineral nutrients on the
growth and quality of micropropagated plants, showing their greater effect compared to
vitamins and PGRs. ANNs identified the factors (inputs) that have a special impact on the
growth of quality plants and the appearance of physiological disorders, never described
previously. Also, ANNs allow narrowing down the range of concentrations to be tested to
design a new culture medium by delimiting the space of knowledge (rules) and of design
(reducing the number of factors) to be studied. The generated rules easily help to deduce the
most suitable ranges of the media components by limiting the ideal ranges of concentration
of all the critical factors, to achieve the best plant growth and quality. The next step will
be the experimental validation of these results by designing an optimized media using
another computer-based tool (based on the combination of ANNs and Genetic Algorithms).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/plants11101284/s1, Table S1: Ranges (mM and mg L−1) and meaning of the levels (Low, Mid
and High) after the fuzzification process by neurofuzzy logic software, Table S2: Design Expert®’s
five-factor design including 33 model points, and MS media as controls, for the mineral nutrient
and vitamin experiments; and the 20 combinations of BAP and GA3 of the PGR experimental
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