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Abstract: This paper describes the effect of mineral elements on dominant plants in the Shewushan
lateritic gold deposit, China. For this purpose, 30 soil profile samples at different depths and 3 kinds
of dominant plants including Populus canadensis (Populus X canadensis Moench), Cinnamomun camphora
(Cinnamomum camphora (L.) Presl.) and Rhus chinensis (Rhus chinensis Mill.) were collected. The
concentration of ore-forming elements including Au, Ag, Pb, Zn, Cu, As, Fe, and S were analyzed.
Based on the investigation of two mine profiles, it can be found that Au, Pb, As, and Fe were
mainly enriched in laterite layer and the brown clay layer at a depth of 5–11 m. Moreover, the
biological accumulate coefficient (BAC) and the contrast coefficient (CM) were calculated to assess the
sensitivity and concentrating ability of Populus canadensis and Cinnamomun camphora. To investigate
the response of the two species to metal stress, the contents of chlorophyll, malondialdehyde (MDA),
and activities of superoxide dismutase (SOD) and peroxidase (POD) were determined. The result
showed that Populus canadensis and Cinnamomun camphora have a high tolerance to metal stress and
that both of the two species can indicate the content of Au, As, Pb, and Co in topsoil.

Keywords: plant response; soil; abiotic stress; biogeochemistry

1. Introduction

The development of plants is closely related to the biochemical quality of the soil
environment quality. Studies have shown that some fern species such as Dicranopteris
dichotoma (Thunb.)Bernh, Eucalyptus, Pityrogramma calomelanos and Pteris vittata L. growing
in surface mine areas can accumulate several kinds of metals [1–5]. These conclusions
were reached by studying hundreds of dominant plants in mines. The stability of these
plants’ physiology and their tolerance to heavy metal stresses are closely related to a more
efficient antioxidant and protective enzyme system. Trace elements in the soil cause a series
of biological reactions in plants, which can usually be observed through the changes in
their enzyme activity in plant. Therefore, the growth state of dominant plants can indicate
the content of heavy metal elements in the soil, the rhizosphere soil conditions, and the
groundwater environment in a mining area [6,7]. Characterizing the heavy metal contents
in leaves and the biochemical parameters of the plants could indicate the subsurface mineral
resources, which is of great significance for mineral exploration and heavy metal pollution
control [8–10].

The Shewushan gold mine is the largest laterite gold deposit in Asia, and the gold
mainly occurs in the brown clay and the lateritic soil that had undergone weathering and
leaching [11]. The reticulate lateritic and brown clay in the mining area is at 4–12 m depth
with different thicknesses and high gold content. The dominant tree species in the mine
area were Populus canadensis and Cinnamomun camphora. Studies have shown that the roots
of these three kinds of dominant plants can grow to 5–12 m [12], and the roots from the soil
profile in the lateritic soil layer can be found to have a high gold content [13]. In this paper,
dominant plants including Populus canadensis and Cinnamomun camphora were selected to
indicate the gold content in the study area. The distribution characteristics of gold and
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related elements were studied and analyzed through systematic sampling of the topsoil,
the lateritic layer, and brown clay layer in the mining area. In addition, the heavy metal
content and enzyme activity of the Populus canadensis, Cinnamomun camphora, in the mining
area were compared to reveal their indicative characteristics.

2. Materials and Method
2.1. Study Area and Sampling

The Shewushan gold deposit (N 29◦53′31′′ and E 113◦45′37′′) is located in the Wuhan
province in the middle of China. The Au content in the strata of the mining area is generally
greater than 100 ppb. Strongly weathered siliceous rocks and gravel lie in the topsoil of the
profile in the Shewushan mining area. The middle part of the profile is reticulated laterite,
the bottom part is brown clay without reticulate structure, and there is brown clay at the
base. Gold mainly exists in the brown clay layer in the form of adsorption, and the content
of the gold gradually increases downward from the surface, forming ore bodies between
the lateritic reticulated clay and brown clay layers where there is enriched clay mineral and
limonite [11]. The concentrations of gold and other metals were closely related to the clay
mineral, which proved that water in soil was an important factor for the mineralization
of gold.

Water stored in soil not only provides the right condition for plants growth. Plant
growth also depends on the geochemistry environment for metals accumulation. The dom-
inant plants in the mining area are mainly Populus canadensis and Cinnamomun camphora.

The collection of soil and plant samples was completed in July. Two typical mine
profiles were selected in the Shewushan gold deposit area to carry out continuous sampling
(Figures 1, S1 and S2). The two soil profiles were divided into the topsoil layer, the lateritic
layer, and the clay layer, with deep ore bearing rock from top to bottom according to the
profile distribution of Shewushan gold deposit (Figure 2). The location of the sampling
profiles are shown in Figure 1. A total of 26 groups of soil samples at different layers in
two ore-layer profiles were collected, and seven groups of soil samples were collected in
the background profile. In addition, the dominant plants including Populus canadensis and
Cinnamomun camphora were determined by comparing species coverage. The soil samples
were collected nearly every other meter from the topsoil layer to the base of the profiles.
The plants were collected on the surface of the profiles. For each plant sample, we collected
200 g of fresh leaves. Each soil and plant samples were stored by different numbered bags.
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Figure 2. The sampling profiles in Shewushan gold deposit.

2.2. Samples Pretreatment

After soil samples were collected, they were dried in an oven at 60 ◦C, pulverized,
and sifted through a 100-mesh screen. Then, 200 g of the soil samples were weighed for
the determination of 40 elements. A prepared sample is digested with perchloric, nitric,
and hydrofluoric acids. The residue is leached with dilute hydrochloric acid and diluted to
the desired volume. It is then analyzed by inductively coupled plasma-atomic emission
spectrometry and inductively coupled plasma-mass spectrometry. The results are corrected
for spectral interelement interferences (File S1).

For the samples of plants, they were cleaned with deionized water and then dried in
an oven at 60 ◦C and triturated in a ball mill. The powder of the leaves and roots was sifited
through an 80 mesh screen (File S2). The content of gold (Au) in soil was determined by the
fire assay method and atomic absorption spectroscopy (AAS). A prepared sample is fused
with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required,
inquarted with of gold-free silver, and then cupelled to yield a precious metal bead. The
bead is digested in dilute nitric acid in the microwave oven, concentrated hydrochloric
acid is then added and the bead is further digested in the microwave at a lower power
setting. The digested solution is cooled, diluted with de-mineralized water, and analyzed
by atomic absorption spectroscopy against matrix-matched standards (File S3).

The other elements are analyzed via ICP-MS instrumentation utilizing collision/reaction
cell technologies to provide the lowest detection limits available. A prepped sample is cold
digested with nitric acid for 8 h before being transferred to hot block for 15 min at 85 ◦C
followed by 2 h at 115 ◦C. The samples are subsequently cooled and brought up to volume
with HCl. The resulting solution is mixed thoroughly and analyzed by ICP-MS and ICP-AES
corrected for spectral interferences.

The elements content of soil and plant samples were measured by ALS Minerals-ALS
Chemex in Guangdong province, China.
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2.3. Analysis of Physiological Parameter in Soil and Plants

Determination of chlorophyll (Chl) content in plants: Cut 0.02 g fresh leaves in a
mortar and then grind them up with 95% ethanol. The absorbance was determined by
spectrophotometer at wavelengths of 665 nm and 649 nm. The concentrations of chlorophyll
a and chlorophyll b are calculated as follows [14]:

Ca = 13.95A665 − 6.88A649;

Cb = 24.96A649 − 7.32A665;

where Ca, and Cbr are the concentrations of chlorophyll a and chlorophyll b (mg/g), respec-
tively; and A665 and A649 are absorbance at a wavelength of 665 nm and 649 nm.

The MDA content was measured by TBA methods. Fresh leaves samples (80 mg)
were homogenized in 4 mL of 0.5% TBA in 20% trichloroacetic acid (TCA). The mixture
was heated to 95 ◦C and then quickly cooled. After centrifugation, the absorbance of the
supernatant was read at 532 nm and correction for unspecific turbidity involved subtracting
the absorbance at 600 nm. The concentration of MDA was calculated by an extinction
coefficient of 155/mm/cm [15]. All samples were performed in duplicate, and the mean
values were calculated for analysis. The value of the supernatant MDA concentration was
calculated by follow equation.

C(µmol/L) = 6.45(D532 − D600) − 0.56D450

The enzyme activity was determined by spectrophotometric method as described by
Cho U-H, Zhou W J et al., and Dhindsa R S et al. [14,16,17]: The result is calculated as
follows [18]:

SOD (u/g) = (Ack − AE) ∗ V/0.5/Ack/Vt/W

W is the fresh weight of leaves, Ack is the absorbance of the control group; AE is the
absorbance of the sample tube; V is the total volume of sample solution; and Vt is the
amount of enzyme liquid used in the determination.

The increase of POD value by 0.01 per minute was defined as 1 enzyme activity unit,
and it can be calculated by following [19]:

POD (u/g) = (∆A470 × V)/(W ×Vs × 0.01 × t)

where ∆A470 as reaction time (the change of absorbance); V is the total volume of sample
solution; W is the fresh leaf weight of the sample; Vs is the liquid volume of enzyme used
for determination; and T is the reaction time.

3. Result and Discussion
3.1. Geochemical Characteristics of Soil Profile in Mining Area

The horizon differentiation of the layers in the soil profile is the result of natural
soil formation and long-term human activities. The soil profile in the Shewushan gold
deposit area records the migration and accumulation process and vertical distribution
characteristics of gold and other metallogenic elements. With the influence of long-term
weathering, tectonic activity, and mining activity, the types and contents of soil metal
elements at different depths in the mining area were significantly different from the soil
profile in the background area. As can be seen from the Figure 3, the background profile of
both of two mine profiles had similar stratified soil layers. The top soil with humus layer is
on the surface at the depth of 2.0 m–2.4 m, the middle part is laterite, and the bottom part is
brown clay where gold mainly concentrated in. The soils geochemical characteristics of the
three profiles were shown in Tables 1 and 2. The content of ore elements in the profile and
the background profile are shown in Figure 3 and Tables 1 and 2. The average content of
Ca, Mg, and K in the soil of the mining area were 1.4%, 1.24%, and 2.5%, while the average
content of Fe and Al were 4.87% and 8.05% respectively.
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Figure 3. The stratified soil layers of sampling profiles.

From the Tables 1 and 2, the content of Fe in the laterite and brown clay layer was
greater than in the topsoil, and gradually decreased with the increasing depth in the
profile. The average content of Ca, Mg, and K in the soil in the background area is 0.18%,
0.135%, and 0.475%, and the content of Fe and Al were 4.37% and 7.66%, respectively. The
contents of ore elements at depth were lower than those at top. The contents of Ca, K, and
Mg in the soil in the mining area were significantly lower than that in the background
profile, while the contents of Fe and Al were slightly higher than that in the background
profile, respectively.

It can be seen from Figure 4 that the gold was mainly located at a depth of 7–11 m
in the soil profile of the mining area. Most of the gold was concentrated in the lateritic
layer and clay layer, and the contents of Fe in the 1–3 m topsoil were significantly higher
than those in the background profile. In the process of soil-forming, potassium, sodium,
calcium, magnesium, and iron were released under oxidizing stress. The average content
of Ca, Mg, K and Na in the surface soil in background profile is 12.86%, 10.89%, 18.96%,
and 6.67% compared to the mine area. These data indicate the weathering process. Gold
can be enriched by clay mineral and limonite in the oxidizing environment in topsoil and
may be absorbed by some dominant plant species in mine. The contents of Mg, Fe, Au, Pb,
Cu, Mg, Mn, and Ag varied greatly in each layer of the profile, showing the enrichment
and differentiation characteristics of trace elements from the deep layer of the soil to the
topsoil layer. The contents of the heavy metal elements Ag, Sn, Au, Hg, Pb, Cu, and As
in the topsoil of mine profiles were 7.0, 5.2, 4.7, 4.5, 4.5, 4.2, 2.6, 2.3, and 2.1 times of the
background values of Chinese soil, respectively.
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Table 1. The elements concentration of mine profiles.

Profile I
Layer

Au Ag Pb As Sb Fe (%) Co

Depth (m) µg/g mg/kg

0.7
Top soil

0.018 0.07 37.7 36.6 3.7 3.87 20.6
1.4 0.010 0.03 34.1 22.8 2.24 4.32 26.2
2.1 0.012 0.02 35.3 30.9 2.78 3.65 21.3

2.8

Laterite

0.009 0.04 32.4 25.4 2.43 4.82 22.3
3.5 0.028 0.05 32.6 24.7 2.32 4.87 16.2
4.5 0.077 0.02 31.6 24.3 2.24 5.14 15.5
5.3 0.115 0.06 30.3 28.2 2.06 6.13 11.4

5.6

Brown clay

0.161 0.08 25.9 27.5 2.86 5.89 9.5
6.6 0.433 0.06 30 75.7 4.68 5.77 7.5
7.6 0.613 0.17 28 190.6 33.7 5.29 4.3
8.2 0.937 0.11 36.2 299.8 45.1 5.96 5.4
8.8 0.876 0.14 35.7 314.5 41.3 5.92 5.8

Profile II
layer

Au Ag Pb As Sb Fe (%) Co

Depth (m) µg/g mg/kg

0.8
Top soil

0.005 0.09 41 25 2.3 3.66 21.2
1.5 0.015 0.08 42.2 24.6 1.97 4.36 24.3
2.4 0.022 0.09 42.7 18.1 1.83 4.95 23.6

2.8

Laterite

0.008 0.05 36.8 18.4 1.83 4.25 34.7
3.5 0.006 0.03 39.6 17.9 1.79 4.15 44.8
4.2 0.008 0.04 38 20.4 1.96 4.37 31.3
4.9 0.017 0.04 21 15.4 3.76 3.58 7
5.6 0.015 0.08 30.8 16.3 4.72 3.77 40.3
6.5 0.026 0.05 27.1 14.4 6.53 3.48 13.3

7

Brown clay

0.025 0.03 34.5 37.9 20.9 4.53 16.5
7.7 0.037 0.02 31.2 83.5 10.89 3.9 21.4
8.4 0.055 0.02 19.7 170.1 52.15 4.73 23
9.1 0.105 0.01 33.2 137.6 74 5.39 6.2
9.8 0.252 0.11 16.6 174.3 94.1 6.62 5.1
10.5 0.490 0.22 14.3 361.2 130 4.78 8.1
11.2 0.763 0.19 21.2 258.6 122 6.17 4.6

Table 2. The elements concentration of background profiles.

Background Profile
Layer

Au Ag Pb As Sb Fe (%) Co

m µg/g mg/kg

1
Top soil

<0.005 0.08 20.1 17.5 1.9 2.78 3.3
1.5 <0.005 0.09 13.2 18.3 2.08 1.85 4.7
2 <0.005 0.07 11.8 19.4 1.76 1.98 4.3

3
Laterite

<0.005 0.05 13.1 21.2 2.23 2.46 3.9
3.8 <0.005 0.02 15.4 23.8 2.64 3.52 4.2

5

Brown clay

<0.005 0.11 13.4 24.5 3.51 2.85 5.1
6.5 <0.005 0.09 12.4 22.8 2.29 3.44 4.3
7 <0.005 0.06 16.9 20.6 2.88 2.97 3.6

7.8 <0.005 0.07 14.2 17.4 2.14 3.71 4.6
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The contents of metals in Figure 3 were unified by normalization processing. Com-
pared to the background, gold could be detected in all layers with high levels of Pb. Except
for silver, the concentrations of gold (Au), plumbum (Pb), arsenic (As), antimony (Sb),
iron (Fe), and cobalt (Co) in mine profiles were much higher than that in background
profile, especially in the laterite and the brown clay layer (which may be the effect of gold
mineralization and weathering). From Tables 2 and 3, it can be seen that the contents of As
and Sb in the brown clay soils were as much as 2.7 times and 30 times larger in the mine
profiles than in the background profile, while the content of Co in the topsoil was 7 times
larger than background profiles.

Table 3. Biological absorption coefficient of dominant plants.

Elements Au (SD) Zn (SD) Cu (SD) Co (SD) As (SD) Fe (SD) Al (SD)

Populus
canadensis 0.08 (0.02) 1.37 (0.34) 0.33 (0.07) 0.25 (0.03) 0.03 (0.01) 0.01 (0.01) 0.01 (0.01)

Cinnamomun
camphora 0.04 (0.01) 0.37 (0.25) 0.25 (0.08) 0.01 (0.01) 0.21 (0.03) 0.01 (0.01) 0.01 (0.01)

3.2. Enrichment Characteristics of Trace Elements in Soil by Plants

Compared to the topsoil of the background profile, Au, Co, As, and Pb with high
contents should be focused upon, as dominant plants may accumulate these elements from
the topsoil.

The contents of heavy metals in plants are not only related to the mobility of metal
elements but are also closely related to plants’ tolerance to metals stresses [8,20]. Elements
in the soil are the main source of elements in plants, and therefore the elements related to
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mineralization will be enriched in the dominant plants. Compared with the plants growing
in background profile, dominant species in the mine area are better adapted to the mine soil
conditions [21–23]. The dominant plants have the capacity to enrich ore-forming elements
enrichment and some may be sensitive to the mine environment. The parameters and
indexes of these species could be indicators for locating mineral resources. The biological
absorption coefficient (BAC) can indicate the extent to which elements are transferred from
the soil to the plant. The BAC can be calculated as follows [24]:

BAC = Px/Sx (soil)

where Px represents the content of the element in the plant and Sx represents the content of
the element in the root soil.

As can be seen in Table 3, the biological absorption coefficients of trace elements in
different plants under the same growth environment were different. The Mn, Zn, Ba, Cd,
and Pb biological absorption coefficient of the Populus canadensis and camphor were greater
than 0.1. Plants enrichment of trace elements from the soil does not completely depend on
certain element content in the soil; plants can exist and adjust the physiological mechanism
of trace element levels in their parts. Therefore, it is necessary to evaluate the ability of
plant leaves to indicate soil geochemical anomalies by integrating the contrast coefficient of
each element.

The contrast coefficient (CM) is calculated by the equation:

CM = Cmine/Cbackground.

where Cmine is the average value of an element in the species in the mine area. Cbackground is
the average element content values of plants in background region.

This coefficient can assess the concentrating ability and sensitivity of plants. According
to the coefficient, the contrast of elements in plants can be divided into four levels: low
(CM < 3), medium (3 ≤ CM < 5), high (5 ≤ CM < 10), and very high (10 ≤ CM). The larger
the CM of an element, the more obvious the intensity indicator of target elements [25].
Table 4 proved that Au, Ag, Pb, K, Cu, Co, As in the mine area are all higher than the
background area. The elements with high contrast coefficient in Cinnamomun camphora were
Au (74.6) and Co (7.78). The contrast coefficients of Au, Ag, Co and As in Populus canadensis
leaves were 34.5, 2.53, 4.06 and 6.03, respectively. The contrast coefficient shows that the
content of Au, Co and As can be indicated by Populus canadensis and Cinnamomun camphora.

3.3. Effects of Trace Elements on Biochemical Characteristics of Indicator Plants

The absorption of heavy metal elements in plants will cause a series of biological
reactions, which can be observed as changes in the enzyme activity and malondialdehyde
(MDA) content [26,27]. Toxic elements can produce free radicals that lead to membrane
lipid peroxides and cell membrane damage [28]. Therefore, MDA content can reflect the
degrees of the toxic elements stress. The content of MDA in plant leaves in mine profile was
greater than that growing in background profiles (Tables 5 and S1). With the increase of
content of Au, Cu, Zn, Hg, the MDA content in Populus canadensis leaves increase gradually.

The chlorophyll contents of Populus canadensis and Cinnamomun camphora with
various concentrations of Au, Cu, and Zn were shown in Table 6. Compared to the
background profile, the chlorophyll content of poplar and camphor growing in the mine
profiles was reduced by 19.2% and 21.6%, respectively, which means that the chlorophyll
content of the two species was sensitive to these metals. Plants have an anti-oxidation
enzyme system to mop up free radicals [18]. Superoxide dismutase (SOD) and peroxidase
(POD) are clearance agents for free radicals which can clear lipid peroxides and have roles
to play in protecting cells and tissue; they can work against the oxidative damage caused
by free radicals on the plant cell membrane structure [25,29].
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Table 4. Elements content and contrast coefficient of dominant plants (mg/kg).

Species Elements Background
(Average) SD Mine Profile

(Average)
Contrast

Coefficient

Populus canadensis

Au 0.002 0.08 0.069 34.50
Ag 0.015 0.01 0.038 2.53
Pb 1.97 2.69 3.03 1.54
Ca 2.36 1.48 2.50 1.06
K 2.77 1.05 4.76 1.72

Mg 1.88 0.39 3.35 1.78
Zn 22.24 0.44 15.91 0.72
Cu 5.23 0.72 8.11 1.55
Co 0.87 0.56 3.53 4.06
As 0.72 1.48 4.34 6.03
Fe 5.67 3.3 6.58 1.16
Al 3.42 2.57 4.34 1.27
S 2.45 1.24 2.01 0.82

Species Elements Background
Values SD Mine Profile

(Average)
Contrast

Coefficient

Cinnamomun camphora

Au 0.006 0.14 0.448 74.60
Ag 0.011 0.01 0.029 2.64
Pb 1.89 1.05 4.04 2.14
Ca 1.36 4.32 1.43 1.05
K 2.67 2.09 5.69 2.13

Mg 3.88 1.35 2.64 0.68
Zn 17.52 3.33 20.71 1.18
Cu 5.12 0.87 8.03 1.57
Co 0.23 0.64 1.79 7.78
As 1.52 1.32 5.26 3.46
Fe 7.67 1.81 7.82 1.02
Al 2.32 2.14 2.06 0.89
S 2.05 1.65 2.69 1.31

Table 5. The enzyme content of dominant plants.

Sampling Area Species MDA (SD) SOD (SD) POD (SD)

Mine soil profile Populus canadensis 13.78 (3.21) 115.23 (30.67) 429.04 (83.34)
Cinnamomun camphora 4.54 (1.05) 118.85 (27.97) 348.06 (75.79)

Background region Cinnamomun camphora 6.4 (1.29) 69.82 (10.93) 280.22 (58.27)
Populus canadensis 5.29 (0.89) 53.38 (11.58) 160.5 (21.94)

Table 6. The contents of cholophyll and metals.

Sample Location Species (Sample Size) Cholophyll a + b (SD) Au (SD) Co (SD) As (SD)

mg/g µg/g mg/kg

Mine profile Populus canadensis (17) 1.91 (0.42) 0.069 (0.08) 3.53 (0.56) 4.34 (1.48)
Cinnamomun camphora

(14) 1.38 (0.27) 0.448 (0.14) 1.79 (0.64) 5.26 (1.32)

Background profile Populus canadensis (5) 2.88 (0.72) 0.002 (-) 0.87 (0.22) 0.72 (0.26)
Cinnamomun camphora (4) 2.03 (0.76) 0.006 (0.005) 0.23 (0.09) 1.52 (0.34)

Figure 5 proved that the POD and SOD activities in the canadensis grown in back-
ground profiles were 2.6 times and 2.1 times lower than those in mine profiles, respectively.
The SOD and POD contents in camphor leaves were 1.5 and 1.8 times greater than those in
the background profiles, respectively, which reflected that the protective enzyme system in
leaves of the two plants was activated. In general, SOD and POD showed an increasing
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trend with the increase of concentrations of Cu, Au, and Pb. Therefore, the Cinnamomun
camphora and Populus canadensis can grow normally under the stress of Au, As, Pb, and Co.
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4. Conclusions

(1) The contrast coefficient of Au and As in Populus canadensis growing in gold deposit
were 34.5 and 6.03, while the values of Au and Co in Cinnamomun camphora were 74.6 and
7.78. These results show that the two species are sensitive to the Au and could be regarded
as indicators of gold accumulation in mines.

(2) Compared to the samples in background profiles, the contents of chlorophyll and
MDA experienced no obviously changes in leaves of Cinnamomun camphora. The activity of
SOD and POD in the leaves of Populus canadensis and Cinnamomun camphora are sensible to
the contents of metals. All of the results indicate that Populus canadensis and Cinnamomun
camphora can enrich Au, Co, and As in the gold mining area, and that they have good
tolerance towards the metals. The content of gold and associated elements in leaves of
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Populus canadensis and Cinnamomun camphora reflects the soil geochemical environment
at the depth 5–11 m depth, which is indicative of a need for thorough investigation in
this area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11010038/s1, Figure S1: mine profile I, Figure S2: mine profile II, Table S1: Measured data
of MDA and enzymatic activity. File S1: Geochemical analysis procedure of soils, File S2: Geochemical
analysis procedure of plants, File S3: Analysis details of gold.
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