
����������
�������

Citation: Cosmulescu, S.; S, tefănescu,
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Abstract: Vegetation phenology is considered an important biological indicator in understanding
the behaviour of ecosystems and how it responds to environmental cues. The aim of this paper is to
provide information on the variability of phenological behaviours based on discriminant analysis
using the R software package with the following libraries: ggplot2, heplots, candisc, MASS, car,
and klaR. Three phenological phases were analysed with eight wild fruit tree species from a forest
ecosystem in the southwestern part of Romania (44◦05′19.5′′ N 23◦54′03.5′′ E). It was found that
there is a large and very large variability for the “bud burst” phenophase, medium and low for
“full flowering”, and reduced for the “all petals fallen” phenophase. For the analyzed data, the
discriminant analysis model has high accuracy (accuracy: 0.9583; 95% CI: (0.7888, 0.9989). Partition
plots show the results of “full flowering” and “all petals fallen” as a function of the “bud burst” of
pockmarks when separated into eight clusters and eight clusters of “full flowering” as a function of
“all petals fallen”. The differences observed, from a phenological point of view, are not only due to
the different cold requirements of these species but also to the temperatures during the spring.

Keywords: discriminant analysis; phenology; variability; wild species

1. Introduction

Phenology is the science of recurring events in nature represented by the stages of
development of the species each year. Plant phenology is strongly controlled by climate
and has, therefore, become one of the most widely used bioindicators of climate change, an
indicator preferred by scientists because recorded data provide a high temporal resolution
of changes occurred, meaning that it can provide useful data regarding the onset and length
of each growth stage. Climate influences plant phenological traits, thus playing a key role
in defining the geographical range of crops [1]. Uncovering the impacts of climate change
has been the major focus of biodiversity research [2]. Thus, numerous analyses have demon-
strated the onset of spring-specific events much earlier, respectively, which is an extension
of the growing season [3–5]. Many phenological events, such as budding, flowering, and
leaf occurrence; the timing of insect occurrence; or the arrival of migratory birds have
advanced in response to recent climate change [6]. Numerous studies have documented
the effects of recent climate change on plant phenology in a wide range of taxa [7–12].
Plant phenology affects the structure and function of terrestrial ecosystems and determines
vegetation feedback to the climate system by altering carbon, water, and energy fluxes
between the vegetation and near-surface atmosphere [13]. There is also great interest in how
these phenological changes can affect ecosystem processes and services [14]. Integrating
climate change into ecosystem service assessments and natural resource management is
still a major challenge [15]. Many phenological observations, including long time series
which are a valuable source of information for climate change-impact studies, were made
in the context of diverse applications of phenology (e.g., agrometeorology and fundamen-
tal ecological research) [16]. Due to the fact that vegetation phenology is considered an
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important biological indicator in understanding the behaviour of ecosystems and how it
responds to environmental cues [17], the aim of this paper is to provide information on the
variability of phenological behaviours of wild species based on discriminant analysis.

2. Results and Discussions

Spring phenology is considered by researchers to be the most sensitive to climate
change due to high temperatures and warm winters during the resting period that causes
a much earlier start in vegetation to which photoperiod (time of species’ exposure to
light), existing water resources and rainfall are added [16]. Based on the observations
made, the variability of phenological characteristics was analyzed in eight fruit species
identified in spontaneous flora. In order to determine the changes occurring during some
phenophases, the number of days from January 1 to the landmark stage was used. Table 1
presents the statistical processing of data obtained, over 3 years of study, regarding the
phenological stages: “bud burst”, “full flowering”, and “all petals fallen”. For the “bud
burst” phenophase, based on Julian dates, the order in which this phenophase occurs in
the identified species was as follows: Sambucus nigra (40 days); Rubus caesius (42.67 days);
Rosa canina (53.33 days); Prunus spinosa (56 days); Malus sylvestris (59.33 days); Pyrus
pyraster (65 days); Crataegus monogyna (72.67 days); and Crataegus pentagyna (91.33 days).
From one year to another, the order in which budding occurred is maintained, but the
period of development changes in correlation with environmental factors, location, habitat,
etc. According to Grime et al. [18], budding of S. nigra may occur earlier due to high
temperatures in winter, while Atkinson and Atkinson [19] mention the reference period for
the appearance of leaves in February–March and flowers in May–June, which is consistent
with the data obtained in this study. Regarding the budding of C. monogyna, Fichtner and
Wissemann [20] report the period from mid-March to April, depending on altitude and
location, and the April to June period was reported for the “end of flowering period”.
The results obtained within the P. spinosa species are in accordance with those obtained
by Cosmulescu and Calusaru Gavrila [21] in Romania. Regarding the “full flowering”
phenophase, taking into account the Julian date, the order in which this phenophase is
triggered is as follows: Prunus spinosa (94.67 days); Pyrus pyraster (97.33 days); Malus
sylvestris (102.67 days); Crataegus monogyna (123 days); Crataegus pentagyna (138 days); Rosa
canina (143 days); Sambucus nigra (146 days); and Rubus caesius (179.67 days). Dönmez [22]
states that hawthorn has a period of 1–2 weeks with flowers present, and C. pentagyna
blooms later than C. monogyna, which confirms the results obtained in this study. Worrell
et al. [23] mention the crab apple blooming in the second half of May in Scotland, much later
than the data obtained in this paper (April), which supports the influence of environmental
and habitat conditions on phenology. According to the study by Tooke and Battey [24]
the red hawthorn blooms around 13 May (±8.4 days), the rosehip blooms around 8 June
(±6.2 days), and the elderberry blooms on 4 June (±6 days, 7 days) in temperate areas.

Table 1. Descriptive statistics of the number of days (Julian date) necessary for the development of
the main spring phenological stages.

Species Descriptive
Statistics “Bud Burst” “Full

Flowering”
“All Petals

Fallen”

Malus sylvestris
Mean ± SD 59.33 ± 1.53 102.67 ± 5.03 117.00 ± 4.00

Variation range 58–61 98–108 113–121
CV% 2.58 4.90 3.42

Pyrus pyraster
Mean ± SD 65.00 ± 2.65 97.33 ± 9.07 114.00 ± 5.29

Variation range 63–68 89–107 110–120
CV% 4.08 9.32 4.64

Crataegus monogyna
Mean ± SD 72.67 ± 9.45 123.00 ± 5.57 132.00 ± 1.73

Variation range 62–80 117–128 131–134
CV 13.00 4.53 1.31
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Table 1. Cont.

Species Descriptive
Statistics “Bud Burst” “Full

Flowering”
“All Petals

Fallen”

Crataegus pentagyna
Mean ± SD 91.33 ± 2.52 138.00 ± 3.00 146.67 ± 2.89

Variation range 89–94 135–141 145–150
CV% 2.76 2.17 1.97

Rosa canina
Mean ± SD 53.33 ± 8.50 143.00 ± 5.57 159.33 ± 5.51

Variation range 45–62 138–149 153–163
CV% 15.94 3.90 3.46

Rubus caesius
Mean ± SD 42.67 ± 2.52 179.67 ± 3.51 213.67 ± 4.51

Variation range 40–45 176–183 209–218
CV% 5.91 1.95 2.11

Sambucus nigra
Mean ± SD 40.00 ± 12.00 146.00 ± 3.61 158.00 ± 5.57

Variation range 28–52 143–150 153–164
CV% 30.00 2.47 3.52

Prunus spinosa
Mean ± SD 56.00 ± 9.54 94.67 ± 10.79 106.67 ± 7.23

Variation range 45–62 87–107 102–115
CV% 17.04 11.39 6.78

SD = standard deviation; CV% = coefficient of variation.

Taking into account the same Julian date up to “all petals fallen”, the order in which
this phenophase takes place in the studied species is as follows: Prunus spinosa (106.67 days);
Pyrus pyraster (114 days); Malus sylvestris (117 days); Crataegus monogyna (132 days); Cratae-
gus pentagyna (146.67 days); Sambucus nigra (158 days); Rosa canina (159.33 days); and Rubus
caesius (213.67 days) (Table 1).

Regarding variability, the highest coefficient of variation for the “bud burst” phenophase
was determined in S. nigra (30%), followed by P. spinosa (17.04%), R. canina (15.94%), and
C. monogyna (13%). The coefficient of variation of the “full flowering” phenophase was
11.39% in P. spinosa, followed by P. pyraster (9.32%), while for “all petals fallen”, the
coefficient of variation was 6.78% in P. spinosa, followed by P. pyraster (4.64%). It was
found that there is a large and very large variability for the “bud burst” phenophase,
medium and low for “full flowering”, and reduced variability for the “all petals fallen”
phenophase (Table 1). These results offer the possibility to know the average time necessary
to trigger some phenological landmarks in the studied fruit species. Šebek [25] analyzed
the species P. pyraster regarding the moments of onset of the main phenophases (flowering,
fruit ripening) in Montenegro, and the results obtained are consistent with those of this
paper (the beginning of the flowering period took place between 7 April and 9 May).

The analysis of the variation of three phenological parameters by species was per-
formed using the statistical parameter MANOVA and the discriminant analysis to highlight
differences between species in terms of their response to variations in climatic parameters
and to group species by phenological categories to identify groups of indicator species.
Discriminant analysis seeks to find gradients of variation between groups of samples so
that the variance between groups is maximized and the variance within groups is mini-
mized along these gradients. As observed in Figure 1, there is a strong, positive correlation
between “full flowering” and “all petals fallen” (correlation matrix). The correlation matrix
(Figure 1) presents, in addition to the correlation values between the three variables, also the
histograms of distribution of values for each variable, as well as the relationships between
each pair of variables.
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Figure 1. Correlation matrix for the 3 phenophases in the 8 species analysed.

The variables “bud burst” and “full flowering” contribute most to the differenti-
ation/separation of species from a phenological point of view. Following the appli-
cation of MANOVA analysis, it turned out that the multivariate environments (group
centroids) of the eight species have differed significantly for all four tests: Wilks test:
F(21,40) = 18.971, p < 0.0001; Wilk’s Λ = 0.001; Hotelling–Lawley test: F(21,38) = 29.751,
p < 0.0001; Hotelling–Lawley = 49.324; Pillai test: F(21,48) = 11.502, p < 0.0001; Pillai = 2.502;
Roy test: F(7,16) = 93.504, p < 0.0001; Roy = 40.908.

Given that MANOVA analysis does not outline which variable differs significantly
between species but only outlines that multivariate averages differ significantly, the dif-
ferences in the means of the three variables based on ANOVA were analysed: “bud burst”:
F(7,16) = 15.793, p < 0.0001; “full flowering”: F(7,16) = 32.107, p < 0.0001; and “all petals
fallen”: F(7,16) = 49.203, p < 0.0001. According to ANOVA analysis, the averages of the
three variables differ significantly between the eight species (Table 1): for the “bud burst”
phenophase, it is between 40 days (S. nigra) and 91.33 days (C. pentagyna); for the “full
flowering” phenophase, it is between 94.67 days (P. spinosa) and 146 days (S. nigra); and for
the “all petals fallen” phenophase, it is between 106.67 days (P. spinosa) and 159.33 days
(R. canina).

Regarding the distribution of species (represented as an ellipsoid) and the averages of
these distributions, on pairs of variables, this is shown in Figure 2. It is observed that the
averages of these distributions, both for the phenophase “all petals fallen” and for “full
flowering”, are ordered in the same manner, from P. spinosa to R. canina, which explains
why the two variables are strongly correlated.

Discriminant (canonical) analysis applied to the obtained data aimed at obtaining lin-
ear combinations (canonical functions) of two or more variables that will best discriminate
between a priori defined groups (Table 2).
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Table 2. Structural coefficients (correlation) between each variable and two canonical functions.

Phenology Stage * LD1 (0.829) LD2 (0.131) LD3 (0.039)

“bud burst” 0.138 0.122 −0.003
“full flowering” −0.004 0.024 0.269

“all petals fallen” 0.273 −0.056 −0.276
* LD = linear discriminant function.
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As observed in Table 2, the first axis (LD1) explains most of the variation (0.829). Based
on the value of correlation coefficients for the first canonical axis, “all petals fallen” (0.273)
and “bud burst” (0.138) are the most important variables in discriminating/separating
groups of species. “Bud burst” is the most important variable in relation to the second
axis (0.122), and “full flowering” is the most important variable in relation to the third axis
(0.269), and this is also visible in Figure 3.
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R. canina, S. nigra and C. pentagyna are species that shake their flowers at the latest
term (after several days). C. pentagyna also buds the latest, and S.nigra buds the earliest.
Discriminant analysis (DF) is a predictive classification, which assigns an observation to
a group starting from classification rules derived from previously classified observations.
For the analyzed data, the DF model has a high accuracy (accuracy: 0.9583; 95% CI:
(0.7888, 0.9989); no information rate: 0.1667; p < 0.0001; Kappa: 0.9524). Partition plot show
the results of “full flowering” and “all petals fallen” as a function of the “bud burst” of
pockmarks when separated into eight clusters and eight clusters of “full flowering” as a
function of “all petals fallen” (Figure 4).
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3. Materials and Methods

Analysis included phenological data for the period 2019–2021 from eight wild fruit tree
species (Crataegus monogyna, Crataegus pentagyna, Pyrus pyraster, Malus sylvestris, Prunus
spinosa, Rosa canina, Sambucus nigra, and Rubus caesius) from a forest ecosystem in the
southwestern part of Romania (44◦05′19.5′′ N 23◦54′03.5′′ E). The Bratovoesti forest is
included in the perimeter of the habitat of community interest. 91F0 mixed meadow forests
of Quercus robur, Ulmus laevis and Ulmus minor, and Fraxinus excelsior or Fraxinus angustifolia
along the great rivers—Ulmenion minoris. It is also part of the protected area network
Natura 2000 and ROSCI0045 Jiu Corridor and has an area of 1293.6 ha. The forest ecosystem
borders at the north with the Georocel stream, Bratovoesti commune, and Jiu river; at the
west with Jiu river; at the east with national road DN55 Craiova-Bechet; and at the south
with Jiu river and Rojişte commune. The altitude is between approximately 50 m to 80 m
above sea level. The forest floor consists mostly of Populus canadensis, Robinia pseudoacacia,
Fraxinus sp., Quercus sp., Alnus glutinosa, Populus alba, and Tillia sp. and various hard
and soft essences. From the climatic point of view, the natural environment in which the
research was carried out falls within the type of continental temperate climate, with rainfall
of approximately 500 mm/year (a maximum of rainfall in May and June, and the driest
months August and September) and with a temperature amplitude of over 25 ◦C [26],
with very hot summers (with a maximum temperature of 38 ◦C) and cold winters (with
an absolute minimum temperature of −27 ◦C). The first frost occurs after 25 October, and
the last frost occurs in the first decade of April, resulting in an interval of 200 days/year
without frost. The nearest weather station is located 25 km away from the site. By analysing
climatic data over the 3 years of study (Table 3), the year 2021 presented much lower
average monthly temperatures over the calendar period of February, March, and April and
heavy rainfall in January, February, April, and May compared to 2019 and 2020. These
factors contribute to the development of vegetation phenophases.
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Table 3. Climatic data for the three years of study (meteocraiova.ro).

Climate Data Year January February March April May June

Average
temperature (◦C)

2019 −3.39 5.36 11.72 13.67 17.05 24.76
2020 2.96 7.5 9.61 14.25 18.58 23.57
2021 3.77 5.2 7.33 11.41 18.61 23.07

Total rainfall (mm)
2019 64.5 26.7 2.5 23.1 22.2 85
2020 1 8.6 124.4 5.6 69.6 33.6
2021 67.6 35.2 56 41.2 101.8 49.4

The Bratovoesti forest is located on loess, which resulted in the formation of alluvial
soils and reddish brown luvic soils. At the same time, on the banks of the Jiu River on the
sandy rocks, superficial soils were poor in mineral substances, respectively, and protosols
were formed. The Jiu river crosses the Bratovoeşti forest on the western side from north to
south, and the Georocel stream enters a small area through the northern part of the forest.
Moreover, the presence of groundwater influenced the spread of soils and the formation
of vegetation. Due to the shallow groundwater, many wetlands have formed with an
important role for the biodiversity of the ecosystem.

Phenological observations and recordings consisted in field trips at intervals of
2–3 days and were performed according to BBCH stages. Three phenological phases
were analyzed: “bud burst” (53 BBCH) with visible green leaf tips enclosing flowers, “full
flowering” (65 BBCH) when at least 50% of flowers open, and “all petals fallen” (69 BBCH)
which marks the end of flowering period. Ten mature genotypes from each species, located
in full sun exposure were monitored and observed. Four shoots following the four compass
directions were selected and marked at the base and at the same height (for all ten geno-
types) depending on species [27]. The observations of the marked shoots were recorded
and converted to Julian dates for the purpose of quantitative analysis. The data obtained
from observations were statistically processed using descriptive statistics. For the analysis
of the variability of phenological characteristics, the MANOVA parameter was used and
discriminant analysis was performed using the R software package with the following
libraries: ggplot2, heplots, candisc, MASS, car, and klaR.

4. Conclusions

In conclusion, spontaneous fruiting species are sensitive to climatic factors and sud-
den temperature changes causing precocity in the onset of phenophases or their delay.
Photoperiod is another important factor in the development of landmarks through the
process of photosynthesis along with the amount of rainfall that sometimes prolongs a
certain growing season. The BBCH scale is a simple method of observing the annual cycle
of fruit species from budding to resting. The differences observed, from a phenological
point of view, are not only due to the different cold requirements of these species but also
due to the temperatures during the spring. The high temperature of spring causes a shorter
period for flowering and the “full flowering” phenophase lasts only a few days for the
entire assortment of species. The MANOVA parameter and discriminant analysis are useful
tools in evaluating the variability of phenological characteristics. They can provide quality
information and explanations regarding the behavior of fruit species development stages
as well as correlations between species and between different phenological growth stages.
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